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Abstract

In various research projects, qualitative models are
claimed to be beneficial for teaching systems. Thus
far, little experimental research has been undertaken
to investigate the usefulness of these models in actual
teaching situations. In this paper, we present an ex-
perimental study that examines to what extent existing
qualitative reasoning representations and techniques
are sufficient for modelling the interaction between a
student an a teacher when discussing the (qualitative)
behaviour of physical devices. The main results are
that the knowledge representations as used in qualita-
tive reasoning are largely adequate, whereas the rea-
soning techniques need adaptation for teaching.

Introduction

In several projects, research is done on the use of
qualitative techniques in tutoring environments (e.g.,
QUEST (White & Frederiksen 1990), ITSIE (Sime
Leitch 1992)), as well as on the cognitive validation 
qualitative reasoning techniques (e.g., (Kuipers & Kas-
sirer 1987)). However, the developments in the (sepa-
rate) field of qualitative reasoning itself have largely
been determined by other goMs and constraints than
those arising in teaching situations. To our knowledge,
little research has been done on the validation of spe-
cific qualitative reasoning techniques for use in tutoring
systems.

In this paper, we focus on how qualitative analy-
sis of physics problems could be incorporated into tu-
toring environments. More specifically, we investigate
whether the techniques currently developed in the field
of qualitative reasoning are a sufficient basis for mod-
elling the dialogue between a student and a teacher. On
the basis of a qualitative reasoning model (the norm
model) for a specific physical system, we analysed pro-
tocols of the interaction between students and teachers
discussing the behaviour of this system, as obtained in
an empirical study. The aim of the experiment was to
find out to what extent the norm model we developed

covers the knowledge involved in an actual tutoring in-
teraction.

The Balance Domain

The specific example domain used throughout this pa-
per is the balance domain (Bredeweg 1992). As 
introduction to the domain, consider the bMance pic-
tured in Figure 1. On each side of the balance sits a
container partially filled with water. The containers are
equal in weight when empty, and have an equal outlet
in the bottom. Via this outlet, the water flows out of
the container, thereby decreasing the weight on that
side of the bMance. The flow rate of the two contained
liquids can be different, according to the pressure at
the bottom. As a consequence, the balance moves to
different positions, but always ends up in an equilib-
rium. The student’s task is to predict the behaviour of

Width Left > Width Right
Height Left < Height Right

Volume Left > Volume Right

Q: Predict the behaviour
of the balance once the
outlets are opened.

Figure 1: An Example Balance Problem

the balance, once the outlets are opened. The different

W_L>W_R H_L=HR H L>H R V R=0 V L=0H_L < H_R ....
V L > V_R

Figure 2: Different Behaviour States

qualitative states of behaviour for this balance system
are defined by the behaviour of the two contained liq-
uids, as depicted in Figure 2.

de Koning 103

From: AAAI Technical Report WS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



The Norm Model

The representations for qualitative behaviour analysis
we used for our norm model are based on standard
qualitative reasoning techniques, and implemented in
a qualitative reasoning shell called GARP (Bredeweg
1992).

Representation

The knowledge representation underlying our norm
model comprises the following ontological primitives.
Entities are abstractions of the physical objects in the
world. Actual "things", like a specific liquid, are de-
fined as instances of a generic entity liquid. Struc-
tural relations can be defined between (instances of)
entities, to represent for instance the fact that a liquid
is contained in a container. Features of entities can be
used to represent static properties like a container be-
ing open or closed. Quantities describe the behaviour
of entities. For example, an entity instance liquid has
a quantity volume. Quantities have qualitative values
that range over ordered sets of qualitative values, called
quantity spaces. Additionally, the derivative of a quan-
tity represents the change of the quantitative value in
time. Dependencies specify the different kinds of rela-
tions that may exist between quantities. If two quanti-
ties tend to display similar behaviour, this is modelled
by a proportionality. A proportionality between A
and B denotes that a change in A causes a change in B
in the same direction, or in the case of a negative pro-
portionality, causes a change in the opposite direction.
An influence between A and B is used to express
that the value of a quantity determines the derivative
of another, indicating that if A is greater than (smaller
than) zero, then B increases (decreases). A negative
influence is defined likewise. A correspondence be-
tween two quantities A and B means that for every
qualitative value of A, there is a corresponding value
of B, and vice versa. In other words, when the value of
A is known, B can be derived. A correspondence rela-
tion can also be directed, indicating that if A is known,
B can be derived, but not vice versa. Inequalities are
used to express actual relations between quantity val-
ues in a certain state. An inequality A > B states that
the (quantitative) value of A is greater than the (quan-
titative) value of B. Note that A and B can still have
the same qualitative value.

The knowledge represented with the above prim-
itives is organised in model fragments, constituting
generic knowledge about the features and behaviour of
entities from the real world in meaningful units. For
instance, all knowledge concerning (the behaviour of)
a liquid contained in some container is represented in
the model fragment contained liquid. This model
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fragment states, among other things, that a contained
liquid has a height, a width, and a volume, and that
the height is proportional to the volume. Model frag-
ments are represented as rules, where the antecedent
states the conditions under which the knowledge in the
consequent is applicable. For the balance domain, 13
different generic model fragments apply (e.g., liquid,
balance, pressure at the bottom, liquid flow).

The set of all model fragments matching a particu-
lar problem description constitutes a qualitative state.
Additionally, a so-called case model (or scenario) must
be provided to indicate a specific "starting point" for
the system’s behaviour.

Knowledge about how a qualitative state may trans-
form into another is represented by transition rules.
Three different types of rules are distinguished. Termi-
nation rules represent the causes for a qualitative state
to endl Two different causes exist: a quantity reaches
another (qualitative) value, or an inequality between
two quantities changes. An instautiation of a termina-
tion rule is "because the liquid’s volume is plus and
decreasing, it will become zero". Precedence (or or-
dering) rules represent the order in which transitions
take place. Several terminations may turn out to take
place at the same moment, and hence be merged, be-
cause they are part of the same transition (for instance,
the volume and height of a liquid column becoming
zero). For terminations that constitute different transi-
tions, precedence rules exist to represent their mutual
order. For instance, one precedence rule states that "a
quantity value going from a point to an interval always
precedes one going from an interval to a point". Fi-
nally, continuity rules represent knowledge about how
that part of the qualitative state that is not affected
by a termination rule transfers to the successor state.
An example of a continuity rule application is "because
the liquid’s volume is plus and decreasing, in the next
state it will be plus and either decreasing or steady".

Reasoning

The reasoning knowledge involved in qualitative pre-
diction of behaviour can be decomposed in two main
parts, modelling and simulation.

The process of modelling employs the knowledge
present in the case model to assemble the set(s) of ap-
plicable model fragments. This is done by first gather-
ing all model fragments for which the conditions match
with the case model. Second, the consequences are
added to the model, and the newly added dependen-
cies are used to calculate new values and derivatives of
quantities.

Whereas the modelling phase specifies a physical sys-
tem in one particular qualitatively state, simulation



determines how the system’s qualitative state changes
over time. The transition rules represented above are
applied. First, all termination rules that apply to the
current state are gathered. All quantities and inequal-
ities that are, by virtue of their derivative, subject to
change, will fire some termination rule. This set of
matching termination rules is then categorised as com-
prising one or more different transitions by means of
the precedence rules for merging. The first transi-
tion(s) to happen are determined by means of prece-
dence rules for ordering: pairs of transitions are com-
pared, and the one happening later is removed. This
is repeated until either only one transition remains (re-
sulting in one successor state), or no precedence rules
for ordering exist to distinguish between transitions left
(resulting in multiple successor states). Finally, the set
of remaining transitions is processed breadth-first. The
actual transformation involves application of the termi-
nation rule(s) belonging to that transformation. Con-
tinuity rules govern the derivatives of the remaining
quantities in the successor state.

The Experiment

To find out whether this norm model for qualitative
behaviour analysis is adequate to support tutoring, we
conducted a Wizard of Oz experiment as described be-
low.

The general experimental goal was to determine the
knowledge involved in the communication between stu-
dent and teacher when discussing the subject mat-
ter (the behaviour of a physical device) in qualita-
tive terms. We distinguish terminology and reasoning
knowledge. The terminology is the student’s labeling of
his or her world view, the set of concepts that a stu-
dent uses when dealing with behaviour prediction. The
set of words (to be precise: word lemmas) as used 
the communication, called the vocabulary, is an indi-
cation of the required terminological knowledge. The
reasoning knowledge is actually all other knowledge in-
volved in the problem solving process: behaviour pre-
diction, like any other knowledge-intensive task, can
be viewed as reasoning (e.g., combination, abstraction,
deduction) with the concepts of the terminology. In this
research, we do not distinguish between the knowledge
of the student and the teacher, nor do we discuss the
influence of learning on the knowledge used: we only
want to determine whether our norm model covers all
the knowledge involved.

In a Wizard-of-Oz experiment, a human expert mim-
ics the behaviour of a prospective system and commu-
nicates with the user (student) via a terminal.

Our experimental setup is visualised in Figure 3. A
student and a teacher, sitting in different rooms, are

Teacher Student

Figure 3: The Wizard of Oz Setup

communicating about the subject matter (i.e., the pos-
sible behaviour(s) of the balance system) solely via 
terminal. The terminal allows textual communication,
as well as display of figures (in our case, pictures of
different behavioural states in which the balance can
be). The pictures shown on the screens are for illustra-
tion only; no graphic manipulation is possible. They
are chosen from a fixed set and placed on the screen
by the teacher. All communication via the terminal is
saved in log files. This includes all textual communi-
cation, as well as which figures were displayed on the
screen.

The experiment took one and a half hour for each
student-teacher pair; there were three different teach-
ers, and eight students. The students were first year
psychology students who had learned physics in high
school. They were aware of the fact that they were
communicating with a human teacher; the goal of the
setup used was not to fool the student in believing he
or she was tutored by a machine, but in restricting the
communication to a form suitable for computer-based
tutoring (that is, excluding facial expressions, gestures,
and intonation).

The coding is aimed at extracting the terminol-
ogy and reasoning employed by students and teach-
ers, where each reasoning step should be defined as a
manipulation of terminology elements. One problem
is that the reasoning steps observed in the protocols
do not directly manipulate individual concepts of the
terminology (like "container"), but rather manipulate
propositions about qualitative states (like "the left con-
tainer is empty"). In other words, a reasoning step can
have the form "(P1) is the case, and therefore (P2)",
where (P1) and (P2) are propositions, and consequently
not individual members of the terminology. Therefore,
we need to code propositions as an intermediate step
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between the terminology and the reasoning.

In Figure 4, an overview is given of our coding on-
tology (the basis for the coding schemes presented in
the following). The protocol sentence "The left bar-
rel is fuller, so the volume drops faster" is used as an
example. The first stage in coding is the identifica-

Protocol Modelling
Statement Statement

barrel p container
(lemma) (concept)

J
the lett volume is bigger S(C): V_L > V_R

than the right volume ~ (expression)
(proposition) ii i

¯
the left barrel is fuller, so S(C): V_L > V_R 

the volume drops faster " 8 V_L < 8 V_R
_ (argument) (inference)

Figure 4: The CodingOntology

tion of the lemmas in the protocols ("barrel"), com-
prising the stem word categories for all words used.
A lemma maps on the modelling statement concept
("container"). The set of all lemmas comprises the vo-
cabulary, whereas the set of all concepts comprises the
terminology.

In the second stage, the propositions are identified.
For each statement (e.g., "the left barrel is fuller"), all
implicit references to the context of the statement are
made explicit (yielding "the left barrel is fuller than the
right barrel"). To link the natural language utterances
to the actual physical behaviour expression it refers
to, the statements are interpreted with respect to the
terminology. The interpreted proposition ("the left
volume is greater than the right volume") is mapped
onto the expression S(C) : Vt. > VR (the syntax of
expressions is explained below).

The third and final stage lays out the argumenta-
tion as sequences of propositions. Each argument
("the left barrel is fuller, so the volume drops faster") 
coded as an inference combining two (sets of) expres-
sions: "the left volume is greater than the right volume,
therefore the (negative) derivative of the left volume 
smaller than the (negative) derivative of the right vol-
ume" is coded as S(C) : VL > VI~ .’. ~VL < ~VI:I.
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Terminology Analysis
In the lemma count we performed on the protocols, in-
flections and verbal forms that are not important for
the terminological interpretation were left aside,x This
means that the words "barrel" and "barrels" are scored
as equal lemmas, but also that the word "empty" will
be scored as different lemmas in the sentences "the con-
tainer is empty" (referring to the quantity space value
"empty") and "the container will empty" (referring 
the state termination "to empty").

In total, 41 different concepts were identified. A rep-

Concept ~xamples
liquid 95 water, column
container 82 vessel, beaker
pressure 52 liquid pressure
height 46 level, column height
equilibrium 27 balance
liquid flow 3 flow

larger 159 higher, bigger
be equal 84 equally fast, the same
to depend on 23 influence, determine
now 80 this situation
state 50 initially, in the end
to change 37 to happen
to decrease 125 to flow, to drop
exercise 30 problem
picture 42 figure
therefore 171 thus, consequently
predict 10 calculate, describe

Table 1: A Concept Glossary

resentative part of the results of the lemma count is
given in Table 1. For each Concept, we depict the
Total number of occurrences of all lemmas referring
to it. We also present some typical Examples of the
lemmas found.

Starting from this set of concepts, we constructed
the classification depicted in Figure 5; the emphasised
terms are example lemma’s. For each of the four main
classes (boxed), we analysed to what extent they are
covered by our norm model, and what parts of the norm
model are never referred to in the protocols.

Static Subject Matter Concepts referring to one
particular state of behaviour are covered completely
by the norm model: each lemma that refers to the sub-
ject matter can be found literally in the norm model.
Viewed from the opposite perspective, the question is
whether or not the norm model is surplus to require-
ments. Most terminology concepts present in the norm

1All results presented in this paper are translated; the
original protocols, as well as all analyses, are in Dutch.



concept

subject matter
........... ~---------’:~.. _. J ......
istate reference i static !

relational specific abstract I inequality
¯ after n "owsituationl change

become
equal

description of structure description of behaviour

entity structural feature relation vadable value
liquid relation open ..

contain ~ position equilibrium
inequali~ependency abstract

greater determine ratio

i dynamic

derivative value
decrease change

become
empty

task- !
relatedi

continuity abstract
stay equal change

change

reasoning (sub)task
therefore predict

Figure 5: A Concept Type Classification

exercise
answer

behaviour model were mentioned in the protocols. Two
important aspects of the norm model representation of
subject matter were not directly identifiable: processes
and different subtypes of causal dependencies.

The existence of a process (in our domain either 
liquid flow process, or a balance movement process)
was never mentioned explicitly: there were no state-
ments like "there is a liquid flow". However, both pro-
cesses have a one-to-one relation with a specific quan-
tity and/or derivative. Therefore, reference to the liq-
uid flow process was always combined with statements
about quantity values by statements like "water flows
out of the barrel", or "the balance will move to the
left".

With respect to causal dependencies, the protocols
clearly show that people do not mention different types
of dependencies. Nine different references were found
for dependencies (e.g., to cause, to determine, to influ-
ence, to depend on). "Influence" is the only lemma that
could have related to one specific qualitative reasoning
primitive, but from the seven references found in the
protocols, it is clear that it is used by students as well as
teachers to refer to all different kinds of dependencies:

Teacher:What I want to get at is that the width of the can
does not influence the pressure at the bottom
[...]

Hence, the differentiation in specific types of causal
dependencies, as made in qualitative reasoning, is not
reflected in the protocols.

While the norm model covers the complete vocabu-
lary of the subject matter, there is also a set of lemmas
referred to in the protocols that do fit into some con-
cept class as mentioned in Figure 5, but are not within
the scope of the subject matter. These out-of-scope

concepts we found were either entities (e.g., coil) or
quantities (e.g., friction). Out-of-scope concepts can
in principle be added to the norm model. Whether this
is appropriate, is a question that should be answered
for each individual concept, and depends on the role it
will play in a tutoring interaction¯

Dynamic Subject Matter The concepts related to
the dynamics of a system are also largely covered by
the norm model.

Inequality changes and value changes are modelled
in termination rules. Continuity of quantity values is
modelled by continuity rules. Especially with respect
to the latter, it is questionable whether the ’semantics’
of the continuity concepts mentioned in the protocols
is similar to that of the continuity rules in the norm
model. For instance, when a student states that "The
left barrel empties; this has no effect on the equilib-
rium" may be comparable to an application of a conti-
nuity rule.

Derivatives are literally present in the norm model.
However, in the model, derivatives are part of the static
description of behaviour, because the derivative of a
quantity is simply a part of a qualitative state. In the
protocols, derivatives are mentioned almost only in the
context of state changes--conceptually, students view
a derivative as part of the dynamics of the system, just
like changes in inequality relation or changes in quali-
tative values. Therefore, derivatives were classified in
Figure 5 under "dynamic subject matter" instead of
under "static description of behaviour".

A category of concepts not covered by our norm
model is that of abstract references to the system dy-
namics (like "to change" or "to happen"). There is 
meta representation of what constitutes behaviour or
change. This is part of a more general problem with

de Koning .107



our norm model, to be discussed below: the need for
reflection on the prediction (process) as a whole.

State Reference Concepts referring explicitly to the
notion of a qualitative state reveal a similar deficiency
as the abstract references to change: although states
are represented, the norm model does not facilitate rea-
soning about the set of states, or their sequence. This
hampers reference to a non-specific future state, like in
the proposition "Once, the levels will become equal".

The only class of state reference concepts that has a
representation in the norm model, is that of state rela-
tions: in several (but not all) cases in which lemmas
like "after" are used, this can be modelled by a prece-
dence rule. For instance, the proposition "after the left
one empties, the right one also empties [...]" can be
seen aa reference to a precedence rule.

Task-Related Concepts Concepts related to the
task to be performed by the student can be divided
in three main categories: references to the reasoning
steps (therefore, because, thus), explicit mentioning 
(sub)tasks (calculate, predict, describe), and concepts
related to the actual exercises presented (question, an-
swer, exercise).

How references to the reasoning steps relate to the
norm model is analysed below. References to the sub-
tasks the student should execute were rare and impre-
cise: one reference to the subtask "calculation", and
three to the subtaak "description" of the situation. In
contrast, eight references were made to the main task,
"prediction". None of the task-related concepts is ex-
plicitly present in our norm model. Numerous explicit
references to the exercise were made. The norm model
does not have a representation for what constitutes an
exercise, a question, or a picture.

Reasoning Analysis

We distinguish two categories of statements, expres-
sions and inferences. Expressions model the proposi-
tions about the domain, and are built using the termi-
nology; inferences model the argumentation in the pro-
tocol, and are constructed by combining expressions.

A semi-formal grammar was used to extract the rel-
evant statements from the natural language communi-
cation. The grammar, based on first-order logic, al-
lows for representing quantity values (e.g., HL > O)
and derivatives (e.g., 8HL ---- --), as well as inequal-
ity relations (e.g., VL > VR) and dependency relations
(e.g., PL ~ FL).2 Because we already found that no

2The quantities H, V, P, and F stand for the height,
the volume, the pressure, and the flow rate of the liquid,
respectively. The subscripts L and R represent the side of
the balance that is referred to.
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explicit differentiation is made between different depen-
dency relations, we define only one general dependency
¢<. Propositions are usually made in the context of one
or more qualitative states. Therefore, the grammar al-
lows indexing with states. For instance, most language
statements like "The height is greater at the left" (rep-
resented in the grammar as HL > fiR), are referring to
the current state. In the grammar, this is represented
as S(C) HL> HR.Someexamples of na tur al lan-
guage statements and their associated expressions can
be found in Table 2.

Statement Expression
"the left barrel is fuller" s(C) : VL > 
"once the heights are equal" 3 s S(s), s ~- C 

HL = HR
"flow depends on pressure" PocF
"left is empty earlier" 3 s S(s), s ~- C 

VL =0^VR= +

Table 2: Some Examples of Expressions

Expressions

All statements in the protocols that were related to the
subject matter were interpreted in terms of the semi-
formal grammar. In total, 565 expressions were coded,

Expression Example
intra-state value inequality "the left is higher"
inter-state state termination "the barrel becomes

empty"
inter-problem entities "it’s the same balance?"
generic quantities "the width does not

matter"

Table 3: Sample Expression Categories

divided in 19 different categories. Table 3 exemplifies
some expressions found in the protocols.

The organisation of expression categories is centred
around what we call primitive state expressions: sim-
ple expressions about entities, quantities, or inequali-
ties within one qualitative state of behaviour. Based
on the primitive state expressions, more complex ex-
pressions can be categorised as depicted in Figure 6.
These categories match the indexing terms used in Ta-
ble 3. Below we discuss to what extent these four main
categories are covered by the norm model.

Intra-State Expressions The expressions referring
to one specific state are called intra-state expressions,
and are formed by primitive state expressions indexed
with one specific state (mostly the current state, S(C)).



expression

interproblem generic

intrastate interstate

Figure 6: Higher Level Expressions

Two categories of intra-state expressions involve com-
plex reasoning with derivatives, and are not covered
by our current norm model: at the moment, there is
no means for representing either an inequality between
two derivatives ("left decreases faster"), or a derivative
of a difference between two values ("the volume differ-
ence becomes smaller"). The other seven categories
do all correspond to existing constructs in the norm
model.

Inter-State Expressions Expressions that relate dif-
ferent states are categorised under inter-state expres-
sions. The most common ones are those related to
state transitions. The factual contents of state termi-
nations ("the container becomes empty") are repre-
sented in our norm model by termination rules; that is,
the fact that a container becomes empty, interpreted as
"the volume of the liquid becomes zero", is derived in
the norm model by means of a termination rule. How-
ever, the termination rule is part of a complete state
transition, where other terminations may have been
calculated, but rejected on several grounds. Often, no
other information about the transformation is provided
by the student. State ordering ("the left one becomes
empty before the right one") and continuity ("the bal-
ance keeps the same position, of course") are modelled
by precedence and continuity rules, respectively.

Inequalities between values in different states, like
"the pressure is now lower [than in the previous state]"
do not have an explicit representative in the norm
model.

Inter-Problem Expressions Knowledge about pre-
vious exercises is sometimes used in the current situ-
ation. This involves statements like "This is the same
as in the previous exercise", where "this" refers to one
specific quantity value, the behaviour state as a whole,
or even a set of behavioural states ("From here on, it is
the same as before"). Because there is no explicit no-
tion of an exercise in our current norm model, compar-
ison of different exercises (or rather exercise solutions)
is impossible.

Generic Expressions The last category of expres-
sions are generic ones, i.e. expressions that do not make
reference to a specific state or even a specific problem,
but instead refer to the domain knowledge in general.

The most important category of generic expressions in-
volves dependencies, like in "[...], therefore equal taps
do not always necessarily lose the same amount of wa-
ter". Generic expressions are not easy to deal with by
using the norm model of the current state: the norm
model does not facilitate abstraction from the specific
domain.

Inferences

Expressions are used to form the basic reasoning steps
called inferences. In total, we found 147 inferences, di-
vided in 63 different types. Only 6 inferences were in-
herently incorrect (i.e. logically unsound derivations),
and another 25 were incorrect in their specific context
(e.g., the conditions were not true). The type of an
inference is defined by the expression type(s) of its
antecedent and its consequent. All inferences appear
to be intra-problem: no explicit inferences are found
about combining problems, or about generic subject
matter issues. Below, the most important inference
types are discussed. For an exhaustive presentation
of inference types, see (de Koning & Bredeweg 1996).
The syntax is given in bold; parentheses denote that
the antecedent can be a set of expressions.

Inequality Correspondence
{value inequality} .’. value inequality

By far the most frequent inference was the derivation of
a value inequality from another value inequality, as in
"Because the left column is higher, the pressure at the
bottom is greater as well" (S(C) : HL > HR .’. PL 
PR). We call this kind of inference an inequality corre-
spondence. Out of a total of 35, 33 of these inequality
correspondences were intra-state, and hence belonging
to the specification of the current state; the other two
inferences in this category relate an inequality in the
current state to one in the next state, hence referring
to a termination.

In the norm model, inequality correspondences are
derived, but the procedure does not use the correspon-
dences, but explicit equality statements. This is caused
by a rather complex technical problem in qualitative
reasoning when comparing similar systems; for details,
see (Bredeweg, de Koning, & Schut 1995).

Corresponding Influences
{value inequality} .’. derivative inequality

Inferences of this type always implicitly involve an in-
fluence relating the value of a quantity to the derivative
of another quantity, as in "The flow rate will be initially
greater there [at the left]. So that barrel loses water
faster" (S(C) FL> FR .’. 5VL < JVR). The rela ted
influence states that if the flow rate is positive, the vol-
ume will decrease. Reasoning with derivatives is not
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covered in the norm model; therefore, the conclusion
~VL < ~VR cannot be explicitly derived. Reasoning
with influences is correctly covered.

State Termination
derivative inequality .’. value inequality

This kind of derivation refers to qualitative state ter-
minations: derivatives are used as a cause for some
value inequality to change, as in "[...] so that height
[left] will decrease faster. Therefore, the flow rate
at the left becomes smaller than at the right [...]"
(S(C) : 6HL < JHa .’. S(N) : FL < These
terminations are not similar to the methods used in the
norm model simulations. Therefore, the conditions as
well as the conclusion can be found in the output of
the simulation, but the relation between both has to be
checked by other mechanisms.

Future State
{value inequality} .’. 3 state: value inequality

An inequality is used to derive that once, another in-
equality will hold: "The columns will, because of the
faster flow rate of the left column, once become equal"
(S(C) : FL > Fa .’. BS(t), t ~- : HL= Ha). Be-
cause no explicit notion of (future) states exist in the
norm model, this type of inference cannot be dealt with
directly.

Problems with Inferences

The covering of inferences by the norm model is, at the
level of one-to-one correspondences, insufficient. At
closer inspection, three main reasons can be identified
that cover most problems.

1. The incapacity of the norm model to deal with
complex expressions involving derivatives. This is
mainly a technical, and not a fundamental problem,
which can be solved by extending the simulator. We
do not discuss this issue in further detail here.

2. The difference in steps (step size) taken by human
reasoners and simulators. This is closely related to
the difference in the control over the inferences made:
the simulator calculates states and state transition in
a fixed, breadth-first way, whereas people used more
flexible, "best-first" strategies (see also (Bredeweg 
Schut 1991)). When we carefully investigate the hu-
man inference steps that do not correspond to those
of the norm model simulator, correct inferences are
composed of conditions and consequences that are
part of the norm model; only the consequences are
derived differently by the simulator, and often a lot
of additional knowledge that is used by the simula-
tor (and is required to prove the consequences) is not
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mentioned explicitly by human reasoners. For incor-
rect inferences found in the protocol, in most cases
it is clear that given the additional knowledge in the
norm model, the consequences could never have been
derived from the conditions.

3. The lacking ability to reason about states and the re-
lations between states. The simulator can only rea-
son about the knowledge within one state, and about
the transition(s) to the next state(s). A meta-level
reasoner is needed to facilitate reasoning over the
prediction (exercise) as a whole.

The next section proposes extensions to the norm
model that account for the second and third problem.

Extending the Norm Model

To overcome the insufficient coverage of the reasoning
steps, two extensions to the norm model are proposed:
partially matching of inferences, and reflection on the
prediction task.

Partially Matching of Inferences Because hu-
mans do not necessarily reason in the same order and
with the same precision as our norm model simulator
does, we need a means for partially matching the in-
ferences found in the protocol to the inference graph
of the simulator. The idea of a partial match is that
a student’s inference may be interpreted as being cor-
rect, when only a subset of the required antecedents
are mentioned. To exemplify this, we use a graphical
representation for the inference graph derived by the
simulator, as is shown in Figure 7. Inference graphs

Figure 7: Inference Graph

can be generated for complete predictions, including
all intra-state reasoning and state transitions. Inter-
problem comparison can be done by comparing differ-
ent inference structures. In the context of the problem
situation given in Figure 1 and 7, the depicted chain of
inferences was made as follows:



Student: The column right is higher, so the pressure is
higher as well. Therefore, the flow rate will be
initially higher there. So that barrel loses water
the fastest [...]

Using inference graphs, we can identify which knowl-
edge is used in deriving a certain expression, and check
whether the conditions found in a student’s inference
are at least a subset of the conditions used in the simu-
lator. Matching the inferences now becomes a focussed
search in the inference graph to a connection between
the conditions and the conclusion.

This does not yet solve all problems. An important
problem is how to determine whether a student’s infer-
ence covers enough parts of the knowledge actually in-
volved in its counterpart in the inference structure. For
example, the inference "The right column is higher, so
the pressure is higher as well" does not explicitly men-
tion the correspondences between height and pressure
at both sides, but is nevertheless always approved of by
the teacher. The inference "because the right volume
is smaller, that one will be empty first" is also part of
a correct inference, but here the teacher asks for clar-
ification: the volume being smaller at the right is not
enough reason to derive that it will be empty first.

Summarising, inferences are interpreted by partial
matches on the inference graph. Assuming that all ex-
pressions used in the conditions and the conclusion of
the inference are proved valid in the norm model, this
may yield three different outcomes:

¯ No match is found, indicating that the conclusion
cannot be derived from the conditions by any means,
and the student’s answer is rejected;

¯ The match is sufficient, and the student’s answer is
accepted;

¯ The match is underspecified, and the student
should" be asked for additional argumentation.

A method for determining whether a partial match is
sufficient or underspecified may rely on a priori knowl-
edge about how important different expressions are
within an inference, and possibly on a student model
that contains information about the student’s knowl-
edge with respect to the "missing" conditional knowl-
edge in the inference. The exact implementation of this
method falls outside the scope of this paper.

Reflection For the purpose of tutoring, we need a
slightly different view on the prediction task. Instead
of focussing on the current state, and working on tran-
sitions to the immediately following state(s) only, 
should view prediction of behaviour more as incremen-
tally specifying the state transition diagram, which can

be represented as a directed graph of states. That is, the
simulator should explicitly be aware of the notion of a
prediction as consisting of a set of states, connected in
a directed graph, of which at the start only one mem-
ber is known: the begin state. During the problem
solving process, knowledge is added about other nodes
of the graph, and about the edges between them. For
instance, a student can start with stating that "in the
end, both containers will be empty of course, and the
balance will be in its equilibrium", without having said
anything about the intermediate qualitative states.3

The idea of using a directed graph (a state transi-
tion diagram) is not new (e.g., (Harel 1987)). Also, 
does not imply that we need to design a new predic-
tion engine---it is a high level view on the process that
is beneficial in the context of tutoring. As such, we
can use existing techniques to generate the set of states
(either off-line or on-line), but we need a meta level
reasoner that processes a prediction of behaviour as a
whole, rather than piece by piece without looking ahead
or back. In the example given at the beginning of this
section, the verification of the proposition about the
end state can be done by doing a total envisionment,
but the meta reasoner can decide what to do with the
remark (ask for an argumentation, ask for the conse-
quences) on the basis of its knowledge that the student
knows (at least) the end state. The sole fact that the
student has determined the end state does not guaran-
tee that all intermediate states and transitions are also
understood. For a simulator, the only way to determine
the end state is to calculate all intermediate states first,
but people can use strategies not covering all facts.

Another interesting concept is that of state ordering.
Numerous remarks in the protocols refer to non-specific
state ordering ("left is empty earlier than right"). 
graph terminology, this remark is interpreted as "there
exist two nodes Si and Sj, where Si refers to the state
in which the left container is empty, but the right one
is not, and Sj to the state in which both containers
are empty. There is a directed path from S~ to Sj."
Furthermore, it is known that there is a path from the
current state to Si. To clarify the examples, consider
the picture of the directed graph shown in Figure 8.
The specific balance problem that is presented to the
student in this case’is pictured in Figure 1 and 7. The
"student trace" graph is the result of the following in-
teraction:

Teacher: Can you tell me what will happen here?

3In continuous systems, the state transition diagram con-
tains loops, and no end state exist. Although we always
mention an end state in the examples, state transition dia-
grams do not require its existence.
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Correct Trace

Figure 8: A Prediction Graph

Student: Well, at least they will both become empty in
the end. But I think that the right one is empty
first,

When compared to the correct trace shown in the
lower part of Figure 8, we can see exactly what infor-
mation is still lacking at the moment: the two states
between the current (begin) state $1 and the one 
which the right container becomes empty (Si), and all
transitions. Note that, although the layout may sug-
gest different, there is no evidence yet for the fact that
Si = ,5’4, nor that the end state S~ is the fifth state: the
dotted arrow between Si and Sn denotes the existence
of a path, not of an edge (transition).

Partially matching of inferences and reflection both
require additional reasoners on top of our norm model.

Concluding Remarks and Outlook
We have presented an empirical study on the suitability
of current qualitative reasoning techniques in a tutoring
environment. Using a Wizard-of-Oz setup, in which a
student and a teacher communicate about a problem
solving task via computer terminals, we have investi-
gated whether the terminology and reasoning used in
the textual interaction can be covered by a model of
that problem solving task that is built by using current
qualitative reasoning techniques.

At a global level, the terminology as used by stu-
dents and teachers in the interaction seems to be cov-
ered reasonably well by our existing norm model. The
reasoning knowledge, however, does not match very
well. Especially the control over the reasoning process
is different. Two meta level extensions should be added
to the simulator to account for the problems found: a
mechanism for partially matching of inferences, and a
reflection component for reasoning over states.

These extensions will be implemented on top of our
current norm model. The resulting model will be used
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to generate inference graphs of the norm behaviour.
The ultimate goal is to use these inference structures
as ’device models’ for cognitive diagnosis (de Koning,
Breuker, & Bredeweg 1995).
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