
Model-based Automatic Generation of Sequence Control Programs
from Design Information

T. Sakao and Y. Umeda and T. Tomiyama
Graduate School of Engineering, the University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
Email: {sakao, umeda, tomiyama}~zzz.pe.u-tokyo.ac.jp

Y. Shimomura
Mita Industrial Co., Ltd.

Tamatsukuri 1-2-28, Chuo-ku, Osaka 540, Japan
Email: simomura@mita.co.jp

Abstract

This paper proposes a new model-based tech-
nique to automatically generate sequence control
programs for mechatronics machines from design
information. This technique solves one of the
bottlenecks in developing mechatronics machines
by reducing burdens of software development. In
this technique, a sequence control progrmn is gen-
erated from a model of the design object rep-
resented in a mechanical CAD by searching the
physical causalities described by Qualitative Pro-
cess Theory and by providing geometric informa-
tion. Based on this technique, we implemented
a prototype system named the Sequence Con-
trol Program (SCP) Generator which integrates
a mechanical CAD and a software generation sys-
tem. An example of control program generation
for a photocopier with the SCP Generator is de-
scribed.

Introduction

Design of mechatronics machines involves both that of
hardware and software. It is well known that one of
the bottle necks in developing mechatronics machines
is software development, even if the control is based on
simple sequence control. Thus, a system to automate
this process is required.

Although many researchers have studied methods to
automatically generate control programs, most of them
are based on transformation knowledge from formal
specifications to codes (e.g. (Fickas 1985)). For
stance, Nakayama (Nakayama 1990) has developed
technique to automatically generate sequence control
programs based on a model of object from the require-
ments for the object represented in the conceptual level
of the designer. Graves (Graves 1992) also succeeded
in automatic programming through generation of ac-
tions which should be activated based on functional
connections among the components of a plant.

These techniques have the following problems in
comlnon:

1. Specifications for the control aald those for the mech-
anism are often developed independently and incon-
sistently.

2. The designer is not able to make good use of infor-
mation about the mechanism in the software design
stage.

In other words, the scope of previous studies is lim-
ited to design of software and such techniques are not
fully integrated with a mechanical CAD, thus calling
for concurrent engineering problems. That is why these
techniques are not useful for supporting the whole pro-
cess of the design of mechatronics machines effectively.

This paper proposes a new model-based technique
to automatically generate sequence control programs
from models of a design object in the "Knowledge In-
tensive Engineering Framework" (KIEF) (Tomiyama
1994). Within KIEF, the conceptual design stage
is supported by the "Function-Behavior-State (FBS)
Modeler" (Umeda et al. 1990) dealing with a model
of a design object that preserves designer’s intentions
in the form of functions and physical causalities based
on Qualitative Process Theory (QPT) (Forbus 1984).
This method integrating a mechanical CAD and a soft-
ware generation system solves the problems described
above. Moreover, this method is applicable to situ-
ations in which sequence control programs must be
dynamically changed; consider a truly flexible man-
ufacturing system that must be flexibly controlled
or a function redundant self-maintenance machine
that dynamically changes its behaviors to maintain
its functions (Umeda, Tomiyama, & Yoshikawa 1992;
Umeda et al. 1994).

In chapter 2, KIEF is is briefly illustrated and our
strategy for generating sequence control programs is
described. Chapter 3 describes the prototype system
named a Sequence Control Program (SCP) Generator
and its algorithm. Chapter 4 illustrates an example of
generation of a sequence control program for a photo-
copier with the SCP Generator. It also demonstrates
that the SCP Generator can generate sequence con-
trol programs for different operation conditions from a

206 QR-96

From: AAAI Technical Report WS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

normal one. This is useflll for dynamic software gen-
eration during operation. Chapter 5 and 6 desclibe
discussions and conclusions respectively.

Knowledge Intensive Engineering
Framework

Architecture

Our group at the University of Tokyo has been con-
ducting research on the development of KIEF. KIEF is
an integrated computational framework for engineering
activities in various product life cycle stages, including
design, production, operation, maintenance, and recy-
cling (see Figure 1). Using various modelers, simula-
tors, and a very large-scaled knowledge base (VLKB)
in a flexible manner allows an engineer to create more
added-value.

Within KIEF, the designer conducts conceptual de-
sign with the FBS Modeler to be described in Sec-
tion. The FBS Modeler decomposes functional design
specifications into physical behaviors of mechanisms.
The SCP Generator, whose algorithm is described in
Chapter 3, takes this qualitative behavioral informa-
tion of the mechanisms of a design object and gen-
erates qualitative control sequence. The Qualitative
Process Abduction System (QPAS) (Ishii, Tomiyama,
& Yoshikawa 1993) reasons about appropriate physi-
cal phenomena which realize the required qualitative
changes of the parameters based on physical causali-
ties managed by the Qualitative Reasoning (QR) Sys-
tem (Kiriyama, Tomiyama, & Yoshikawa 1991). The
SCP Generator further incorporates quantitative geo-
metric information of the mechanisms and generates a
sequence control program. The 2-D bit map modeler is
a tool for handling geometric information of the design
object and the Spatial Reasoning (SR) System (Mat-
sumoto et al. 1993) reasons about kinematic properties
of the mechanisms.

All of these systems are integrated in KIEF that
allows flexible use of knowledge about design objects
(see Figure 1) and enable the following:

1. The system can generate sequence control programs
from the results of conceptual design.

2. This results in easy modifications of sequence control
programs, contributing to increasing productivity of
software development.

The Function-Behavior-State Modeler

The FBS Modeler deals with functions, behaviors, and
states occurring on mechanism. Behaviors and states
are managed based on physical causalities that are rep-
resented and reasoned by the QR System, which imple-
ments QPT. It is important that the FBS Modeler can
represent and reason about the trichotomy of function,
behavior, and state, because control is a means to ob-
tain the desired function through physical behaviors of
the mechanism. Figure 12 shows an example of screen
hardcopy of the FBS Modeler.

In QPT, a physical world is modeled with three com-
ponents; i.e., individuals, individual views, and pro-
cesses. An individual represents an entity, such as a
gear and water. An individual view represents a way
of seeing an entity, such as seeing a gear as a rotatable
entity. A process represents a physical phenomenon,
such as rotation of a gear pair and boiling of water. In
the QR System, individuals, individual views, and pro-
cesses are represented in a uniform framework named
a view.

Table 1 shows the scheme of function prototypes
used to nmdel functions in the FBS Modeler. Decom-
position describes feasible candidates for detailing this
function in the form of networks of subfunctions which
include representation of needed temporal transitions
among subfunctions. F-B relationship describes be-
haviors that can perform this function in the form of
networks of views in the QR System.

Table 1: Definition of a Function Prototype

Item Contents

Name verb + objectives
Decomposition subfunction networks
F-B Relationships a network of views

Figure 2: Examples of the Kinematic Pairs

Managing Geometric Information

Geometric reasoning and kinematic reasoning symbol-
ically represent and reason about mechanisms (e.g.
(Faltings 1987; Joskowicz & Sacks 1991; Gupta
Struss 1995)). KIEF deals with geometric information
about mechanisms using a geometric modeler plugged
into the Metanmdel System (Kiriyama, Tomiyama,
Yoshikawa 1991) through the Pluggable Mechanism
(Yoshioka et al. 1993) and the SR System can rea-
son about the spatial characteristics of the design ob-
jects such as kinematic pairs. Figure 2 shows simple
examples of the kinematic pairs. The Metamodel Sys-
tem maintains consistency among different design ob-
ject models (such as qualitative model and geomet-

Sakao 207

Engineering Models
(Bond Graph, etc.)

Qualitative
Reasoning

System

Metamodel System

-C~~pt
Network of
Physical

Spatial
Reasoning

System

gyi Physical Laws

Entity, Relation,
Attribute,

Physical Property,
Physical

Phenomenon
Function

Physical Rules

Qualitative Equations
Differntial Equations

Other Model

VLKB of Engineering Knowledge

Oriented Database Management System

Figure 1: Knowledge Intensive Engineering Framework

208 QR-96

FBS Model

I Generation of Qualitative Sequence of Behaviors I
!

Qualitative Sequence of Behaviors

I Generation of Qualitative Control Sequence
I

Qualitative Control Sequence
2-1) Bit Map_.._~

~k

Model --’1 Supplying Geometric Information ~ SR System [
I

Quantitative Control Sequence ~ Heuristics
[Generation of C Codes

~ C Code Library
C C~odes

Figure 3: Algorithm of the Sequence Control Programs Generation

~: View

Halogen Lamp

Figure 4: The Input FBS Model

ric model) by symbolically representing relationships
among them. In this study, a 2-D bit map modeler
handles geometric information about design objects.
However, alternatively a solid modeling system can be
used, if geometry of the design object has enough de-
tails.

The designer makes the correspondence between the
geometric information of the design object represented
on the 2-D bit map modeler and the symbolic informa-
tion of the physical states on the FBS Modeler, and the
Metamodel System manages these correspondences.

This architecture allows the SCP Generator to access
to geometric information for generating quantitative
control sequences.

The Algorithm of the Sequence Control
Program Generation

After conceptual design and parametric design are fin-
ished, the SCP Generator generates a sequence control
program that satisfies the designer’s intentions repre-
sented as a sequence of needed functions on the FBS
model. Figure 3 shows the algorithm.

In Figure 3, a 2-D bit map model represents the

structure of the design object with its quantitative
data and the Heuristics Knowledge Base contains the
heuristics for controlling devices. A qualitative control
sequence means a sequence of states in temporal or-
der, while a quantitative one is a sequence that includes
time information. The quantitative control sequence is
converted to a C program using respective C functions
stored in the C Code Library. Although we used the C
language, our technique can generate programs in any
other language by modifying this library.

In this chapter, we describe the algorithm to gen-
erate sequence control programs with the SCP Gener-
ator using an example FBS model depicted in Figure
4. Sequence control is a way to control according to
the conditions and the sequence prepared in advance.
Since this example satisfies those, the algorithm de-
scribed here does not lose its generality. Note that
we do not deal with quantitative control, nor feedback
control here.

In the FBS model of Figure 4, oval nodes in the
upper half denote functions and represent as a whole
the functional hierarchy while rectangular nodes in the
lower half denote views and represent as a whole be-

Sakao 209

haviors and states of the design object.

Generation of Qualitative Sequence of
Behaviors
The SCP Generator derives a sequence of behaviors
from an FBS model that represents views to satisfy a
transition sequence of subfunctions in request.

In the example of Figure 4, the top function is trans-
fer image that can be decomposed into expose drum
and derive image. The arrow from expose to derive
indicates their temporal order; i.e., first expose drum
should happen and next derive image. The example
FBS model also shows their F-B Relationships (see
Table 1). Namely, expose drum and derive image are
performed by activating Flash and Toner Transfer, re-
spectively. From this, a qualitative sequence of behav-
iors (see Table 2) is derived from the initial FBS model
as a temporal sequence of state1 and state2.

Table 2: Qualitative Sequence of Behavior

state [state1
required function expose drum

I state2
derive image

views Flash Toner Transfer
Halogen Lamp Transfer Charger
Original Paper Output Paper
Drum Drum
Facing1 Facing2

Generation of Qualitative Control
Sequence

In this stage, the QR System and QPAS reason out
required parametric changes from the qualitative se-
quence of behaviors generated in the previous stage.
The QR System performs envisioning to see whether
or not the input model has a possibility to arrive at
the required states under feasible conditions regarding
parameters, entities, and relations.

To do so, first, the designer specifies the initial state
and the final state by giving the values of the param-
eters. The system creates a parameter transition map
for activating views needed for the sequence of behav-
iors and completes a consistent transition map based
on the procedure below. For this example, the designer
sets the values of the parameters included in the design
object of state1 and state2 at the initial state and at
the final state as follows:

initial state: Surface = charged, Angle = zO,
Position = yO, Velocity1 = O, Velocity2 = 0, Lamp
= off, Charger = off, Developer = off, Motor1 =
off, Motor2 = off,

final state: Surface = nothing, Angle = xS,
Position = y2, Velocity1 = O, Velocity2 = O, Lamp
= off, Charger -- off, Developer -- off, Motor1 =
off, Motor2 = off,

where Surface, Angle, and Velocity1 belong to Drum,
and Position and Velocity2 to Output Paper. Also,
Surface is a non-controllable, sensory state paa’ame-
ter, Lamp, Charger, Developer, Motor1, and Motor2
are controllable state parameters, and Angle, Positiou,
Velocity1, and Velocity2 are variable parameters. Con-
trollable state parameters are associated with control-
ling methods described in the Heuristics Knowledge
Base.

.
Based on the knowledge shown in Table 3 main-
tained by the QR System, a specification transition
map (see Figure 5) is created by providing infor-
mation about the initial state and the final state.
Also, new states, state1 and state2, at which Flash
and Toner Transfer are supposed to occur, are recog-
nized. Table 3 denotes if the conditions of a physical
phenomenon are satisfied, its influences occur on the
design object. Note that at this stage, we only fo-
cus on uncontrollable parameters in conditions and
influences of phenomena (see Figure 5). In Figures
5, 6 and 8, ch, ex, dv and no are abbreviations for
charged, exposed, developed and nothing.

initialstates

....h~.gl¢#..
..P.o.s!~on~.

.~ .v~!~.~.t~.!
..o..

...~nl..o.c’.t.t~2.0.
.... ,~.a...m.poff.

.~vs.Lo~eroff.

. MoLo[! off.
. Mot o.9..r.2 oK

final. state1 state2 " bte

........ f.../t .q,~~. qO.no

......... .~.~~~:~

.......... ,~o. ..Y.L~2.

.. 0

.. 000~_

..... o17"

Figure 5: Specified Transition Map

2. QPAS reasons out the physical phenomena that ac-
tivate the changes of the uncontrollable parame-
ters reasoned out in the first step, because uncon-
trollable parameters should be controlled indirectly
by activating an appropriate physical phenomenon.
In the example, QPAS reasons out that Develop,
Drum Rotation, and Paper Moving should be acti-
vated, between state1 and state2, at the initial state,
and at state1, respectively, by considering paramet-
ric changes. The system also adds a state named
state S between state1 and state2 to get Develop that
changes the value of parameter Surface from ezposed
to developed (see Figure 6).

3. The QR System completes the conditions of con-
trollable parameters for all the physical phenomena
reasoned out. In the example, the transition of the
values of five actuators is generated to activate those
five phenomena (see Figure 6).

210 QR-96

Table 3: Definition of Each Physical Phenomenon in the QR System

phenomena Flash Toner Trans f er Develop DrumRotation PaperMoving

conditions of Angle=x1 Angle=x3 Angle=x2
the parameters Position=yO Position=y1
in the views Surface=charged Surface=developed Surface=exposed

Lamp=on Ch.arger=on Developer=on Motorl=on Motor2=on
influences Velocityl =2,0 Velocity2=wO

dX = Velocityl d__y.Y _ Velocity2
dt dt --

Surface=exposed Surface=nothing Surface = developed

After these steps, the consistent transition map that
represents a qualitative control sequence shown in Fig-
ure 6 is generated.

However, this algorithm has some problems and lim-
itations. First, there is no guarantee that qualitative
control sequences as solutions exist nor they are opti-
mal. When there are multiple solutions, the designer
has to choose one. Second, this algorithm cannot deal
with situations of inter-dependent phenomena. For in-
stance, phenomenon P1 assumes parameter X be high,
and/92 assumes Y be low. If/91 has an influence that
Y becomes low and P2 has that X becomes high, and
if there is no other phenomena that involve X or Y,
/91 and P:~ are inter-dependent phenomena.

states initial statel state3 st~ e2 ~.final
......... x

"$~’.~." " Fla"~" "" De" ~^" " To er ~:.:.:.:.:
............. :::::::::::::::::::::::::::::: _al~ ,;.:. vc~v~.occurrm ... Tm ~er ::iiii!i::iiiiiiiiiiiiiii::iii::iiii!ig ::::::::::::::::::::::::::::::::::::::: - .wz
-~ na ::::::::::::::::::::::::: :::::~:::::::":":’:’:’:’:’:’:’:’:";-’"’-
::: M0 tn~
~[____¢lex exldvde. ~a ___._L.n~.~ ’ An21e a0 ~~ J---------------~x3 i ._ [x3

- io,:ityi o-]:v___L_|o I lotto,
........... Jr: 2::::-:.1

............ -t-
D ,elg I. t, qz..

....... ioz...

Figure 6: Transition Map with Qualitative Control Se-
quence

Supplying Geometric Information

In this stage, a quantitative control sequence is gener-
ated from the generated qualitative control sequence.
This is performed by supplying time information be-
tween states in the qualitative control sequence and
sensory information needed for the control. These two
types of information are created from geometric infor-
mation obtainable through the Metamodel System.

For the example, the designer specifies geometric in-
formation of the mechanism by the 2-D bit map model
shown in Figure 7. The following describes the algo-
rithm we developed to supply geometric information

y2 yl yO 0

Figure 7: The Input Bit Map Model

to qualitative control sequences.

1. Giving Correspondences between Geometric Objects
in the Bit Map Model and Entities in the Physical
Model.
The designer gives correspondences between geomet-
ric objects in the 2-D bit map model and entities
in the physical model maintained by the QR Sys-
tem. For the example, the designer makes corre-
spondences between the round object shown in the
bit map model and Drum in the FBS model of Figure
4, and the rectangular object and Output Paper.

2. Reasoning about Kinematic Pairs.
Motion takes place at kinematic pairs. To clearly
recognize kinematic causality for motion control, the
SR System finds out kinematic pairs in the design
object from its 2-D bit map model and its physical
model maintained by the QR System. This can be
done by comparing the necessary spatial conditions
for each kinematic pair in the kinematic pair data
base with the spatial conditions represented by the
physical model such as fixed. In the example, a ro-
tational pair and a sliding one are found.

3. Giving Correspondences between Parameters Asso-
ciated with Kinematic Pairs and Parameters in the
Physical Model.
The SR System also sets a parameter associated with
each kinematic pair. The designer gives its corre-
spondence to a parameter of the physical model. In
the example, the designer gives correspondences be-
tween angle set for the rotational pair and parameter

Sakao 211

.

Angle of Drum, and position set for the sliding pair
and Position of Output Paper.

Supplying Time Information.
Since variable parameters change their values with
respect to time according to differential equations
of the parameters, time intervals can be calculated
by integrating the equations assuming that the vari-
able parameters are controlled precisely. Namely, if
(x and fl are related by equation da/dt = fl and fl
is constant between two states, the length of time
At between the two states is calculated by equation
At = Aa//L The QR System searches this rela-
tionship and the length of time between two states
is calculated using the geometric quantitative data
from the bit map model.

In case that plural variables change during one inter-
val, another state has to be added between those two
states, because each transition time is not necessarily
equivalent. Here, the heuristics that those variables
should simultaneously start changing is used.

In Figure 8, time information is added to the qualita-
tive control sequence. Each time period is calculated
as follows:

ti = (zi - z0)/v0,
t2 = (x2 - xl)/vO,
t3 = (~3 - ~2)/v0,
t4 = (yl - yO)/wO - t2 - t3, and
t5 = (y2 - yl)/~o0.

imlelal final
states ~? .’~" stat¢l state3 state4 state2

...... ~:ccu~i:~...£~.~.....:!ii~ ~ ~i~iiiiiii..~.t~.. Flash iii Develop iiii!i i ::iii Toner iiiiii~i::~ii~::i::iiiiiii’~e~
u, s ~ii~;’..~D~ra Rotation ::::::::::::::::::::::::::::::: !i~i!~ Transfer ili::ii::i::i!::!::!~i;i!i~
~nenomena : ::: Pa er Movin ::’ :~|:::~’::::,~,.~:~,~.~...~...~...:.:~,.,:,:,,,i~:!~!!~!!~:!:!:~ ~!~-!~:~:i~![!!~!![~i~: " p . ~ ! !::;~:!:!:~:;:::;:

..... Angl~~.. ~.x..J ~.~..~.~ ~.[.. 1.~...

....P..9.s.!.a..9..n.~.~,

..v. ej...oq.Lty.!.O....~
,.Ye_Jy..c.i.ty..2_0._w.0
.... b am~.q[l.o~

~vel~rL... o~
Motofi _ .o/2’, o~n~t t~
Motor2 o.off /on

...... .’z.;:!..~.2g................. 4*
............... ~r.o...q.~.
...............tt°-
.............. Lqn~’~.I~T’.loee

~t4-.~ ~, t5~

Figure 8: Modified Transition Map Including Time In-
formation

5. Supplying Sensory Information.
Some variable parameters are difficult to control
precisely only based on time information. In or-
der to control those parameters, sensory information
should be added. It is deternfined by the way of con-
trol represented on the physical model and the kind
of a kinematic pair whether the control of a param-
eter with a kinematic pair is achieved precisely or
not. As to kinematic pairs for which precise control
is difficult, the condition of such a variable parame-

212 QR-96

ter is exchanged to that of a sensor value if there is
a respective sensor~.

In the example, sensory information is added to con-
trol parameter Position, by exchanging the condi-
tions of Position = yl and Position = y2 to Sen-
sorl = on and Sensor2 = on, respectively, where we
make the following assumption:
A super-class phenomenon of Paper Moving is to
slide an object by friction ~, and therefore, parame-
ter Position on the sliding pair is difficult to con-
trol precisely. On the other hand, a super-class phe-
nomenon of DrumRotation is to rotate an object by
gear transmission, and therefore, parameter Angle
on the rotational pair is controlled precisely.
Then, the quantitative control sequence is gener-
ated. It is in the form of the "if-then" rule tempo-
rally ordered. Here, "charged(Surface)" means that
the value of Surface is charged. "make(Lamp,yn)"
means to set the actuator value Lamp to "on." The
"if" part specifies conditions for activating the rules.
The "then" part designates the "after t [ms]" timing
information and actions the rule has to fire. Some
rules can specify waiting conditions in the "SensorX
: roll ~ vo12, action" format, which means that ac-
tion should be taken waiting for SensorX becoming
vo12 from roll.
From the example above, the following quantitative
control sequence is generated.

1. if charged(Surface) & off(Lamp) & off(Charger)
& off(Developer) & off(Motor1) & off(Motor2)
then after 0 [ms], make(Motorl,on)

2. if charged(Surface) & off(Lamp) & off(Charger)
& off(Developer) & on(Motorl) & off(Motor2)
then after tl [ms], make(Lamp,on),
make(Motor2,on)

3. if exposed(Surface) & off(Lamp) & off(Charger)
off(Developer) & on(Motorl) & on(Motor2)

then after t2 [ms], make(Developer,on)

4. if developed(Surface) & off(Lamp)
& off(Charger) & off(Developer) & on(Motorl)
& on(Motor2)
then after t3 [ms], make(Motorl,off)

5. if developed(Surface) & off(Lamp)
& off(Charger) & off(Developer) & on(Motorl)
& on(Motor2)
then after Sensor1: off ~ on,
make(Charger,on)

6. if nothing(Surface} & off(Lamp) & off(Charger)
& off(Developer) & off(Motorl) & on(Motor2)
then after Sensor~2: off ~ on,
make(Motor2,off)

~This information is included in the Heuristics Knowl-
edge Base.

2This kind of hierarchy is described in VLKB (see Figure
1).

Generation of C Codes

Finally, the quantitative control sequence is translated
into a C program. Each rule in the quantitative control
sequence is converted to a sentence in C by translat-
ing conditions and actions into respective C functions
stored in the C code library. The generated C pro-
gram which consists of translated functions above and
a main function executing them sequentially is com-
piled to an executable program. Figure 9 shows part
of the generated C codes corresponding to the fourth
rule and the fifth in the quantitative control sequence
above.

if(count[4][1]kkcountertimepassed(4))

makeoff(C4);
setcounterinactive(4);

};

if(count[5][1]&ksensorchanged(5))

makeon(C2);
sensorinactive(5);

};

Figure 9: Part of the Generated C Codes

Applications

We implemented the SCP Generator and developed
an experimental photocopier controlled by a personal
computer with generated sequence control programs
(see Figure 10). Figure 11 depicts the structure of the
photocopier.

Sequence Control Program Design

In this section, an example of sequence control pro-
gram design on the SCP Generator is described. Fig-
ure 12 and Figure 13 show the FBS model and the
bit map model of the photocopier, respectively. From
these models, the SCP Generator generates a sequence
control program.

An output image in A4 size by the generated pro-
gram is Figure 14 (b), while one with the embedded
program in ROM of the photocopier is (a). Although
the SCP Generator succeeded in automatic generation
of a sequence control program, Figure 14 shows the
top positions of the outputs (a) and (b) are slightly
different.

The SCP Generator considers slipping of paper and
the lag time between the start of control of an actu-
ator and its actual start, which are not included in
the object model, by including sensory information.
However, it still needs minor adjustments to incorpo-
rate empirical know-bows in controlling real actuators,
which are considered in the embedded program. This is
the major reason for the difference of the top positions
in Figure 14 (a) and (b). The embedded program

has some routines to handle errors, such as paper jam-
ming, which cannot be reasoned out from the physical
knowledge discussed in this paper.

Paper

Figure 10: Overview of the Experimental Photocopier

Halogen

La~ll~ n Charger

Output Paper

Table
Clutch

Developing Unit

ensor

Separation Charger Transfer Charger

Figure 11: Structure of the Photocopier

iil MalnChe Halogentamp ferCharger teCharsler !ii!! ..

Figure 12: The FBS Model of the Experimental Pho-
tocopier

Sakao 213

Figure 13: The Bit Map Model of the Experimental
Photocopier

i .~’~i~::~.’! !~.!~.~Z!:~’~.

.’-~.~:~,s- :. ’: ~.’;~47~ :? ..’..’g~-~, ..’.,...:::::~i~~

~..’..~.’.-~.~.::::: " .." ~:dlY.’

~R~,~’!~.!... ;~’~

(a) The Original Program

; ¯ :::’. "~ .’ ::.:~:r~., -. ~;~ :: ~ .. ~, ~:~

(b) The Program Generated
with the SCP Generator

Figure 14: Outputs

Dynamic Generation and Modification of
Sequence Control Programs
The technique proposed in this paper is also appli-
cable to dynamic generation and modification of se-
quence control programs during operation, if comput-
ing speed is fast enough. This is useful for, e.g., flexi-
ble manufacturing systems of which control programs
must be dynamically generated or modified in tomor-
row’s responsive manufacturing environment. It is also
useful for a function redundant self-maintenance ma-
chine (Umeda, Tomiyama, & Yoshikawa 1992; Umeda
et al. 1994) that reconfigures its behaviors to main-
tain its functions even when a critical fault occurs.
Since this reconfiguration is performed by rearranging
control software, its dynamic generation and modifica-
tion is extremely critical. This section demonstrates
an example of dynamic generation of sequence control
programs for function redundant self-maintenance ma-
chines.

To conduct function redundant design during the
conceptual design stage, we developed a tool called an

FR Designer (Umeda, Tomiyanm, & Yoshikawa 1992;
Umeda et al. 1994). This system allows the designer
to find out altcruative behaviors that can still maintain
a target flmction even when some parts are malfunc-
tioning or losing their function, by using other parts
in a slightly different way from the original. The SCP
Generator can automatically generate sequence control
programs from an FBS model that represents such sit-
uations.

Figure 15 (a) shows an output image with the orig-
inal program before the maintenance (i.e., faulty im-
age) and one with the generated program (b). We
point out the following:

1. The SCP Generator succeeded in functional mainte-
nance based on function redundancy by dynamically
generating a sequence control program.

2. The lower half of (b) is basically faulty, not because
of self-maintenance, but because the radius of the
drum is too small to print out a full A4 image in
a function redundant nmde that requires the drum
to rotate twice. It is peculiar to this experimental
photocopier.

3. It took more time to take one copy in (b) than
(a), because the drum has to be rotated twice in (b).

(a) Faulty

I I;:,:;F :;.

(b) The Program Generated
Dynamically

Figure 15: Outputs in Faulty States

Discussions
It is possible to automatically generate sequence con-
trol programs from design information. The program
generation method with the SCP Generator signifies
that integrating various kinds of design knowledge can
create more added-value such as automatic software
generation. This method, therefore, advocates knowl-
edge intensive software design.

This technique allows dynamic generation and nmd-
ification of sequence control programs, so that the ma-
chine can adjust itself to environmental chauges, faults,
and changes of the user’s requirements. This is also

214 QR-96

applicable to frequent changes of sequence control pro-
grams for manufacturing systems of, particularly, small
volume or even one-off production, because the SCP
Generator is applicable not only to a photocopier but
also to mechatronics machines in general by replacing
the knowledge base. We call such machines soft ma-
chines in that they can flexibly reconfigure and self-
organize themselves (Tomiyama et al. 1995).

The FBS Modeler represents a function in the form
of ’"verb + objectives." Therefore, other designers are
able to easily understand and modify an FBS Model,
which results in easy modifications of sequence control
programs.

As described before, the control methods are limited
to on-off control. Namely, neither methods to control
quantity directly nor feedback control can be handled
by the algorithm proposed in this paper. The con-
trois either change the values of discontinuous state
parameters or make the differential values of continu-
ous variable parameters plus or minus. That physical
knowledge on control is managed by the QR System.

Conclusions
This paper presented a method for a model-based au-
tomatic generation of sequence control programs from
design information including causalities of physical
phenomena said geometric information of mechanisms.
The SCP Generator, which implements this technique,
succeeded ill automatically generating a sequence con-
trol program. This results from integration of a CAD
for functional design (the FBS Modeler), a synthetic
reasoning system (QPAS), a geometric modeling sys-
tem, a spatial reasoning system, and a sequence control
software generation system on an integrated frame-
work (KIEF) with the Metamodel mechanism. This
method is applicable to sequence control software de-
sign of mechatronics machines in general. By allowing
dynamic generation and modification of sequence con-
trol programs, these machines can become more flexi-
bly reconfigurable, self-organizable, and robust, adapt-
ing themselves to environment changes, faults, and
changes of the user’s requirements.

References
Faltings, B. 1987. Qualitative kinematics in mecha-
nisms. In Proceedings of IJCAI-87, 436-442.
Fickas, S. F. 1985. Automating the transformational
development of software. IEEE Trans. on Software
Engineering 11(11):1268-1277.

Forbus, K. 1984. Qualitative process theory. Artificial
Intelligence 24(3):85-168.

Graves, H. 1992. Lockheed environment for automatic
programming. IEEE Expert 7(12):14-25.
Gupta, V., and Struss, P. 1995. Modeling a copier
paper path: A case study in modeling transporta-
tion processes. In Proceedings of the 9th International
Workshop on Qualitative Reasoning, 74-83.

Ishii, M.; Tomiyama, T.; and Yoshikawa, H. 1993.
A synthetic reasoning method for conceptual de-
sign. In Wozny, M. J., and Oiling, G., eds., To-
wards World Class Manufacturing 1993. Amsterdam:
North-Holland. 3-16.
Joskowicz, L., and Sacks, E. 1991. Computational
kinematics. Artificial Intelligence 51:381--416.

Kiriyama, T.; Tomiyama, T.; and Yoshikawa, H.
1991. The use of qualitative physics for integrated de-
sign object modeling. In Stauffer, L. A., ed., Proceed-
ings of Design Theory and Methodology - DTM’91-,
53-60. ASME.
Matsumoto, M.; Kiriyama, T.; Tetsuo, T.; and
Yoshikawa, H. 1993. Qualitative reasmfing using a
spatial modeler. In Proceedings for the Annual Meet-
ing of the Japanese Society of Artificial Intelligence
93 (In Japanese), 267-270.
Nakayama, Y. 1990. Model-based automatic pro-
gramming for plant control. In IEEE Proceedings of
the Sixth Conference on Artificial Intelligent Applica-
tions, 281-287. IEEE.
Tomiyama, T.; Sakao, T.; Umeda, Y.; and Baba, Y.
1995. The post-mass production paradigm, knowl-
edge intensive engineering, and soft machines. In
Krause, F.-L., and Jansen, H., eds., Life Cycle Mod-
elling for Innovative Products and Processes. London:
Chapman mad Hall. 369-380.

Tomiyama, T. 1994. From general design theory
to knowledge-intensive engineering. Artificial Intel-
ligence for Engineering Design, Analysis and Manu-
facturing 8(4):319-333.
Umeda, Y.; Takeda, H.; Tomiyanla, T.; and
Yoshikawa, H. 1990. Function, behaviour, and struc-
ture. In AIENG’90 Applications of AI in Engineering,
177-193. Computational Mechanics Publications and
Springer-Verlag.

Umeda, Y.; Tomiyaana, T.; Yoshikawa, H.; and Shi-
momura, Y. 1994. Using functional maintenance to
improve fault toleneance. IEEE EXPERT 2(3):25
31.
Umeda, Y.; Tomiyama, T.; and Yoshikawa, H. 1992.
A design methodology for a self-maintenance machine
based on functional redundancy. In Stauffer, L. A.,
ed., Proceedings of Design Theory and Methodology -
DTM’92-, 317-324. ASME.
Yoshioka, M.; Nakamura, M.; Tomiyama, T.; and
Yoshikawa, H. 1993. A design process model with
multiple design object models. In Design Theory and
Methodology (DTM ’93), 7-14. New York: ASME.

Sakao 215

