From: AAAI Technical Report WS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

A Model-based Approach to Reactive Self-Configuring Systems

Brian C. Williams and P. Pandurang Nayak
Recom Technologies
NASA Ames Research Center, MS 269-2
Moffett Field, CA 94305 USA
E-mail: williams,nayak@ptolemy.arc.nasa.gov

Abstract

This paper describes Livingstone, an implemented ker-
nel for a self-reconfiguring autonomous system, that is
reactive and uses component-based declarative mod-
els. The paper presents a formal characterization
of the representation formalism used in Livingstone,
and reports on our experience with the implementa-
tion in a variety of domains. Livingstone’s represen-
tation formalism achieves broad coverage of hybrid
software/hardware systems by coupling the concur-
rent transition system models underlying concurrent
reactive languages with the discrete qualitative rep-
resentations developed in model-based reasoning. We
achieve a reactive system that performs significant de-
ductions in the sense/response loop by drawing on our
past experience at building fast propositional conflict-
based algorithms for model-based diagnosis, and by
framing a model-based configuration manager as a
propositional, conflict-based feedback controller that
generates focussed, optimal responses. Livingstone
automates all these tasks using a single model and a
single core deductive engine, thus making significant
progress towards achieving a central goal of model-
based reasoning. Livingstone, together with the HSTS
planning and scheduling engine and the RAPS exec-
utive, has been selected as the core autonomy archi-
tecture for Deep Space One, the first spacecraft for
NASA’s New Millenium program.

Introduction and Desiderata

NASA has put forth the challenge of establishing a
“virtual presence” in space through a fleet of intelli-
gent space probes that autonomously explore the nooks
and crannies of the solar system. This “presence” is
to be established at an Apollo-era pace, with software
for the first probe to be completed late 1996 and the
probe (Deep Space One) to be launched in early 1998.
The final pressure, low cost, is of an equal magnitude.
Together this poses an extraordinary opportunity and
challenge for Al. To achieve robustness during years in
the harsh environs of space the spacecraft will need to
radically reconfigure itself in response to failures, and
then navigate around these failures during its remain-
ing days. To achieve low cost and fast deployment, one-
of-a-kind space probes will need to be plugged together

274 QR-96

quickly, using component-based models wherever pos-
sible to autornatically generate the control software
that coordinates interactions between subsystems. Fi-
nally, the space of failure scenarios a spacecraft will
need, to entertain over its lifespan will be far too large
to generate software before flight that explicitly enu-
merates all contingencies. Hence the spacecraft will
need to think through the consequences of reconfigu-
ration options on the fly while ensuring reactivity.

We made substantial progress on each of these fronts
through a system called Livingstone, an implemented
kernel for a self-reconfiguring autonomous system, that
is reactive and uses component-based declarative mod-
els. This paper presents a formal characterization of a
reactive, model-based configuration management sys-
tem underlying Livingstone. Several contributions are
key: First, our modeling formalism represents a radical
shift from first order logic, traditionally used to char-
acterize model-based diagnostic systems. Our repre-
sentation formalism achieves broad coverage of hybrid
software/hardware systems by coupling the concurrent
transition system models underlying concurrent reac-
tive languages (Manna & Pnueli 1992) with the dis-
crete qualitative representations developed in model-
based reasoning. Reactivity is respected by restrict-
ing the model to concurrent propositional transition
systems that are synchronous. Second, this approach
helps to unify the classical dichotomy within Al be-
tween deduction and reactivity. We achieve a reac-
tive system that performs significant deductions in the
sense/response loop by drawing on our past experi-
ence at building fast propositional conflict-based al-
gorithms for model-based diagnosis, and by framing a
model-based configuration manager as a propositional,
conflict-based feedback controller that generates fo-
cussed, optimal responses. Third, the long held vision
of the model-based reasoning community has been to
use a single central model to support a diversity of
engineering tasks. For model-based autonomous sys-
tems this means using a single model to support tasks
including: monitoring, tracking planner goal activa-
tions, confirming hardware modes, reconfiguring hard-
ware, detecting anomalies, isolating faults, diagnosis,

| p
Acc X
u Helium
Tank

Legend

x Valve
* Pyro valve

Figure 1: Engine schematic

fault recovery, safing and fault avoidance. Livingstone
automates all these tasks using a single model and a
single core deductive engine, thus making significant
progress towards achieving the model-based vision.

Livingstone, tightly integrated with the HSTS plan-
ning/scheduling system (Muscettola 1994) and the
RAPS executive (Firby 1995), was demonstrated to
successfully navigate the simulated NewMaap space-
craft into Saturn orbit during its one hour insertion
window, despite half a dozen or more failures, includ-
ing unanticipated bugs in the simulator. Consequently,
Livingstone, together with RAPS and HSTS have been
selected as the core autonomy architecture of the New
Millenium program, and will fly Deep Space One early
1998.

The rest of the paper is organized as follows. The
next section introduces part of the spacecraft domain
and the problem of configuration management in this
domain. Section introduces transition systems, the
key formalism for modeling hybrid concurrent systems.
It also introduces the basic formalization of configu-
ration management. Section discusses model-based
configuration management, and discusses its key com-
ponents: mode identification and mode reconfigura-
tion. Section introduces algorithms for statistically
optimal model-based configuration management using
conflict-directed best-first search. Section presents an
empirical evaluation of Livingstone using a suite of sce-
narios and domains. Conclusions and related work are
discussed in Section .

Example: Autonomous Space
Exploration

Figure 1 shows the schematic of the main engine sub-
system of Cassini, the most complex spacecraft built to
date. The main engine subsystem consists of a helium

tank, a fuel tank, an oxidizer tank, a pair of main en-
gines, regulators, latch valves, pyro valves, and pipes.
The helium tank pressurizes the two propellant tanks,
with the regulators acting to reduce the high helium
tank pressure to a lower working pressure. When pro-
pellant paths to a main engine are open, the pressur-
ization of the propellant tanks forces fuel and oxidizer
into the main engine, where they combine and sponta-
neously ignite, producing thrust. The pyro valves can
be fired exactly once, i.e., they can change state (ei-
ther from open to closed or vice versa) exactly once.
Their function is to isolate parts of the main engine
subsystem until needed, or to isolate failed parts. The
latch valve states are controlled using valve drivers (not
shown), and the accelerometer (Acc) senses the thrust
generated by the main engines. In the figure, valves in
solid black are closed, while the others are open.

Starting from the configuration shown in the figure,
the high level goal of producing thrust can be achieved
using a variety of different configurations: thrust can
be provided by either main engine, and there are a
number of different ways of opening propellant paths
to either main engine. For example, thrust can be pro-
vided by opening the latch valves leading to the engine
on the left, or by firing a pair of pyros and opening a
set of latch valves leading to the engine on the right.
There are a number of other configurations correspond-
ing to various combinations of pyro firings. The differ-
ent configurations have different characteristics since
pyro firings are irreversible actions and since firing pyro
valves requires significantly more power than changing
the state of latch valves.

Suppose that the main engine subsystem has been
configured to provide thrust from the left main engine
by opening the latch valves leading to it. Suppose now
that this engine fails, e.g., by overheating, so that it
fails to provide the desired thrust. To ensure that the
desired thrust is provided even in this situation, the
spacecraft must be transitioned to a new configuration
in which thrust is now provided by the main engine
on the right. Ideally, this is achieved by firing the two
pyro valves leading to the right side, and opening the
remaining latch valves (rather than firing additional
pyro valves).

A configuration manager for the spacecraft con-
stantly attempts to move the spacecraft into lowest
cost configurations that achieve the desired high-level
goals. When the spacecraft strays from the chosen con-
figuration due to failures, the configuration manager
analyzes sensor data to identify the current configura-
tion of the spacecraft, and then moves the spacecraft
to a new configuration which, once again, achieves the
desired configuration goals. In this sense a configura-
tion manager is a discrete control system that ensures
that the spacecraft’s configuration always achieves the
set point defined by the configuration goals.

Configuration goals are generated dyamically
through onboard planning, scheduling and execu-

Williams 275

tion capabilities. High-level goals are translated to
partially-ordered resource timelines by the HSTS plan-
ner/scheduler. RAPS then executes these plans, dy-
namically decomposing them into sequences of config-
uration goals that are passed to Livingstone. RAPS
complements Livingstone, for example, decomposing
planner tokens, monitoring plan temporal constraints
and coordinating replanning when configuration goals
or temporal constraints cannot be satisfied.

Models of Concurrent Processes

Selecting a restricted, but appropriately expressive for-
malism for describing the plant is essential to achiev-
ing the competing goals of achieving reactivity on the
one hand and richly expressing the properties of hy-
brid software/hardware systems. Extensive experience
applying model-based diagnosis to causal systems sug-
gests that propositional deductive engines with a focus-
ing algorithm can be made extremely fast. We know of
no first order formalism that achieves these properties,
thus operating over fixed, finite domains is essential.

Reasoning about a component’s configurations and
autonomous repair requires the concepts of operating
modes, failure modes, unmodeled failures, operating
modes, repairable failures and configuration changes.
These concepts can be expressed in a state diagram.
Note in particular that repairable failures are repre-
sented by state transitions from a failure state to a
nominal state, configuration changes are between nom-
inal states, and failures are transitions from a nominal
to a failure state.

Components operate simultaneously, communicat-
ing over wires. Hence we model components through
concurrent, communicating transitions systems. Like-
wise, for software routines, it is well established that
a broad class of reactive languages can be represented
naturally as concurrent transition systems communi-
cating through shared variables. We use the concur-
rent transition system model of Manna & Pnueli and
its specification through temporal logic as a starting
point (Manna & Pnueli 1992) for modeling both soft-
ware and hardware.

Where our model differs from that of Manna &
Pnueli, is that reactive software modifies its state
through explicit variable assignments. On the other
hand, a hardware component’s behavior in a given
state is governed by a set of constraints between vari-
ables. For digital systems these constraints are over
finite domains, while for continuous components these
domains are infinite. A variety of experiences apply-
ing qualitative modeling to diagnostic tasks for digi-
tal systems (Hamscher 1991), copiers and spacecraft
propulsion, suggest that extremely simple qualitative
representations over finite domains are quite adequate
for tackling many hardware diagnostic problems. The
added advantage of using qualitative models is that
the models nominal behavior are extremely robust to
detailed modeling errors and changes, avoiding false di-

276 QR-96

agnoses. Hence behaviors within states are represented
by constraints over finite domains, which in turn are
encoded as propositional formula.

Other authors such as Zhang and Mackworth, Mcll-
raith, Levesque and Reiter, and Poole have been con-
sidering related issues in reactive autonomous systems.
The major difference between their work and ours is
our focus on fast reactive inference using propositional
encodings over finite domain.

Transition systems

We model a concurrent process as a transition system.
Intuitively, a transition system consists of a set of state
variables defining the system’s state space and a set of
transitions between the states in the state space. More
precisely,

Definition 1 A transition system S is a tuple

(11, %, T), where

o Ilis afinite set of state variables. Each state variable
ranges over a finite domain.

e X is the feasible subset of the state space. Each
state in the state space assigns to each variable in II
a value from its domain.

e T is a finite set of transitions between gtates. Each
transition 7 € 7 is a function 7 : ¥ — 2 represent-
ing a state transforming action, where 7(s) denotes
the set of possible states obtained by applying tran-
sition 7 in state s.

A trajectory for S is a sequence of feasible states
o : 80,81, ..such that for all ¢ > 0, siy1 € 7(s;) for
some 7 € 7. In this paper we assume that one of
the transitions of S is designated the nominal tran-
sition, with all other transitions being failure tran-
sitions. Hence in any state a component may non-
deterministically choose to perform either its nominal
transition, corresponding to correct functioning, or a
failure transition, which moves to a set of failure states.
Furthermore in response to a successful repair action,
the nominal transition will move the system from a
failure state to a nominal state.

A transition system § = (I, X, T) can be naturally
specified using a propositional temporal logic. Such
specifications are built using state formulae and the O
operator. A state formula is an ordinary propositional
formula in which all propositions are of the form y; =
ex, where y; is a state variable and e is an element of
yr’s domain. O is the nest operator of temporal logic
denoting truth in the next state in a trajectory.

A state s defines a truth assignment in the natural
way: proposition yr = ex is true iff the value of yj is
er in 5. A state s satisfies a state formula ¢ precisely
when the truth assignment corresponding to s satisfies
#. The set of states characterized by a state formula ¢
is the set of all states that satisfy ¢. Hence, we specify
the set of feasible states of S by a state formula pg.

Similarly, a transition 7 is specified by a formula
pr, which is a conjunction of formulae p; of the form

®;, = OU;, where ® and ¥ are state formulae. A
feasible state s; can follow a feasible state s; in a tra-
jectory of S using transition 7 iff for all formulae pr,,
if s; satisfies the antecedent of pr,, then si satisfies
the consequent of p,,. A transition 7; that models a
formulae p,, is called a subtransition. Hence taking a
transition 7 corresponds to taking all its subtransitions
Ti.

Note that specifying transition systems only draws
upon the O operator, above and beyond standard
propositional logic. This severely constrained use of
temporal logic is an essential property of transition
systems that will allow us to perform deductions re-
actively.

Example 1 The transition system corresponding
to a valve driver consists of 3 state variables
émode,cmdin,cmdout , where mode represents the

river’s mode (on, off, resettable or failed), cmdin
represents commands to the driver and its associated
valve (on, off, reset, open, close, none), and cmdout
represents the commands output to its valve (open,
close, or none). The feasible states of the driver are
specified by the formula

mode =on = (cmdin = open = cmdout = open)
A(cmdin = close = cmdout = close)
A-(cmdin = open V cmdin = close)
= cmdoul = none
mode = off = cmdout = none
together with formulae like =(mode = on)V-(mode =
off), .. .that assert that variables have unique values.

The driver’s nominal transition is specified by the fol-
lowing set of formulae:

((mode = on) V (mode = off)) A cmdin = off =

Omode = off
((mode = on) V (mode = off)) A cmdin = on =
Qmode = on

—(mode = failed) A cmdin = reset = Omode = on
mode = reset A —(cmdin = reset) = Omode = reset
mode = failed = Qmode = fatled

The driver also has a failure transition specified by
the formula QOmode = failed.

Configuration management

Given a transition system and an initial state, config-
uration management involves evolving the transition
system along a desired trajectory. The combination
of a transition system and a configuration manager is
called a configuration system. More precisely,

Definition 2 A configuration system is a tuple
(8,0,0), where S is a transition system, © is a
feasible state of S representing its initial state, and
o : go,1,-.- is a sequence of state formulae called
goal configurations. A configuration system generates
a configuration trajectory o : sq, s1 ... for S such that
so is © and either s;4y satisfies g; or siy1 € 7(s;) for
some failure transition 7.

Configuration management is achieved by sensing
and controlling the state of a transition system. The
state of a transition system is (partially) observable
through a set of variables @ C II. The next state of
a transition system can be controlled through an ex-
ogenous set of variables p C II. We assume that u are
exogenous so that the transitions of the system do not
determine the values of variables in p. We also assume
that the values of O in a given state are independent of
the values of p at that state, though they may depend
on the values of u at the previous state.

Definition 3 A configuration manager C for a transi-
tion system S is an online controller that takes as input
an initial state, a sequence of goal configurations, and
a sequence of values for sensed variables O, and in-
crementally generates a sequence of values for control
variables p such that the combination of C and § is a
configuration system.

A model-based configuration manager is a configura-
tion manager that uses a specification of the transition
system to compute the desired sequence of control val-
ues. We discuss this in detail shortly.

Plant transition system

We model a plant as a transition system composed
of a set of concurrent component transition systems
that communicate through shared variables. The com-
ponent transition systems of a plant operate syn-
chronously, that is, at each plant transition every com-
ponent performs a state transition. The motivation
for imposing synchrony is given in the next section.
We require that the specification of the plant’s tran-
sition system be composed out of the specification for
its component transition systems as follows:

Definition 4 A plant transition system § = (I, X, 7)
composed of a set CD of component transition systems
is a transition system such that;

e The set of state variables of each transition system
in CD is a subset of II. The plant transition system
may introduce additional variables not in any of its
component transition systems.

o Each state in X, when restricted to the appropri-
ate subset of variables, is a feasible state for each
transition system in CD. This means that for each.
C € CD, pg k= pc. However, pg can be stronger
than the conjunction of the pc.

e Each transition 7 € 7 performs one transition 7¢
for each transition system C € CD. This means that

pr < /\ Prc
ceCD

The concept of synchronous, concurrent actions is
captured by requiring that each component performs
a transition for each state change. Nondeterminism lies
in the fact that each component can traverse either the
nominal transition or any of the failure transitions at

Williams 277

High-level
goals —P

Configuration
Confirmation L gggls

Configuration|
Manager

Planner

MI - MR

Control
actions

Sensed
values

Plant —

Figure 2: Model-based configuration management

each state change. Note that the nominal transition
of a plant performs the nominal transition for each of
its components, and that multiple simultaneous fail-
ures correspond to traversing multiple component fail-
ure transitions.

The set of trajectories for a plant transition system
are specified in temporal logic by the formula p,;:

pst = pe AD (pn A V; (/\,- (@i = O‘I’-'j)))
A oF (pong A p/‘a)

where O;® is used to specify that ® holds in the ith
state, and is a syntactic short form defined by O;® =
0O0;-1® and Q® = &.

Returning to the example, each hardware compo-
nent in the schematic (figure 1) is modeled by a com-
ponent transition systern similar to that given in Sec-
tion . Component communication, denoted by wires in
the schematic, is modeled by shared variables between
the corresponding component transition systems.

Model-based configuration management

We presume that the state of the plant is partially
observable, and that the results of actions on the plant
influence the observables and internal state variables
through a set of physical processes. Our focus is on
reactive configuration management systems that use
a model to infer a plant’s current state and to select
optimal control actions to meet configuration goals.
More specifically, a model-based configuration man-
ager uses a plant transition model M to determine the
desired control sequence in two stages—mode identi-
fication (MI) and mode reconfiguration (MR). MI in-
crementally generates the set of all plant trajectories
consistent with the plant transition model and the se-
quence of plant control and sensed values. MR uses
a plant transition model and the partial trajectories
generated by MI up to the current state to determine

278 QR-96

a set of control values such that all predicted trajecto-
ries achieve the configuration goal in the next state.

Both MI and MR are reactive. MI infers the current
state from knowledge of the previous state and obser-
vations within the current state. MR only considers
actions that achieve the configuration goal within the
next state. Given these commitments, the decision to
model component transitions as synchronous is key.
An alternative is to model multiple concurrent transi-
tions through interleaving. This, however, would place
an arbitrary distance between the current state and the
state in which the goal is achieved, defeating a desire to
limit inference to a small fixed number of states. Hence
we use an abstraction in which multiple commands
are given synchronously. In the Newmaap spacecraft
demonstration, for example, these synchronous com-
mands were sent by a single processor through inter-
leaving, and the next state sensor information returned
to Livingstone is the state following the execution of
all these commands. -

We now develop a formal characterization of MI and
MR. Recall that taking a transition 7; corresponds to
taking all of a set of subtransitions T;j. A transition
7; can be defined to apply over a set of states .S in the

natural way:
7(8) = | n(s)
SES

Similarly we define 7;;(S) for each subtransition 7;; of
7;. We can show that

7(S) C mm(s) (1)

In the following characterizations, S; denotes the set of
possible states at time ¢ before any control values are
asserted by MR, u; denotes the control values asserted
at time ¢, O; denotes the observations at time ¢, and
Syu; and S, denote the set of states in which control
and sensed variables have values specified in p; and
O, respectively. Hence, S; NS,; is the set of possible
states at time 1.

We characterize both MI and MR in two ways—first
model theoretically and then using state formulas.

Mode Identification

MI incrementally generate the sequence Sy, Sy, ... us-
ing a model of the transitions and knowledge of the
control actions p; as follows:

So = {0©} (2)

Sit1 = UTj(S{ﬁSm) QEOSOHI (3)
J

iN

J

U (ﬂ 7% (S; ﬂSm)) NENnSe,,, (4)
k

where the final inclusion follows from Equation 1.
Equation 4 is useful because it is a characterization
of S;41 in terms of the subtransitions 7;;. This allows
us to develop the following characterization of S;41 in
terms of state formulae:

PSips = \/ /\ Y | Aps Apo,,, ()
7i \PSiNPS, ik

This is a sound but potentially incomplete character-
ization of the set of states in S;41, i.e., every state in
Si41 satisfies ps,,, but not all states that satisfy ps,,,
are necessarily in S;;,. However, generating ps,,, re-
quires only that the entailment of the antecedent of
each subtransition be checked. On the other hand,
generating a complete characterization based on Equa-
tion 3 would require enumerating all the states in S;,
which can be computationally expensive if S; contains
a lot of states.

Mode Reconfiguration

MR incrementally generates the next set of control val-
ues p; using a model of the nominal transition 7, the
desired goal configuration g;, and the current set of
possible states S;. The model-theoretic characteriza-
tion of M;, the set of possible control actions that MR
can take at time 1, is as follows:

M;

{ﬂj'fn(si nsuj)nz C g} (6)
{lme(SinSu,)NEC e} (7)
k

{9}

where, once again, the latter inclusion follows from -

Equation 1. As with MI, this weaker characterization
of M; is useful because it is in terms of the subtran-
sitions T,x. This allows us to develop the following
characterization of M; in terms of state formulae:

M; D {uj| ps; Apu,is consistent and

A WAz e} (8)

PS; /\P)xj =Pk

The first part of the characterization says that the con-
trol actions must be consistent with the current state,
since without this condition the goals can be simply
achieved by making the world inconsistent. Equation 8
is a sound but potentially incomplete characterization
of the set of control actions in M;, i.e., every control
action that satisfies the condition on the right hand
side is in M;, but not necessarily vice versa. However,
checking whether a given p; is an adequate control ac-
tion only requires that the entailment of the antecedent
of each subtransition be checked. On the other hand,
generating a complete characterization based on Equa-
tion 6 would require enumerating all the states in S;,
which can be computationally expensive if S; contains
a lot of states.

Statistically optimal configuration
management

The previous section characterized the set of all feasi-
ble trajectories and control actions that can be gener-
ated by MI and MR. However, in practice, not all such
trajectories and control actions need to be generated.
Rather, just the likely trajectories and an optimal con-
trol action needs to be generated. We efficiently gen-
erate these by recasting MI and MR as combinatorial
optimization problems.

A combinatorial optimization problem is a tuple
(X,C, f), where X is a finite set of variables with finite
domains, C is set of constraints over X, and f is an ob-
jective function. A feasible solution is an assignment to
each variable in X a value from its domain such that
all constraints in C are satisfied. The problem is to
find one or more of the leading feasible solutions, i.e.,
to generate a prefix of the sequence of feasible solutions
ordered in decreasing order of f.

Mode Identification

Equation 3 characterizes the trajectory generation
problem as identifying the set of all transitions from
the previous state that yield current states consistent
with the current observations. Recall that a transi-
tion system has one nominal transition and a set of
failure transitions. In any state, the transition system
non-deterministically selects exactly one of these tran-
sitions to evolve to the next state. We quantify this
non-deterministic choice by associating a probability
with each transition: p(7) is the probability that the
transition system will select transition 7 to evolve to
the next state.!

With this viewpoint, we recast MI’s task to be one
of identifying the likely trajectories of the plant. In
keeping with the reactive nature of configuration man-
agement, MI will incrementally track the likely trajec-
tories by always extending the current set of trajecto-
ries by the likely transitions. The only change required
in Equation 5 is that, rather than the disjunct rang-
ing over all transitions 7;, it ranges over the subset of
likely transitions.

The likelihood of a transition is its posterior proba-~
bility p(7|O;). This posterior is estimated in the stan-
dard way using Bayes Rule:

p(Oi|)p(r)
p(0;)

If 7(Si—1) and O; are disjoint sets then clearly
p(O;|r) = 0. Similarly, if 7(S;-1) C O; then O; is en-
tailed and p(O;|7) = 1, and hence the posterior prob-
ability of T is proportional to the prior. If neither of
the above two situations arises then p(O;|7) < 1. Es-
timating this probability is difficult and requires more

p(T|0;) = oc p(O:|7)p(T)

'We have made the simplifying assumption that the
probability of a transition is independent of the current
state of the transition system.

Williams 279

research, but see (de Kleer & Williams 1987) for some
ideas.

Finally, to view MI as a combinatorial optimization
problem, recall that each plant transition consists of
a single transition for each of its component transi-
tion systems. Hence, we introduce a variable into X
for each component in the plant whose values are the
possible component transitions. Each plant transition
corresponds to an assignment of values to variables in
X. C is the constraint that the set of states resulting
from taking a plant transition is consistent with the
observed values. The objective function f is just the
probability of a plant transition. The resulting combi-
natorial optimization problem hence identifies the lead-
ing transitions at each state, allowing MI to track the
set of likely trajectories.

Mode reconfiguration

Equation 6 characterizes the reconfiguration problem
as one of identifying a control action that ensures that
the result of taking the nominal transition yields states
in which the configuration goal is satisfied. Recast-
ing MR as a combinatorial optimization problem is
straightforward. The variables X are just the control
variables p with identical domains. C is the constraint
in Equation 5 that p; must satisfy to be in M;. Fi-
nally, as discussed in Section , different control actions
can have different costs that reflect differing resource
requirements, etc. We take f to be negative of the
cost of a control action. The resulting combinatorial
optimization problem hence identifies the lowest cost
control action that achieves the goal configuration in
the next state.

Conflict-directed best first search

We solve the above combinatorial optimization prob-
lems using a conflict directed best first search, similar in
spirit to (de Kleer & Williams 1989; Dressler & Struss
1994). A conflict is a partial solution such that any
solution containing the conflict is guaranteed to be in-
feasible. Hence, a single conflict can rule out the feasi-
bility of a large number of solutions, thereby focusing
the best-first search. Conflicts are usually generated
while checking to see whether a solution X; satisfies the
constraints C. In the case of MI and MR, we check C
using unit propagation for propositional inference, so
that simple LTMS-style dependency recording suffices
to generate conflicts (Forbus & de Kleer 1993).

Our conflict-directed best-first search algorithm,
CBFS, is shown in in Figure 3. It has two major com-
ponents: (a) an agenda that holds unprocessed solu-
tions in decreasing order of f; and (b) a procedure to
generate the immediate successors of a solution. The
main loop of the algorithm removes the first solution
from the agenda, checks whether it is feasible, and adds
in the solution’s immediate successors to the agenda.
When a solution X; is infeasible, we assume that the
process of checking the constraints C returns a part

280 QR-96

function CBFS(X, C, f)
Agenda = {{best-candidate(X)}}; Result = 0;
while Agenda is not empty do
Soln = pop(Agenda);
if Soln satisfies C' then
Add Soln to Result,
if enough solutions have been found then
return Result,
else Succs = immediate successors Cand,
else
Conf = a conflict that subsumes Cand,
Succs = immediate successors of Cand not
subsumed by Conf:
endif
Insert each solution in Succs into Agenda
in decreasing f order;
endwhile
return Result;
end CBFS

Figure 3: Conflict directed best first search algorithm
for combinatorial optimization

of X; as a conflict N;. We focus the search by gener-
ating only those immediate successors of X; that are
not subsumed by N;, i.e., do not agree with N; on all
variables. A

Intuitively, solution X; is an immediate successor of
solution X; only if f(X;) > f(X;) and X; and X; differ
only in the value assigned to a single variable (ties are
broken consistently to prevent loops in the successor
graph). One can show this definition of the immediate
successors of a solution suffice to prove the correct-
ness of CBFS, i.e., to show that even with conflict-
directed focusing, all feasible solutions are generated
in decreasing order of f. Our implemented algorithm
further refines the notion of an immediate successor
while preserving correctness. The major benefit of this
refinement is that each time a solution is removed from
the agenda, at most two new solutions are added on,
so that the size of the agenda is always bounded by
the total number of solutions that have been checked
for feasibility. The details of this refinement are be-
yond the scope of this paper and appear in the longer
version.

Implementation and experiments

We have implemented Livingstone, a model-based con-
figuration manager, based on the ideas described in
this paper. Livingstone was part of a rapid prototyp-
ing demonstration of an autonomous architecture for
spacecraft control. To evaluate the architecture, space-
craft engineers at JPL defined the Newmaap spacecraft
and scenario. The Newmaap spacecraft is a scaled
down version of the Cassini spacecraft that retains
most challenging aspects of spacecraft control. The

Number of components 80
Average modes/component 3.5
Number of propositions 3424
Number of clauses 11101

Table 1: NewMaap spacecraft model properties

Failure MI MR

Scenario Chck | Accpt | Time || Chck | Time
EGA preaim 7 2 2.2 4 1.7
BPLVD 5 2 2.7 8 2.9
IRU 4 2 1.5 4 1.6
EGA burn 7 2 2.2 11 3.6
ACC 4 2 2.5 5 1.9
ME hot 6 2 2.4 13 3.8
Acc low 16 3 5.5 20 6.1

Table 2: Results from the seven Newmaap failure re-
covery scenarios

Newmaap scenario was based on the most complex mis-
sion phase of the Cassini spacecraft—successful inser-
tion into Saturn’s orbit even in the event of any single
point of failure. Table 1 provides summary information
about Livingstone’s model of the Newmaap spacecraft,
demonstrating its complexity.

The Newmaap scenario included seven failure sce-
narios. From Livingstone’s viewpoint, each scenario re-
quired identifying the failure transitions using MI and
deciding on a set of control actions to recover from the
failure using MR (initial nominal hardware configura-

tions were established by RAPS). Table 2 shows the

results of running Livingstone on these scenarios. The
first column names each of the scenarios; a discussion
of the details of these scenarios is beyond the scope
of this paper. The second and fifth columns show the
number of solutions checked by algorithm C BF'S when
applied to MI and MR, respectively. On can see that
even though the spacecraft model is large, the use of
conflicts dramatically focuses the search. The third
column shows the number of leading trajectory exten-
sions identified by MI. The limited sensing available on
the Newmaap spacecraft often makes it impossible to
identify unique trajectories. This is generally true on
spacecraft, since adding sensors is undesirable because
it increases spacecraft weight. The fourth and sixth
columns show the time in seconds on a Sparc 5§ spent
by MI and MR on each scenario, once again demon-
strating the efficiency of our approach. Furthermore,
initial experiments with the use of ideas from truth
maintenance has demonstrated an order of magnitude
speed-up. .
Livingstone’s MI component was also tested on ten
combinational circuits from a standard test suite (Br-
glez & Fujiwara 1985). Each component in these cir-
cuits was assumed to be in one of four modes: ok,
stuck-at-1, stuck-at-0, and unknown. The probabil-
ity of transitioning to the stuck-at modes was set at

of # of
Devices | components | clauses || Checked | Time
cl7 6 18 18 0.1
c432 160 514 58 4.7
c499 202 714 43 4.5
c880 383 1112 36 4.0
c1355 546 1610 52 12.3
c1908 880 2378 64 22.8
c2670 1193 3269 93 28.8
c3540 1669 4608 140 113.3
c5315 2307 6693 84 61.2
c7552 3512 9656 71 61.5

Table 3: Testing MI on a standard suite of combina-
tional circuits

0.099 and transitioning to the unknown mode was set
to 0.002. We ran 20 experiments on each circuit using
a random fault and a random input vector sensitive
to this fault. MI stopped generating trajectories af-
ter either 10 leading trajectories had been generated,
or when the next trajectory was 100 times more un-
likely than the most likely trajectory. Table 3 shows
the results of our experiments. The columns are self-
explanatory, except that the time is the number of sec-
onds on a Sparc 2 rather than on a Sparc 5. Note once
again the power of conflict-directed search to dramati-
cally focus search. Interestingly, it is worth noting that
these results are comparable to the results from the
very best ATMS-based implementations, even though
Livingstone uses no ATMS.

Livingstone is also being applied to two other prob-
lems. The first is ASSAP, another rapid prototyp-
ing effort demonstrating other aspects of spacecraft
autonomy including autonomous science and naviga-
tion. The second is the autonomous real-time control
of a scientific instrument called a Bioreactor. Both
these projects are still underway, and final results are
forthcoming. More excitingly, the success of the New-
maap demonstration has launched Livingstone to new
heights: Livingstone is going to be part of the flight
software of the first New Millennium mission, called
Deep Space One, to be launched in early 1998. We
expect final delivery of Livingstone to this project late
in 1996.

Conclusions

In this paper we introduced Livingstone, a fast, reac-
tive, model-based self-configuring system, which pro-
vides a kernel for model-based autonomy. Livingstone,
the HSTS planning/scheduling system, and the RAPS
executive, have been selected to form the core auton-
omy architecture of Deep Space One, the first flight of
NASA’s New Millennium program.

Three technical features of Livingstone are particu-
larly worth highlighting. First, Livingstone uses con-
current transition systems as its underlying modeling
paradigm. Transition systems provide the appropri-

Williams 281

ate modeling paradigm because autonomous systems
are concurrent hardware/software hybrids that funda-
mentally need to reason about their state and how the
state evolves over time. Furthermore, transition sys-
tems provide a natural characterization of configura-
tion management as a kind of discrete control system.
Second, Livingstone is a fast reactive configuration
manager. Reactivity is achieved by restricting reason-
ing to just the current state and the next state. Fast
inference is achieved by focusing on propositional tran-
sition systems, unit propagation, and qualitative mod-
eling. The interesting and important result of applying
Livingstone to Newmaap, Deep Space One, ASSAP,
and the Bioreactor project is that Livingstone’s models
and restricted inference are still expressive enough to
solve important problems in a diverse set of domains.
Third, Livingstone casts mode identification and
mode reconfiguration as combinatorial optimization
problems, and uses a core conflict-directed best-first
search to solve them. The ubiquity of combinato-
rial optimization problems and the power of conflict-
directed search are central themes in Livingstone.

References

Brglez, F., and Fujiwara, H. 1985. A neutral netlist
of 10 combinational benchmark circuits and a tar-
get translator in FORTRAN. Distributed on a tape
to participants of the Special Session on ATPG and
Fault Simulation, Int. Symposium on Circuits and
Systems.

de Kleer, 1., and Williams, B. C. 1987. Diagnosing
multiple faults. Artificial Intelligence 32(1):97-130.
Reprinted in (Hamscher, Console, & de Kleer 1992).

de Kleer, J., and Williams, B. C. 1989. Diagnosis
with behavioral modes. In Proceedings of IJCAI-89,
1324-1330. Reprinted in (Hamscher, Console, & de
Kleer 1992).

Dressler, O., and Struss, P. 1994. Model-based di-
agnosis with the default-based diagnosis engine: Ef-
fective control strategies that work in practice. In
Proceedings of ECAI-94.

Firby, R. J. 1995. The RAP language manual. Ani-
mate Agent Project Working Note AAP-6, University
of Chicago.

Forbus, K. D., and de Kleer, J. 1993. Building Prob-
lem Solvers. MIT Press.

Hamscher, W.; Console, L.; and de Kleer, J. 1992.
Readings in Model-Based Diagnosis. San Mateo, CA:
Morgan Kaufmann.

Hamscher, W. C. 1991. Modeling digital circuits for
troubleshooting. Artificial Intelligence 51:223-271.

Manna, Z., and Pnueli, A. 1992. The Temporal Logic
of Reactive and Concurrent Systems: Specification.
Springer-Verlag.

282 QR-96

Muscettola, N. 1994. HSTS: Integrating planning
and scheduling. In Fox, M., and Zweben, M., eds.,
Intelligent Scheduling. Morgan Kaufmann.

