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Introduction
We are interested in studying turn-taking in dialogue,
in particular human-computer discourse. Humans and
computers can communicate in any number of ways,
such as through an operating system command line,
a direct manipulation interface, or even natural lan-
guage. Turn-taking is a basic fact of life that inter-
acting agents must deal with: who should say what,
and when? In some situations, turn-taking is a simple
matter of following a predefined script, such as recit-
ing wedding vows, or following the World Wide Web
HTTP protocol. However, in much human-human dia-
logue, a more flexible and dynamic form of turn-taking
is needed since it is impossible to always predict how
a conversation will progress.

In natural language dialogue systems, it is often as-
sumed that explicit turn-ending signals will be given
by the conversants. For example, such systems typi-
cally require that you type a sentence and then press
<return>, which is a signal to the computer that it is
its turn to talk. However, explicit turn-ending signals
are not practical in other domains. For example, in
a graphical user interface, the user points and clicks
with a mouse, while the computer responds by open-
ing windows, moving objects, etc. In this case, the
user does not give explicit signals as to when she has
finished "speaking". As in human-human dialogue, it
is necessary to carefully observe the other conversant
and watch for relevant points to take a turn as they
arise. To do this effectively, a general theory of turn-
taking is needed to determine why a turn should be
taken, when it should be taken, and how turn-taking
goals interact with an agent’s other goals.

With respect to agents in general, we believe that
since agents may engage in interaction that can be
treated as a kind of conversation, knowing how and
why to communicate with other agents is a necessary
ingredient for success. In particular, agents meant to
interact with a human must be able to deal with peo-
ple in a natural and flexible manner. Below we out-

line a general framework for turn-taking that could be
applied to any dialogue situation involving intelligent
interacting agents.

Three Steps to Good Turn-Taking

In a conversation, a turn-taking agent must decide such
issues as why to take a turn, when to take a turn, and
how to take a turn. We use a basic three-part model
for agent turn-taking. First, an agent needs a reason or
motivation for taking a turn. This reason then triggers
the adoption of a turn-taking goal, and, lastly, the turn
is executed at an appropriate point in the conversation.
Each of these steps is elaborated upon below.

Motivation

Ultimately, an agent can take a turn for any reason,
but a number of interesting and important cases stand
out. The most concrete kinds of motivations are ones
related to anomalous or unexpected situations that
might require a turn to be taken immediately (i.e. an
interruption). Such motivations include recognizing an
inconsistency in a conversant’s knowledge base~ deal-
ing with a failed stereotyped assumption, or resolving
plan-related ambiguities.

In this abstract we will focus mainly on the goal
adoption phase of the turn-taking process, but to il-
lustrate the over-ail model we introduce a hypothet-
ical course advising system called ARm~. that helps
students choose courses. Suppose the student asks the
system the following question:

(1) Student: When does CS492 meet?

ARNI~. recognizes this as a valid question, and so this
causes in ARNI~. a motivation to provide an answer
to the question, which has propositional content p;
effectively, this amounts to ARNI~. adopting simple-
answering-goal(p) (discussed in the next section). 
the question is not valid, then a different motivation
will be triggered:
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(2) Student: When does CS592 meet?

In this case, CS592 does not exist, so ARNIB realizes
the student likely has some misconception and a mo-
tivation to correct this error is triggered. Thus, a pre-
condition to answering the question is to first correct
this misconception. In this particular case, two goals
are adopted and one is a subgoal of the other, and thus
ARNIS has a preference for the order in which satisfac-
tion of the goals should be attempted. In other cases,
it might not be so clear in which order goals should
be dealt with; handling multiple goals is an important
issue, and while we do not deal with it directly in this
paper, it will arise again in Section 4.

Goal Adoption

An important aspect of rational behaviour is not giv-
ing up one’s goals too soon. The idea of being com-
mitted to one’s goals has received attention in both
AI and philosophy (e.g. Cohen & Levesque (1990);
Georgeff & P~o (1995); Bratman (1987)). Cohen 
Levesque (1990) define persistent go al tobe a goal
that an agent keeps until either the goal is achieved,
or the agent comes to believe the goal can never be
achieved. We have defined a variation of persistent
goals, called time-bounded persistent goals (Donaldson
& Cohen 1996), which are more sensitive to time than
Cohen and Levesque’s persistent goals, and thus, we
believe, more appropriate for modelling the kinds of
turn-taking goals that can arise in discourse. A time-
bounded persistent goal is kept until either the agent
achieves the goal, or believes the goal cannot be sat-
isfied in some time-interval of relevance. More specif-
ically, a time-bounded persistent goal to achieve ¢ in
time T is defined as follows:

Bounded-persistent-goal(¢,T)
While: simple-goal (¢)

Adopt-when: B(holds(B-~¢,some-head-of (T) 

Drop-when: B(holds(B¢,some-tail-of(T)))
B (holds (B’~¢,some-tail- of (T)))
B(a fter(T, now))

Bp means that the agent believes proposition p to be
true. The notation some-head-of(T) and some-tail-
of(T) is shorthand for unspecified intervals of T that
touch one end of T. For example, B(holds(B-~¢,some-
head-of(T))) means the same as the expression
3TH.starts(TH,T)AB(holds(B-~¢,TH)). A goal is
adopted when all of the conditions on the While list
and Adopt-when list hold, and none of the conditions
on the Drop-when list hold. This means that the agent

will adopt the bounded persistent goal to achieve1 ¢
in time T while the agent has a simple (i.e. non-
persistent) goal to achieve ¢, and the agent believes
-~¢ holds in some initial sub-interval of T. An adopted
goal is dropped when at least one of the While condi-
tions or at least one of the Drop-when conditions hold.
Thus, an agent will drop a bounded persistent goal if
the agent believes ¢ holds in some sub-interval that
ends T, or if the agent believes --¢ holds in some sub-
interval that ends T, or if the agent believes T is in the
past, or if the agent believes the simple goal to achieve
¢ no longer holds.

It should be pointed out that Cohen and Levesque’s
intent is to provide a specification for how a rational
agent ought to behave. They do not claim that their
formalism is actually what should be used in an imple-
mentation. Our goal is not to provide a logical spec-
ification of an agent, but instead to develop a com-
putationally feasible framework for implementing an
intelligent turn-taking agent.

To give a flavour of how time-bounded persistent
goals work, consider ARNm and the student. The stu-
dent first asks:

Student: When does CS492 meet?

A question can be treated as a motivation for adopting
a time-bounded persistent goal to answer the question:

Persistent-answering-goal(a, p, T)
While: simple- answering-goal (p)

Adopt-when: B( holds( B-,a, some-head-of(T)))

Drop-when: B(holds(Ba, some-tail-of(T)))
B(holds(B-,a, some-tail-of(T)))
B(after(T, now))

This means ARNI~. has a time-bounded persistent goal
to achieve a within time interval T; more specifically,
a is the state where the question, which has proposi-
tional content p, has been answered. In this case, it is
reasonable to expect a to be a simple response, since
the student’s question is asking for a basic unit of in-
formation about a particular course; more complicated
questions might require more complex clarification or
elaboration, and so in such cases it would be reason-
able to expect a to refer to an entire sub-dialogue.
Now, we are working under the common assumption
that dialogue is an essentially collaborative activity

t Cohen and Levesque distinguish between achievement
goals, where the agent tries to make a false proposition true,
and maintenance goals, where an agent tries to keep an al-
ready true proposition true. We will only consider achieve-
ment goals in this paper; however, maintenance goals are
ultimately important to a rational agent, and the interac-
tion between achievement goals and maintenance goals is
an interesting topic for future research.
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(Clarke & Wilkes-Gibbs 1990; Grosz & Sidner 1990;
Chu-Carroll & Carberry 1994), and so T cannot yet be
completely instantiated until there is some indication
from the other conversant whether the response was
understood. Since, in this case, ARNIB has no other
goals that should take precedence, ARNIB acts to try
to achieve (~ by generating a cooperative response:2

(3) ARNIB: Tuesdays, lpm-3pm. Note that you
must be pursuing a math degree to take CS492
for credit.

If the student responds with "Okay, thanks", then
ARNIE can drop its persistent goal to answer the ques-
tion. If instead the student responds with something
like "What?", then ARNIE should persistent with its
goal of trying to answer the student’s question by clar-
ifying its response. However, AItNIE should not neces-
sarily try to answer the student’s question forever. If
the student’s misunderstanding persists too long, then
ARNIE may well run out of strategies for dealing with
the problem, and so instead of repeating methods that
have already failed once, ARNI~. ought to tell the stu-
dent he can’t do anything more to help him. This
amounts to ARNI~. choosing the endpoint of T.

This example shows two ways a bounded persis-
tent goal can be dropped: first, by achieving the goal,
and, second, by coming to believe the goal cannot be
achieved within T. The third condition, believing that
T is in the past, arises in situations where the speaker
changes the topic in mid utterance. For example, sup-
pose the dialogue continues like this:

(4) Student: Are there any pre-requisites? Oh, wait
a minute, I need the credit. What computer
courses are open to science students?

Just after the first sentence, ARNIB adopts a goal to an-
swer the student’s question about pre-requisites. How-
ever, the student then changes his mind, retracting
his original question and asking another. Given that
CS492 is no longer the topic of conversation, it would
be inappropriate for ARNIE to now answer the stu-
dent’s first question. Instead, ARNm realizes that the
time of relevance for this goal has past, and so drops it.
Of course, there may be cases where a speaker changes
the topic in mid-turn, and the listener decides it is
important enough either to interrupt the speaker in
mid-turn, or shift the focus back to the relevant topic
of conversation.

Ambiguous Plans As another example, we consider
how an actual advice-giving system could benefit from

2See Joshl et al. (1984) for details on cooperative re-
sponse generation.

time-bounded persistent goals, van Beck et al. (1993;
1994)’s advice-giving system initiates clarification sub-
dialogues to resolve relevant ambiguities in plan recog-
nition. The overall goal of the system is to inform
the user about information in a specific advice-giving
domain (examples are drawn from both the course-
advising and the cooking domain). The system works
by performing plan recognition on a user’s question;
Kautz’s plan recognition system is used (Kautz 1990),
so the output is a set S of all possible plans that the
user could be following. If S is ambiguous, and the am-
biguity matters to the formulation of an advice-giving
responsea (S is relevantly ambiguous), then a clarifi-
cation dialogue is entered into with the user. As it
stands, the system keeps the goal of clarification un-
til S is no longer relevantly ambiguous. The system’s
behaviour can be modelled like this:

Clari]ication-goalt ( S)
While: inform-goal(u)

Adopt-when: S is ambiguous

Drop-when: S is no longer relevantly ambiguous

A clarification subdialogue consists of a series of yes/no
questions asked by the system. Each individual ques-
tion could be modelled with a goal:

Question-goal(S)
While: Clarification-goal t (S)

Adopt-when: there is an individual question to
ask about S

Drop-when: the question has been asked

As is clear from these goals, van Beck et al.’s sys-
tem will only stop trying to clarify S if either inIorm-
goal(u) is not the case, or the ambiguity in S has been
resolved or no longer matters. Here is a typical dia-
logue that this system currently handles:

U: Is it ok to make marinara sauce?
S: Are you planning to make a meat dish?
U: Yes.
S: Yes, you can make marinara sauce, but your guest

is a vegetarian, so you should avoid meat.

When the dialogue begins, the system adopts inform-
goal(u). Then after the user’s initial question, the sys-
tem, unclear about the user’s possible plans (S is rel-
evantly ambiguous), asks a clarifying question about
the main course. Once the question has been asked,
the question goal is dropped. After the user’s response,
the system can now give its final advice and drop its

3Thls is determined by considering the possible faults of
plans, towards the production of a cooperative response.
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clarification goal, since S is no longer relevantly am-
biguous.

Using time-bounded persistent goals and the nota-
tion introduced in the previous example, van Beck et
al.’s system can be generalized to allow more flexible
control of the dialogue:

Clarification-goal(S)
While: inform-goal(u)

Adopt-when: B ( needs-cla fcation( S) 
Drop-when: B( no-longer-needs-clarifcation( S) 

Persistent-interruption-goal(a, S, T)
While: Clarification-goal ( S)

Adopt-when: B(holds(B-,a,some-head-of (T) 

Drop-when: B( holds( Ba,some-tail-of (T) 
B (holds (B-,a,some-tail- of (T)))
B(a fter(T,now) 

This definition shows that an advice-giving system may
explicitly abandon its clarification goal not only in the
case where the clarification has been achieved (as han-
dled by van Beeket M.), but also when the system
believes it will be unable to finish the clarification di-
alogue or when it believes the time of relevance has
passed.

We now give examples to show how the various drop
conditions can lead to more complex kinds of diMogues.
First, consider the following variation of the cooking
dialogue:

U: Is it ok to make marinara sauce?
S: Yes.
U: Now, I know I can’t make meat because of the

vegetarian guest, but is whole wheat spaghetti ok?
S: Yes.

Here, we assume that the system decides not to im-
mediately enter into a clarification dialogue, perhaps
because it expects a clarification to be forthcoming,
or that now is not the best time to interrupt. 4 On
the user’s next turn, the ambiguity happens to be ex-
plicitly resolved. This causes the system’s persistent-
interruption goal to be dropped, since the reason for
the interruption has been resolved.

Next, consider the following dialogue between a stu-
dent and a course advisor:

U: Can I take csl50?
S: Have you already taken cs170?
U: What is csl70?

4van Beek et al.’s system begins a clarification dialogue
as soon as it believes clarification is necessary, which may
not always be the best strategy.

S: It is a basic computer literacy course.
U: That sounds good. Can I take csl70?
S: Yes.
U: Now, about math188 ...

Here, the system never resolves the ambiguity for
which it initiated the clarification dialogue, and the
user changes the topic. On a subsequent turn, the
system could return to address csl50, but if it is not
really necessary then such a turn will likely be just an
annoyance to the user. Instead, the system drops its
persistent goal to interrupt the user because it now be-
lieves it cannot perform the clarification subdialogue in
the time interval where it would be relevant. This does
not mean that the system believes it can never clarify
csl50 for the user, but that it cannot finish the clari-
fication dialogue within time T, the time of relevance
for csl50.

Finally, consider the case where the system drops
a time-bounded interruption goal because it believes
the conversation has ended -- perhaps the user leaves
the room to go do something else. Assuming that the
system has other things to do, it would drop its goal to
interrupt the user, even though it might believe that
the user will at some time return, and it could then
interrupt the user. This corresponds to the system
believing the conversation has ended.

Turn Execution

When taking a turn, an agent must consider two basic
sources of information: its own beliefs, desires, and in-
tentions (BDIs), and the BDIs of the other conversant.
Since agents only have direct access to their own BDIs,
the BDIs of the conversant must be inferred through
their actions. An agent should strive to take a turn at
a transitionally relevant point (TRP), which is essen-
tially a time in the conversation where it is mutually
agreeable to both conversants for a turn-shift to occur
(Orestr6m 1983). In human-human dialogue, potential
TttPs are typically implicitly signaled by a number of
actions: change in the volume of the speaker’s voice,
change in intonation, pausing, uttering of a grammati-
cally complete phrase, focus shifts, gestures etc. All of
these indicate a potential TRP, and the more of these
features that occur at the same time, the more likely
that that time is a TRP. In Section 4, we suggest a
uniform way for dealing with these TRP signals and
an agenCs turn-taklng goals.

It is our intention to develop a specification for turn
execution which incorporates a variety of these fea-
tures simultaneously. As an example, consider pauses.
Pauses are computationally attractive for two main
reasons. First, in the context of spontaneous speech,
a number of psycholinguistic experiments have been
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done showing correlations between pauses and men-
tal activity (Goldman-Eisler 1968). Second, pauses
naturally occur in domains besides natural language
speech; for example, in a graphical user interface, an
absence of input from the user can be treated as a
pause, which suggests that it might be possible to ap-
ply knowledge about pauses in human-human speech
to human-computer interface interaction.

Deciding the length of a pause thgt may signal the
end of a turn depends in part upon the particular
speaker, and this presents an interesting problem in
dynamic user modelling. Goldman-Eisler (1968) re-
ports a number of experiments on pauses in spon-
taneous speech, showing correlations between hesita-
tions, speech planning, and grammaticM boundaries.
Using these results, we can get a reasonable default
set of values (e.g. a pause of 2 seconds or more indi-
cates a potential turn-ending signal) which can then
be adjusted as the conversation continues.

Related Work

We briefly discuss some of the work on turn-taking
from computational linguistics which is relevant to the
design of communicating agents.

Sidner (1994) defines a descriptive language that al-
lows conversants to negotiate over the meaning of their
utterances. Sidner’s language treats conversant’s ut-
terances as proposals, counter-proposal, acceptances,
etc. This characterization of discourse might provide
some insight into how to manage a set of time-bounded
persistent goals. Moreover, time-bounded persistent
goals may help to elucidate the conditions under which
various discourse moves may be taken, therefore clar-
ifying how Sidner’s language can be effectively intro-
duced into processing algorithms.

Chu-Carroll and Carberry (1995) give a computa-
tional strategy for initiating information-sharing sub-
diMogues. When their system is uncertain about
whether or not a proposal from the user should be
accepted or rejected, an information-gathering subdi-
alogue is entered into. Their system also allows subdi-
alogues within subdiMogues. This work therefore also
provides us with cases for our study of turn taking:
it is worth studying how information-gathering subdi-
alogues can be treated as interruptions and how the
use of time-bounded persistent goals can provide for a
richer set of possible dialogue structures.

Relevant computational work on resource-bounded
language generation has been done by Carletta et al.
(1993) and Walker (1993). Carletta et al. are partly
interested in the cognitive plausibility of language pro-
duction, and treat it as a "high risk" activity, where it
is acceptable for a speaker to make a mistake because

it is often possible to quickly repair this mistake. Their
notion of anytime language production is very similar
in spirit to the local repair CSP approach we suggest
in the next section.

Discussion: A Constraint Satisfaction
Approach to Agents

In this section, we discuss some preliminary ideas
about a constraint-based approach to managing mul-
tiple goals and multiple influences for turn execution.

Turn-taking raises a number of general questions
about agents. Abstractly, the turn-taking problem is
about when to take a turn in an interaction with an-
other intelligent agent; a turn-taker must weigh two
sets of knowledge: 1) its own BDI’s, and 2) the actions
that indicate the relevant BDFs of the other conver-
sant. A uniform way to handle these two sources of
knowledge is to treat taking a turn as solving a sin-
gle constraint satisfaction problem (CSP). The vari-
ables could be divided into two sets: the goal vari-
ables ]/1... V,, representing the n turn-taking goals the
agent can consider, and the pragmatic variables such as
V,o,,,,,,e, V~,,,o,,a,~o,,, Vpa(,,e, Vise,,,, etc. For Vl... V,,
constraints can be based on the relative importance
of the propositional content of the goal (e.g. how bad
would it be if the turn was never taken?), logical consis-
tency, linguistically motivated coherence constraints,
such as following standard focus/topic pattern progres-
sions. For example, in utterance (2), two turn-taking
goals are triggered, with the constraint that one is a
subgoal of the other, and so one must be satisfied be-
fore the other. The pragmatic variables can be related
by constraints based on linguistic data; for example,
in spoken communication if the volume of the speakers
voice is going from high to low, and they are nearing a
grammatical boundary, then a constraint between the
volume variable and the grammar variable could be
said to be satisfied.

Along with determining what the relevant con-
straints are, part of the cost of this uniformity of rep-
resentation is that the goals that can be represented
are now finite in number, and reasoning with these
goals is not the same as with a logical representation
simply because CSP variables are not logical propo-
sitions. However, we believe the CSP representation
offers a number of practical advantages that cannot
be (straightforwardly) achieved with logical represen-
tations. Since conversation is a dynamic activity where
new information is presented in an incremental fashion,
local repair techniques are an appropriate method for
solving such CSPs (Minton et al. 1992). In general,
such methods solve a CSP by starting with some possi-
bly inconsistent instantiation of all variables, and pro-

21



ceed to find a consistent solution by repairing the value
of single variables according to some heuristic (e.g. the
rain-conflicts heuristic in Minton et al.). Local repair
methods appear to be ideally suited to dialogue situa-
tions, since they work by modifying fully instantiated
sets of variables, and thus can handle changes in con-
straints, additions of new variables, and changes in do-
mains more easily than traditional constructive CSP
solution methods. Furthermore, since all variables are
instantiated at all times, local repair methods are ap-
propriate for anytime computation, i.e. the algorithm
can be stopped at any time, and it will have some
reasonable solution to offer. In dialogue, unexpected
interruptions might require a conversant to speak at a
time when they are not completely ready, and so an
anytime algorithm would seem to be needed.

A key issue we are interested in studying is how a
turn-taking agent should manage multiple turn-taking
goals. Typically, goal management is treated as a kind
of planning problem; however, deciding in what or-
der to take turns is more like a scheduling problem.
Roughly, planning problems require finding some num-
ber of actions that transform an initial state to a goal
state; the number of actions required is not known in
advance. Scheduling, on the other hand, it is known
in advance how many actions need to be scheduled.
While in general both planning and scheduling prob-
lems can be very difficult, Minton et al. (1992) have
shown local repair techniques can be extremely suc-
cessful in scheduling problems°

Conclusion

We a believe that a theory of turn-taking would be
useful not only for natural language dialogue systems,
but for any intelligent agent that may interact with
a person, such as interface agent or a "personal as-
sistant" agent. Our general framework for modelling
turn-taking goals is based on a three-step model that
goes from motivation, to goal-adoption, to turn exe-
cution. Our development of time-bounded persistent
goals is a valuable representation which allows for di-
alogues with more complex clarification and interrup-
tion structures than have previously been addressed.
We suggest that CSPs, based on local repair solution
methods, provide a uniform and computationally at-
tractive model for developing turn-taking algorithms.
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