
Learning Cases to Resolve Conflicts
and Improve Group Behavior

Thomas Haynes and Sandip Sen
Department of Mathematical & Computer Sciences

The University of Tulsa
600 South College Avenue

Tulsa, OK 74104-3189
e-mall: [haynes,sandip]@euler.mcs.ut ulsa.edu

Abstract

Groups of agents following fixed behavioral rules can
be limited in performance and efficiency. Adaptabil-
ity and flexibility are key components of intelligent
behavior which allow agent groups to improve perfor-
mance in a given domain using prior problem solving
experience. We motivate the usefulness of individual
learning by group members in the context of overall
group behavior. In particular, we propose a f~ame-
work in which individual group members learn cases to
improve their model of other group members. We use
a testbed problem t~om the distributed AI literature
to show that simultaneous learning by group members
can lead to significant improvement in group perfor-
mance and efficiency over agent groups following static
behavioral rules.

Introduction
An agent is rational if when faced with a choice from a
set of actions, it chooses the one that maximizes the ex-
pected utilities of those actions, hnplicit in this defini-
tion is the assumption that the preference of the agent
for different actions is based on the utilities resulting
from those actions. A problem in multiagent systems
is that the best action for Agent A~ might be in con-
flict with that for another Agent Aj. Agent A~, then,
should try to model the behavior of Aj, and incorpo-
rate that into its expected utility calculations (Gmy-
trasiewicz & Durfee 1995).

The optimal action for an individual agent might
not be the optimal action for its group. Thus an
agent can evaluate the utility of its actions on two
levels: individual and group. The group level calcu-
lations require more information and impose greater
cognitive load, whereas the individual level calcula-
tions may not always yield desirable results. If agents
in a group are likely to interact, utility calculations
from even the individual perspective requires reason-
ing about the possible actions of some or all of the
group members. Thus, to be effective, each individual
in a closely-coupled group should model the behavior

of other group members, and use these models while
reasoning about its actions. The above analysis holds
irrespective of whether agents are cooperative, antag-
onistic, or indifferent to other agents.

In general, an agent can start with a very coarse or
approximate model of other group members. For ex-
ample, it can start with the default assumption that
every one else is like itself, and modify this model based
on experience. In such a situation, since agents can
interact in unforeseen ways, a dynamic model of the
group must be maintained by the individual. Problems
of modeling another agent based on passive observa-
tion are many: discrepancy between the expected and
actual capabilities, goals, relationships, etc. of the ob-
served agent may lead to an inferred model which is in-
accurate and misleading; different agents may perceive
different views of the environment and hence the ob-
serving agent may not be able to correctly infer the mo-
tivations for a given action taken by another agent; ac-
tions can take different intervals of time and agents can
be acting asynchronously. Even if agents are allowed
to communicate, communication delays, improper use
of language, different underlying assumptions, etc. can
prevent agents from developing a shared common body
of knowledge (Halpern & Moses 1990). For exam-
ple, even communicating intentions and negotiating to
avoid conflict situations may prove to be too time con-
suming and impractical in some domains (Lesser 1995).
These and other problems combine to confound an in-
dividual in its attempt to predict the behavior of other
members of its group.

We investigate a method for allowing agents to im-
prove their models of other members of the group.
Using these evolving models an agent can determine
appropriate local actions. Our goal is to show that
given some generic behavioral rules that are effective
in achieving local goals in the absence of other agents,
but are ineffective when they have to share resources
with other group members, agents can learn to modify
their behavior to achieve their goals in the presence of

From: AAAI Technical Report WS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



other agents. Some of the assumptions in our work are:
agents are provided with a default set of behavioral
rules to follow; repeated interaction with other group
members allow agents to modify these behavioral rules
in some but not in all cases; agents are motivated to
achieve local goals but are cognizant of global goals;
agents are autonomous; agent perceptions are accu-
rate; agents do not communicate explicitly; all agents
act and adapt concurrently.

If an agent’s interactions with other agent are fairly
infrequent and the environment is stationary, then a
static set of behavioral rules may be sufficient in ef-
fectively fulfilling local goals. A similar argument can
also be made for cooperative agent groups for envi-
romnents that are well understood and for which ef-
fective group behaviors can be designed off-line. For
a large number of practical and interesting scenarios,
however, either agents interact with other agents of un-
known composition or all possible agent interactions
cannot be foreseen. Adaptation and learning are key
mechanisms by which agents can modify their behav-
ior on-line to maintain a viable performance profile in
such scenarios. A number of researchers have recently
started investigating learning approaches targeted for
multiagent systems (Sen 1995).

Since we eliminate communication between agents,
then how is group learning to occur? When the actual
outcome of the action of an agent is not consistent with
the expected outcome based on the model the agent
has of other agents, the agent knows that it has found a
case where its model of other agents and its default be-
havioral rule is inadequate. We believe that case based
reasoning (CBR) can be adapted to provide effective
learning with such situations. Though researchers have
used CBR in multiagent systems (Sycara 1987), little
work has been done in learning cases in multiagent
systems (Garland & Alterman 1995; Prasad, Lesser,
& Lander 1995). We propose a learning framework
in which agents learn cases to complement behavioral
rules. Agents find out through interacting with other
agents that their behavior is not appropriate in certain
situations. In those situations, they learn exceptions
to their behavioral rules. They still follow their be-
havioral rules except when a learned case guides them
to act otherwise. Through this process, the agents dy-
namically evolve a behavior that is suited for the group
in which it is placed.

A typical multiagent situation in which case learning
can be effectively used to adapt local behavior can be
seen in the interactions of Adam and his cat Buster:
Buster is diabetic, and must receive insulin shots ev-
ery morning; he must also be given some food with his
shot. Adam decides to administer the shot when he

wakes up to go to work. He discovered that Buster
would react to the sound of the alarm, and go to his
food dish. As the alarm clock does not go off on week-
ends, the cat learned it has to wake up Adam to get its
food. The latter is an exception to the routine behav-
ior, and is learned when the cat’s expectation of the
alarm clock going off in the morning is not met.

We propose to place a learning mechanism on top
of the default ruleset, which adapts the individual
greedy strategy such that local goal maps to the global
goal. The multiagent case-based learning (MCBL) al-
gorithm utilizes exceptions to a default ruleset, which
describes the behavior of an agent. These exceptions
form a case library. The agent does not reason with
these cases, as in CBI:t (Kolodner 1993), but rather
modifies an inaccurate individual model to approxi-
mate a group model.

Case-Based Learning

Case-based reasoning (CBR) (Golding & Rosenbloom
1991; Hammond, Converse, & Marks 1990; Kolodner
1993) is a model of this definition of intelligence and is
a reasoning process for information retrieval and mod-
ification of solutions to problems. A case is typically
comprised of a representation of a state of a domain
and a corresponding set of actions to take to lead from
that state to another desired state. These actions could
be either a plan, an algorithm, or a modification of an-
other case’s actions. A case library is a collection of
cases. A CBR algorithm contains a module to deter-
mine if there is a case that matches the current state
of a domain, and so then it is retrieved and used as
is. If there is no such match, then cases that are sim-
ilar to the current state are retrieved from the case
library. The set of actions corresponding to the most
relevant case is then adapted to fit the current situa-
tion. Cardie (Cardie 1993) defined case--based learning
(CBL) as a machine learning technique used to extend
instance-based learning (IBL) (Aha, Kibler, & Albert
1991). The IBL algorithm retrieves the nearest in-
stance (for our purposes, an instance can be thought of
a case) to a state, and performs the suggested actions.
There is no case adaptation if the retrieved instance is
not a direct match to the current state. With CBL,
adaptation can take place.

We view cases as generalizations of sets of instances,
and in the context of multiagent systems, we define
MCBL as a learning system by which an agent can
extend its default rules to allow it to respond to excep-
tions to those rules. The adaptation lies in translating
the general case to specific instances. In our frame-
work, the cases in the MCBL system are used by agents
to preferentially order their actions. In a single agent



system, the state represents the environment, and in
multiagent systems, it represents the environment and
the agent’s expectations of the actions of other agents.
In the following we present our formalization of a CBL
system tailored for use in multiagent systems.

What do cases represent? The behavioral rules
that an agent has can be thought of as a function
which maps the state (s) and the applicable action
set (A) of an agent to a preference ordering of those
actions:

BH(s,A) =~ A’ = < axla~2...ax~ 

The cases an agent learns allows it to modify this
preference ordering:

A case need not fire every time the agent is to per-
form an action, i.e., A" can be the same as A~. Cases
can be positive or negative (Golding & Rosenbloom
1991; Hammond, Converse, & Marks 1990). A pos-
itive case informs the agent what to do, i.e. it re-
orders the set of actions. A negative case can reorder
the actions and/or delete actions from the set. The
cases used in the system we are presenting in this pa-
per are negative in the sense that they eliminate one
or more of the most preferred actions as suggested
by behavioral rules.

When do agents learn cases? An agent learns a
case when its expectations are not met. If either
the behavioral rules or a case predict that given a
state sn and the application of an action a~, the

Iagent should expect to be in state sn, and the agent
does not end up in that state, a case is learned by
the corresponding agent. This case will then cause
the action a® not to be considered the next time
the agent is in state sn. In multiagent systems, we
expect cases will be learned primarily from unex-
pected interactions with other agents. Cases can be
generalized by eliminating irrelevant features from
the representation of the state. If another agent is
too far away to influence the state of an agent, A~,
then the expectations of its behavior should not be
included by A~ as it either indexes or creates a new
case.

What happens as models change? If agent Ai
learns an exception to agent Aj’s default rules and
agent Aj does not modify its behavioral rules, then
A~ does not have to check to see if that exception has
to be modified at some later time. In a system where
both agents are modifying their behavioral rules, A~

must check to see if Aj took the action correspond-
ing to the case. If it has not, then Aj’s behavioral
rules have changed, and Ai must update its model
of Aj.

Predator-Prey

We use a concrete problem from DAI literature to
illustrate our approach to CBL in multiagent sys-
tems. The predator-prey, or pursuit, domain has
been widely used in distributed AI research as a
testbed for investigating cooperation and conflict res-
olution (Haynes & Sen 1996; Haynes et al. 1995;
Korf 1992; Stephens & Merx 1990). The goal is for four
predator agents to capture a prey agent. In spite of its
apparent simplicity, it has been shown that the do-
main provides for complex interactions between agents
and no hand-coded coordination strategy is very effec-
tive (Haynes et al. 1995). Simple greedy strategies for
the predators have long been postulated to efficiently
capture the prey (Korf 1992). The underlying assump-
tion that the prey moves first, then the predators move
in order simplifies the domain such that efficient cap-
ture is possible. Relaxing the assumption leads to a
more natural model in which all agents move at once.
This model has been shown to create deadlock situa-
tions for simple prey algorithms of moving in a straight
line (Linear) or even not moving at all (Still) (Haynes
et al. 1995)! Two possible solutions have been identi-
fied: allowing communication and adding state infor-
mation. We investigate a learning system that utilizes
past expectations to reduce deadlock situations.

The predator agents have to capture the prey agent
by blocking its orthogonal movement. The game is
typically played on a 30 by 30 grid world, which is
toroidal (Stephens & Merx 1990). The behavioral
strategies of the predators use one of two distance met-
rics: Manhattan distance (MD) and max norm (MN).
The MD metric is the sum of the differences of the x
and y coordinates between two agents. The MN metric
is the maximum of the differences of the x and y coor-
dinates between two agents. Both algorithms examine
the metrics from the set of possible moves, i.e. mov-
ing in one of the four orthogonal directions or staying
still, and select a move corresponding to the minimal
distance metric. All ties are randomly broken.

Korf (Korf 1992) claims in his research that a dis-
cretization of the continuous world that allows only
horizontal and vertical movements is a poor approxi-
mation. He calls this the orthogonal game. Korf devel-
oped several greedy solutions to problems where eight
predators are allowed to move orthogonally as well as
diagonally. He calls this the diagonal game. In Korf’s
solutions, each agent chooses a step that brings it near-

48



est to the predator. The max norm distance metric is
used by agents to chose their steps. The predator was
captured in each of a thousand random configurations
in these games. Korf does not however report the aver-
age number of steps until capture. But the max norm
metric does not produce stable captures in the orthog-
onal game; the predators circle the prey, allowing it to
escape. Korf replaces the previously used randomly
moving prey with a prey that chooses a move that
places it at the maximum distance from the nearest
predator. Any ties are broken randomly. He claims
this addition to the prey movements makes the prob-
lem considerably more difficult.

The MD strategy is more successful than the MN
in capturing a Linear prey (22% vs 0%) (Haynes et
al. 1995). Despite the fact that it can often block
the forward motion of the prey, its success is still very
low. The MD metric algorithms are very susceptible
to deadlock situations, such as in Figure 1. The greedy
nature of this family of algorithms ensures that in sit-
uations similar to Figure l(c), neither will predator
2 yield to predator 3 nor will predator 3 go around
predator 2. While the MN metric algorithms can per-
form either of these two actions, they will not be able
to keep the Linear prey from advancing. This analy-
sis explains the surprising lack of captures of the Still
prey, and the Linear once it is blocked.

The question that arises from these findings is how
should the agents manage conflict resolution? An an-
swer can be found in the ways we as humans manage
conflict resolution, with cases (Kolodner 1993). In the
simplest sense, if predator 1 senses that if predator
2 is in its Northeast cell, and it has determined to move
North, then if the other agent moves West there will
be a conflict with predator 2. Predator 1 should
then learn not to move North in the above situation,
but rather to its next most preferable direction.

In this research we examine multiagent case-based
learning (MCBL) of potential conflicts. The default
rule employed by predators is to move closer to the
prey, unless an overriding case is present. If a case
fires, the next best move is considered. This process
continues until a move is found without a correspond-
ing negative case. If all moves fire a negative case, then
the best move according to the default behavior should

be taken 1. If the suggested move, either by the default
rule or a case firing, does not succeed, then a new case
is learned.

From one move to the next, the MD algorithm usu-
ally suffices in at least keeping a predator agent equidis-
tant from the prey. Since the prey effectively moves

1No such situation has been observed in any of our
experiments.

10% slower than the predators and the grid world
is toroidal, the prey must occasionally move towards
some predators in order to move away from others.
Therefore the predators will eventually catch up with
it. It is when the predators either get close to the
prey, or bunched up on one of the orthogonal axes,
that contention for desirable cells starts to come into
play. Under certain conditions, i.e., when two or more
predator agents vie for a cell, the greedy nature of the
above algorithms must be overridden. We could simply
order the movements of the predators, allowing preda-
tor 1 to always go first. But it might not always be
the fastest way to capture the prey. No static ordering
will be effective in all situations. Also this will require
communication for synchronization, etc.

What is needed is a dynamic learning mechanism to
model the actions of other agents. Until the poten-
tial for conflicts exist, agents can follow their default
behaviors. It is only when a conflict occurs that an
agent learns that another agent will act a certain way
in a specific situation Sj. Thus agent Ai learns not
to employ its default rule in situation Sj; instead it
considers its next best action. As these specific situa-
tions are encountered by an agent, it is actually form-
ing a case-base library of conflicts to avoid. As an
agent learns cases, it begins to model the actions of
the group. Each agent starts with a rough model of
the group, and improves it by incrementally refining
the individual models of other agents in the group.

Case Representation and Indexing

The ideal case representation for the predator-prey do-
main is to store the entire world and to have each
case inform all predators where to move. There are
two problems with this setup: the number of cases
is too large, and the agents do not act independently.
This case window and others are analyzed and rejected
in (Haynes, Lau, & Sen 1996). Unless the entire world
is used as a case, any narrowing of the case window
is going to suffer from the above points of the "effec-
tive" case window presented above. The same case can
represent several actual configurations of the domain
being modeled. If we accept that the case windows are
going to map to more than one physical situation and
hence cases are generalized to apply to multiple situ-
ations, then clearly the issue is how to find the most
relevant general case. If we limit the case window to
simply represent the potential conflicts that can occur
"after" the agent selects a move based on the default
rules or learned case, then we can utilize the case win-
dows shown in Figure 2.

Our cases are negative in the sense they tell the
agents what not to do. (A positive case would tell

49



14

(a) (b) (c)

Figure 1: A possible scenario in which a MD metric based predator tries to block the prey P. (a) predator 
manages to block P. predators 1, 2, and 3 move in for the capture. (b) predator 2 has moved into a capture
position. (c) predator 1 has moved into a capture position, predator 2 will not yield to predator 3. They are
in deadlock, and the prey P will never be captured.

X Experimental Setup and Results

P
2 1

Figure 2: Case window for predator 1.

the agent what to do in a certain situation (Golding
& Rosenbloom 1991).) A crucial piece of information
in deciding local action is where does the agent believe
the other agents are going to move. This is modeled
by storing the orientation of the prey’s position with
respect to the desired direction of movement of the
agent. Specifically, we store whether the prey lies on
the agent’s line of advance or if it is to the left or right
of the line. In the case window of Figure 2, the prey’s
relation to the line of advance is marked with a ’X’.

An agent has to combine its behavioral rules and
learned cases to choose its actions. When an agent
prepares to move, it orders its possible actions by the
default rules (the MD distance metric with the addi-
tional tie-breaking mechanisms). It then iterates down
the ranked list, and checks to see if a negative case ad-
vises against that move. To index a case, the agent first
determines whether the possible action is for movement
or staying still. As discussed above, this decision deter-
mines the particular case library to be accessed. Then
it examines the contents of each of the four cells in the
case whose contents can cause conflicts. The contents
can be summed to form an unique integer index in a
base number system reflecting the range of contents.
The first possible action which does not have a nega-
tive case is chosen as the move for that turn.

The initial configuration consists of the prey in the
center of a 30 by 30 grid and the predators placed in
random non-overlapping positions. All agents choose
their actions simultaneously. The environment is ac-
cordingly updated and the agents choose their next
action based on the updated environment state. If two
agents try to move into the same location simultane-
ously, then one is "bumped back" to its prior posi-
tion and learns a case. One predator can push another
predator (but not the prey) if the latter decided not 
move. The prey does not move 10% of the time; effec-
tively making the predators travel faster than the prey.
The grid is toroidal in nature, and only orthogonai
moves are allowed. All agents can sense the positions
of all other agents. Furthermore, the predators do not
possess any explicit communication skills; two preda-
tors cannot communicate to resolve conflicts or nego-
tiate a capture strategy. The case window employed is
that depicted in Figure 2. We have also identified two
enhancements to break ties caused by the default rules
employed in the MD metric: look ahead and least con-
flict (Haynes, Lau, & Sen 1996). Look ahead breaks
ties in which two moves are equidistant via MD, the
one which is potentially closer in two moves is selected.
If look ahead also results in a tie, then the move which
conflicts with the least number of possible moves by
other predators is selected to break the tie.

Initially we were interested in the ability of predator
behavioral rules to effectively capture the Still prey.
We tested three behavioral strategies: MD - the basic
MD algorithm, MD-EDR - the MD modified with the
enhancements discussed in (Haynes, Lau, & Sen 1996),
and MD-CBL - which is MD-EDR utilizing a case
base learned from training on 100 random simulations.
The results of applying these strategies on 100 test
cases are shown in Table 1. As discussed earlier, the

5O



MD performs poorly against the Linear prey due to
deadlock situations. While the enhancement of the
behavioral rules does increase capture, the addition of
learning via negative cases leads to capture in almost
every simulation.

Algorithm Captures Ave. Number of Steps

MD 3 19.00
MD-EDR 46 21.02
MD-CBL 97 23.23

Table 1: Number of captures (out of a 100 test cases)
and average number of steps to capture for the Still
prey.

We also conducted a set of experiments in which the
prey used the Linear algorithm as its behavioral rule.
Again we tested the three predator behavioral strate-
gies of MD, MD-EDR, and MD-CBL. The MD-CBL
algorithm was trained on the Still prey. We trained
on a Still prey because, as shown earlier, the Linear
prey typically degrades to a Still prey. We have also
presented the results of training the MD-CBL on the
Linear prey (MD-CBL*). The results for the Linear
prey are presented in Table 2.

Algorithm Captures Ave. Number of Steps

MD 2 26.00
MD-EDR 2O 24.10
MD-CBL 54 27.89
MD-CBL* 66 26.45

Table 2: Number of captures (out of a 100 test cases)
and average number of steps to capture for the Linear
prey. MD-CBL* denotes a test of the MD-CBL when
trained on a Linear prey.

With both prey algorithms, the order of increas-
ing effectiveness was MD, MD-EDR, and MD-CBL.
Clearly the addition of MCBL to this multiagent sys-
tem is instrumental in increasing the effectiveness of
the behavioral rules. There is some room for improve-
ment, as the results from the Linear prey indicate. A
majority of the time spent in capturing the Linear prey
is spent chasing it. Only after it is blocked do interest-
ing conflict situations occur.

Conclusions

We have shown that case-based learning can be effec-
tively applied to multiagent systems. We have taken
a difficult problem of group problem-solving from DAI

literature and shown how MCBL can significantly im-
prove on the performance of agent groups utilizing
fixed behavioral rules. Our results, however, suggests
interesting avenues for future research. Some of the
critical aspects of MCBL in agent groups that we plan
to further investigate are the following:

Changing agent models : A potential problem
with this algorithm is that as Agent Ai is learn-
ing to model the group behavior, the other agents
in the group are likewise refining their models of the
group interactions. This learning is dynamical, and
the model Agent Ai constructs of Aj may be invali-
dated by the model of Aj of Ai. In the environment
state Et, agent Ai learns that Aj will select action
au. It might be the situation that when the envi-
ronment is again at El, Aj does not select aN, but
instead az. Is this an exception to the exception?
Or is it just a re-learning of Agent Ai’s model of
Aj? Note that if z is the expected default behavior
without case learning, then Ai might simply need to
forget what it had learned earlier.

If we return to our cat example presented earlier, we
can see a situation in which group learning occurs
when Daylight Savings Time takes effect. The time
the alarm clock is set for is pushed back aa hour. No
one has informed Buster of this change in his envi-
ronment. Adam’s model of the cat is that Buster will
try to wake him up "early" on weekday mornings.
As predicted, Buster tries to wake up Adam. Adam
refuses to get out of bed until the alarm sounds. Af-
ter a week of not being able to wake Adam, Buster
changes his routine by waiting until the new time
before he tries to wake Adam.

Diversity of experience : In order for agents to sig-
nificantly improve performance through learning it
is essential that they be exposed to a wide array
of situations. In some domains, agents can deliber-
ately experiment to create novel interaction scenar-
ios which will allow them to learn more about other
agents in the group.

Forgetting : We believe that in order to further im-
prove the performance of the presented system, it
is essential to incorporate a structured mechanism
for deleting or overwriting cases that are recognized
to be ineffective. This is particularly important in
multiagent systems because as multiple agents con-
currently adapt their behavior, a particular agent’s
model of other agents is bound to get outdated. In
effect, "the person I knew is not the same person
any more!" To modify learned cases, we need to
store more information about which agent caused us

51



to learn the case, and what is our expectation of the
behavior of that particular agent. We are currently
working on developing a representation for the above
without exploding the search space.

References

Aha, D. W.; Kibler, D.; and Albert, M. K. 1991.
Instance-based learning algorithms. Machine Learn-
ing 6(1):37-66.

Cardie, C. 1993. Using decision trees to improve
case-based learning. In Proceedings of the Tenth In-
ternational Conference on Machine Learning, 25-32.
Morgan Kaufmann Publishers, Inc.

Garland, A., and Alterman, R. 1995. Preparation of
multi-agent knowledge for reuse. In Aha, D. W., and
Ram, A., eds., Working Notes for the AAAI Sympo-
sium on Adaptation of Knowldege for Reuse. Cam-
bridge, MA: AAAI.

Gmytrasiewicz, P. J., and Durfee, E. H. 1995. A rigor-
ous, operational formalization of recursive modeling.
In Lesser, V., ed., Proceedings of the First Interna-
tional Conference on Multi-Agent Systems, 125-132.
San Francisco, CA: MIT Press.

Golding, A. R., and Rosenbloom, P. S. 1991. Improv-
ing rule-based systems through case-based reasoning.
In Proceedings of the Ninth National Conference on
Artificial Intelligence, 22-27.

Halpern, J., and Moses, Y. 1990. Knowledge and com-
mon knowledge in a distributed environment. Journal
of the A CM 37(3):549-587. A preliminary version ap-
peared in Proc. 3rd A CM Symposium on Principles
of Distributed Computing, 1984.

Hammond, K.; Converse, T.; and Marks, M. 1990.
Towards a theory of agency. In Proceedings of the
Workshop on Innovative Approaches to Planning,
Scheduling and Control, 354-365. San Diego: Mor-
gan Kaufmann.

Haynes, T., and Sen, S. 1996. Evolving behavioral
strategies in predators and prey. In Welt], G., and Sen,
S., eds., Adaptation and Learning in Multiagent Sys-
tems, Lecture Notes in Artificial Intelligence. Berlin:
Springer Verlag.

Haynes, T.; Sen, S.; Schoenefeld, D.; and Wainwright,
R. 1995. Evolving multiagent coordination strate-
gies with genetic programming. Artificial Intelligence.
(submitted for review).

Haynes, T.; Lau, K.; and Sen, S. 1996. Learning cases
to compliment rules for conflict resolution in multia-
gent systems. In Sen, S., ed., Working Notes for the

AAAI Symposium on Adaptation, Co-evolution and
Learning in Multiagent Systems, 51-56.

Kolodner, J. L. 1993. Case-Based Reasoning. Morgan
Kaufmann Publishers.

Korf, R. E. 1992. A simple solution to pursuit games.
In Working Papers of the 11th International Work-
shop on Distributed Artificial Intelligence, 183-194.

Lesser, V. R. 1995. Multiagent systems: An emerg-
ing subdiscipline of AI. A CM Computing Surveys
27(3):340-342.

Prasad, M. V. N.; Lesser, V. R.; and Lander, S.
1995. Reasoning and retrieval in distributed case
bases. Journal of Visual Communication and Im-
age Representation, Special Issue on Digital Libraries.
Also as UMASS CS Technical Report 95-27, 1995.

Sen, S., ed. 1995. Working Notes of the IJCAI-95
Workshop on Adaptation and Learning in Multiagent
Systems.

Stephens, L. M., and Merx, M. B. 1990. The ef-
fect of agent control strategy on the performance of
a DAI pursuit problem. In Proceedings of the 1990
Distributed AI Workshop.

Sycara, K. 1987. Planning for negotiation: A case-
based approach. In DARPA Knowledge-Based Plan-
ning Workshop, 11.1-11.10.

52




