From: AAAI Technical Report WS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Some Challenges in Tracking Agent Teams

Milind Tambe and Ernesto Brodersohn-Ostrovich
Computer Science Dept and Information Sciences Institute
University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292
{tambe,ernestob }@isi.edu
http://www.isi.edu/soar/tambe

Introduction

In many multi-agent domains, the interaction among
intelligent agents — collaborative or non-collaborative
— is both dynamic and real-time. Examples include
intelligent tutoring systems that interact with students
in real-time(Anderson et al. 1990), virtual environ-
ments for entertainment(Maes et al. 1994; Bates, Loy-
all, & Reilly 1992), “real-world” synthetic environ-
ments for training in traffic(Cremer et al. 1994) or
battlefield simultations(Tambe et al. 1995), RoboCup
soccer(Kitano et al. 1995), and robotic collabora-
tion by observation(Kuniyoshi et al. 1994). In most
such domains, agent modeling is crucial for effective
collaboration and competition. The key aspect of
agent modeling of interest here is agent tracking —
monitoring other agents’ observable actions and infer-
ring their high-level goals, plans and behaviors(An-
derson et al. 1990; Tambe & Rosenbloom 1995;
Rao 1994). In contrast with plan recognition in more
static domains(Kautz & Allen 1986), this capability
focuses on tracking flexible/reactive behaviors in dy-
namic environtnents.

Previous work in agent tracking has mostly focused
on tracking individual agents. This paper outlines key
challenges that arise in going beyond individuals to
tracking agent teams; and presents some initial so-
lutions to adress those challenges!. Already, a large
number of multi-agent systems, both in synthetic and
robotic domains, require that agents understand and
track team activities (e.g., many of the domains de-
scribed above, including RoboCup). The basic chal-
lenge in tracking teamwork is that it is more than
a group of individual agents acting simultaneously,
even if in a coordinated fashion(Grosz & Sidner 1990;
Cohen & Levesque 1991; Kinny et al. 1992; Jennings
1995). For instance, driving in ordinary traffic is not
considered teamwork, despite the drivers’ simultaneous
activity, coordinated by traffic signs(Cohen & Levesque
1991). Conversely, team activity may not be decom-
posed and tracked as independent actions of individu-
als. Thus, for instance, if two children are collabora-

! Portions of this paper are based on (Tambe 1996b).

83

tively building a tower of blocks(Grosz & Sidner 1990),
then they cannot be tracked as building two individ-
ual towers of blocks with gaps in just the right places.
Similarly, a wall pass in Soccer cannot be tracked as
individuals’ independent actions — no one individual
executes the wall pass (for non soccer literates, the
next section provides an explanation).

While researchers broadly agree that team activity
is not merely coordinated activity, its precise nature
is still a topic of active research and debate(Jennings
1995). Nonetheless, this paper will rely on one lead-
ing theory of teamwork that is based on joint inten-
tions, i.e., joint commitments to joint activities in a
shared belief state(Cohen & Levesque 1991). Joint
commitment implies that team members have a mu-
tual belief that they are each committed to that ac-
tivity. Furthermore, a team’s jointly intending an ac-
tivity leads subteams to intend to do their share in
that activity, subject to the joint intention remaining
valid. Finally, should a team member privately dis-
cover that the team’s joint activity is achieved, un-
achievable or irrelevant, it must inform other team
members — so this private knowledge becomes mu-
tual knowledge. This communication is an overhead of
teamwork, which team members bear so as to save the
team’s time/resources(Jennings 1995).

While the joint intentions framework attempts to
outline ideal behavior for team members, its specified
communication requirement can be problematic if such
communication is costly, risky or redundant. In Soc-
cer, for instance, a player usually may not communi-
cate the failure to execute a pass to its teammate —
he/she may waste an opportunity to score a goal in the
process. Thus, as ideal teammembers, agents should
balance communication costs and benefits (this is an
extension to the joint intentions framework). We will
refer to teams that adhere to the extended joint inten-
tions framework as pure teams.?2 In pure teams, agents
fully adhere to the jointness of the team, and engage

2One interesting issue here is whether this definition is
sufficient to establish the pureness of a team — specifically,
team members do not appear to share risks, resources and
rewards.

in their task knowing other members will not act self-
ishly. The pureness of the team degrades as selfishness
enters the picture; and in a fully impure team, each
agent is on its own.

Focusing first on pure teams, the basic challenge
is to track the team’s joint intentions. Previous ap-
proaches(Anderson et al. 1990; Rao 1994; Tambe &
Rosenbloom 1995), that focus on tracking individual
agents, fail to express and track such joint team ac-
tivities. In particular, these approaches are based on
model tracing(Anderson et al. 1990), which involves
executing an agent’s model, and matching the model’s
predictions with observations. However, an individ-
ual’s model simply does not express a team’s joint goal
and activities. For instance, in Soccer, one individual’s
model simply cannot express a wall-pass — a wall-pass
mandates the joint involvement of two or more players.

Real-time, dynamic domains create additional novel
challenges. The key challenge in real-time is ambi-
guity resolution. In particular, disambiguation often
requires time; and yet, for timelineness in interac-
tion, a tracker (tracking agent) must frequently resolve
such ambiguity in real-time. The presence of multi-
ple agents increases the combinatorics of the search
space of disambiguation, however, since combinations
of agents’ activities have to be disambiguated. Further
challenges include:

1. In a dynamic environment, teams may dynam-
ically split into subteams or merge into teams;
and subteams may be unable to fully synchronize
their activities. Tracking must accomodate such
team/subteam split and merge.

2. Recognizing that a group of individuals forms a pure
team. This problem can be arbitrarily difficult. For
instance, Searle(Searle 1990) contrasts a group of
people that start running towards a shelter when it
rains and a outdoor ballet where dancers converges
on the shelter as part of their choreography. Exter-
nally individuals’ movements are identical; yet, in
one case, they are acting independently, and in the
ballet case they form a team!

3. Tracking must also address impure teams, where
agents occassionally act selfishly.

The key idea in addressing the above challenges is
the adoption of a team perspective. In model tracing
terms, this implies executing a team’s model, which
predicts the actions of the team and its subteams
(rather than separate models of individual team mem-
bers). Team models explicitly encode the joint goals
and intentions required to track a team’s joint mental
state, and they are uniformly applicable in tracking
even if an agent is a participant in a team, rather than
a non-participant. Team models also facilitate real-
time disambiguation. In particular, given their explic-
itly encoded jointness, recognizing one team-member’s
actions helps them to quickly disambiguate other mem-
bers’ actions. For instance, if one member of a two-

84

member team is tracked as engaging in a wall-pass,
the other agent must necessarily be engaged in the
wall pass (at least in a pure team). Furthermore, by
abstracting away from individuals, team models avoid
the execution of a large number of individual agent
models. To track with such team models in real-time
dynamic environments, we build on RESC(Tambe &
Rosenbloom 1995), an approach for tracking individ-
ual agents in such environments.

The new approach, RESC;.qm, is aimed at real-
time, dynamic tracking of pure teams. It does not

-address impure teams; and does not address the chal-

lenge of recognizing teams. In particular, we assume
that teams are either known in advance or easy to de-
tect via simple tests (e.g., agents’ physical proximity).
In many real-world situations, as in games, teams are
indeed known in advance.

One interesting issue raised is whether RESC;.qpy, is
any different from applying RESC to a single individ-
ual controlling multiple components. In particular, the
issue is whether a team model is any different from the
model of a single individual with multiple components.
While this observation is to a degree accurate, one key
here is to recognize that individuals in a team, unlike
components controlled by a single mind, can diverge
in their beliefs, and thus may not always be synchro-
nized in their actions. Furthermore, RESC or other
agent tracking techniques have previously not focused
on such multi-component tracking. Finally, recogniz-
ing that a team must be modeled as a unified team
model for tracking is itself one key contribution of this
paper.

In the remainder of this paper, we first present three
different examples of real-world teamwork that illus-
trate some of the above challenges. We then present
details of the team models, and some initial experi-
mental results. The description below assumes as a
concrete basis, agents based on an experimental vari-
ant of the Soar architecture(Laird, Newell, & Rosen-
bloom 1987; Newell 1990). This variant architecture,
while faithful to most of Soar’s basic problem-solving
principles — e.g., problem-solving occurs by applying
an operator hierarchy to a state — makes it easier for
agents to execute own actions while tracking multiple
other agents in parallel(Tambe & Rosenbloom 1996).

Three Domains for Team Tracking

The first domain we examine is air-to-air combat sim-
ulations based on a real-world simulator commercially
developed for the military(Calder et al. 1993). A spe-
cific scenario illustrated in Figure 1. Here, a pilot agent
D confronts a team of four enemy fighters J, K, L
and M. In Figure 1-a, D detects the four opponents
turning towards its aircraft, and infers that they are
approaching it with hostile intent. In Figure 1-b, the
four opponents split up into two subteams, and begin
a pincer maneuver. That is, one subteam (J and M)
starts turning right, while the other subteam (L and

K) starts turning left. Their goal is to trap D in the
center, and attack it from two sides.

o}

J«% % @ "-@ _’_@ / @)w\.«\cxsa
M;? i | 2 T O—06

(@) o) (©) @

Figure 1: Domains for team tracking: (a-b) air-combat
simulation; (c) helicopter simulation; (d) RoboCup
simulation. In Robocup, a dashed line indicates a
player’s movement, while a bold line indicates pro-
jected ball trajectory due to a kick.

The key here is an illustration of the basic challenge
of team tracking: tracking the jointness of the pincer.
The four opponents are not executing independent left
and right turns! They are jointly executing a pincer.
Yet, an individual agent’s model simply fails to express
such jointness. Furthermore, the opponents may dy-
namically select one of many team tactics (pincer is
only one of many possibilities) — yet the tracker must
disambiguate the tactic in real-time. Here, exploiting
jointness is important, since recognizing one subteam’s
activity aids in recognizing other subteam’s activities.

The second domain is teamwork in simulated heli-
copters(Tambe, Schwamb, & Rosenbloom 1995; Tambe
1996a) (Figure 1-c). Helicopter radio communications
are often restricted to avoid detection by enemy. It is
thus essential for a helicopter pilot agent to infer rel-
evant information from the actions of its teammates.
Consider the simple example of a team given an or-
der to fly to a pre-specified holding point. Here, it is
the team that must occupy the holding point; each in-
dividual need not do so independently. Indeed, since
it is impossible for individual helicopters to remain in
formation and also be at the holding point, a pilot
must infer the team’s presence at the holding area (e.g.,
based on the teammates’ hovering at or near that lo-
cation). Once again, there is a need to track a team,
rather than individuals. The key new issue here is that
the tracker is a participant in the team.

The third domain is that of simulated soccer play-
ing agents(Kitano et al. 1995). In this scenario two
teammates player-10 and player-3 are executing a wall
pass to avoid interception of an opponent player-9 (Fig-
ure 1-d). After passing the ball to player-3, player-10
moves to a position where player-3 can pass the ball
back to it. This constitutes a wall pass, since player-
10 essentially treats player-3 as a wall to bounce the
ball back to itself. Here, communication is primarily
limited to visual contact and tracking; however, it is
essential that the player-3 track player-10’s intended
play for a successful maneuver. It is equally important
that player 9 tracks his opponents’ teamwork to react
accordingly.

85

RESC: Tracking Individual Agents

The RESC (REal-time Situated Commitments) ap-
proach to agent tracking(Tambe & Rosenbloom 1995)
builds on model tracing(Anderson et al. 1990). Here, a
tracker executes a model of the trackee (the agent being
tracked), matching the model’s predictions with obser-
vations of the trackee’s actions. One key innovation in
RESC is the use of commitments. In particular, due to
ambiguity in trackee’s actions, there are often multiple
matching execution paths through the model. Given
real-time constraints and the need to react, it is diffi-
cult to execute all paths. Therefore, RESC commits
to one, heuristically selected, execution path through
the model, which provides a constraining context for
its continued interpretations. If this commitment lead
to a tracking error, it is repaired in real-time. A sec-
ond key technique in RESC leads to its situatedness,
i.e., tracking the trackee’s dynamic behaviors. A key
assumption here is that the tracker is itself capable
of the flexible and reactive behaviors required in the
environment. That is, the tracker’s architecture can
execute such behaviors. Therefore, this architecture is
reused to execute the trackee’s model to allow dynamic
model execution.

To present a concrete example of RESC, consider
D’s tracking of J in Figure 1-a, assuming J is the only
opponent present. Figure 2-a first illustrates D’s op-
erator hierarchy, when it is generating own behavior.
The top operator, erecute-mission indicates that D is
executing its mission (e.g., defend against intruders).
Since the mission is not complete, D selects the bar-
cap operator (barrier combat-air-patrol) in a subgoal.
In service of barcap, D applies fly-racetrack-in in the
next subgoal, to fly in a racetrack pattern for its pa-
trol (and lookout for intruders). All these operators
used for generating D’s own actions will be denoted
with the subscript D, e.g., barcappy. Operatorpy will
denote an arbitrary operator in D’s operator Berar—
chy. Statepy will denote D’s state. Together, statep)
and the operatorp) hierarchy constitute D’s model of
its present dynamic self, referred to as modelpy.

Operatorp Hierarchy

EXECUTE~MISSION

———
———

Opemorw Hierarchy

EXECUTE-MISSION

———
—

I” ntencert ! ,FLV—FLIGHT-PLAN :
- =

R i S |
M e e o o o e 9 M e e -
{FLY-RAGETAAGK-GLT | [EVADEMISSLE |
| = S | IO~ |

~~al R S~ -

STATE,, ~——

_ RN -
(@) (b)

Figure 2: (a) Modelpy; (b) Modelpy y. Dashed lines are
unselected alternative operators.

To reuse own architecture in tracking, D uses a hi-

erarchy such as the one in Figure 2-b to track J’s ac-
tions. Here, the hierarchy represents D’s model of J’s
current operators (operatorpyy). This operatorpyy hi-
erarchy and the state constitute D’s model of J or
modelpy 3, used to track J’s behavior. For instance,
in the final subgoal, D applies the start-&-maintain-
turnpy g operator, which predicts J’s action. If J starts
turning right towards D’s aircraft, then there is a
match with modelpyy — D believes that J is turn-
ing right to achieve proximity (to employ its missile),
as indicated by the higher-level operatorsp 3.

Such architectural reuse provides situatedness in
RESC, e.g., operatorpyj may now be reactively ter-
minated, and flexibly selected, to respond to the dy-
namic world situation. As for RESC’s commitments,
notice that from D’s perspective, there is some ambigu-
ity in J’s right turn in Figure 1-b — it could be part of
achieving proximity or a 150° turn to run away. Yet,
D commits to just one operatorpyjy hierarchy. This
commitment may be inaccurate, resulting in a match
Jailure, i.e., a difference between modelpyy’s predic-
tion and the actual action. For example, if J were
to actually turn 150°, there would be a match failure.
RESC recovers from such failures via “current-state
backtracking”, which involves backtracking over the
operatorpyy hierarchy, without revisiting past states
(see (Tambe & Rosenbloom 1995) for more details).

Tracking with Team Models

To step beyond tracking individuals, and track a
team’s goals and intentions, team models are put to
service. A tracker’s model of a team consists of a team
state and team operators. A team state is used to track
a team’s joint state, and it is the union of a shared
part and a divergent part. The shared part is one as-
sumed common to all team members (e.g., overarching
team mission, team’s participants). The divergent part
refers to aspects where members’ states differ (e.g., 3-
D positions). One approach to define this divergent
part is to compute a region or boundary encompass-
ing all individual members. However, given the cost of
computing such regions in real-time, the approach pre-
ferred in this work is to equate the divergent part to the
state of a single paradigmatic agent within the team,
e.g., the team’s orientation is the paradigmatic agent’s
orientation. (A paradigmatic agent is selected as one in
a prominent location.) Thus, a generic team O is rep-
resented as {myp,{m;...m,...}}, where m; are some arbi-
trary number of team members, and m,, is the paradig-
matic agent. © may have N sub-teams, o;...0y, each
also possessing its own members, state and paradig-
matic agents. Thus, T, the team of opponents in Fig-
ure 1-b consists of {J,{J,K,L,M}}, with two subteams
81={J3,{J,M}} and S;={L,{L,K}}. A single agent is
considered a singleton team: {m;,{m;}}.

A team operator in a team model represents the
team’s joint commitment to a joint activity. A key
aspect of a team operator is the notion of a role, which

86

defines an activity that a subteam undertakes in ser-
vice of the team operator. The pincer team operator
in Figure 1-b has two roles LEFT and RIGHT. These
roles are exhaustive and specify subteams’ activities in
service of the team operator. Roles also embody a role
coherency constraint, i.e., there must be one subteam
per role for the performance of the team operator. For
the team ©, a team operator with R roles is denoted as
operatore < 71, ..., R >. The children of this operator
in the operator hierarchy must then define the activi-
ties for subteams in these roles. If a team operator has
only a single role, that will not be explicitly denoted.

The RESC;.qm approach to track team activity is
now specified as follows:

1. Execute the team model on own (tracker’s) architecture.
That is, commit to a team operator hierarchy and apply
it to a team state to generate predictions of a team’s
action. In doing so, if alternative applicable operators
available (ambiguity):

(a) Prefer ones where number of subteams equals number
of roles.

(b) If multiple operators still applicable, heuristically se-
lect one.

2. Check any tracking failures, specifically, match or role
failures; if none, goto step 1.

3. If failure, determine if failure in tracking the entire team
or just one subteam. If team failure, repair the team op-
erator hierarchy. If one subteam’s failure, remove sub-
team assignment to role in team operator, repair only
subteam hierarchy. Goto step 1.

Step 1 reuses tracker’s architecture for flexible team
model execution, to track dynamic team activity. Step
1(a) selects among multiple operators based on the
number of subteams, while 1(b) relies on domain-
independent and dependent heuristics for such selec-
tion, e.g., one heuristic is assuming the worst about
an opponent in an adversarial setting. The commit-
ment in step 1 creates a single team operator hierarchy.
With this commitment is RESC;qsn always has a cur-
rent best working hypothesis about the team activity.

In step 2, tracking failure is redefined in RESC;.qpm.
Match failure — where a team’s actions (e.g., orienta-
tion) does not match RESCyeqm’s current predictions
— is certainly a tracking failure. However, in addition,
inaccurate commitments in RESC;eqm can also cause
role failure, a new tracking failure, which may occur
in one of three ways due to violation of the role co-
herency constraint. First, role overload failure occurs
if the number of subteams exceeds the number of roles
in a team operator. Second, role undersubscribe fail-
ure occurs if the number of subteams falls short of the
required number of roles — particularly, if subteams
merge together. Third, role assignment failure occurs
if the number of subteams equals the number of roles,
but they do not match the roles. Both match and role
failures cause the same repair mechanism to be invoked
— current-state backtracking — although in case of
role failures, operators with higher (or lower) number

of roles may be attempted next. (Abstract higher level
operators are not susceptible to role overload failures,
since they may not restrict the formation of subteams.)
Step 3 outlines a novel issue in team tracking: in im-
pure teams, a subteam may deviate on its own, and
may not indicate a failure of the whole team. We will
not address that issue here (but see (Tambe 1996b)).

The result of RESC;eqpm in tracking the situation
from Figure 1-a is shown in Figure 3-a. At the top-
most level, ezecute-missionpy, denotes the operator
that D uses to track 7’s joint mission execution.
Since 7’s mission is not yet complete, D applies the
inlerceplyy. operator in the subgoal to track 7’s joint
intercept. In the next subgoal, employ-weaponspy, is
applied. Following that, get-firing-positionp, tracks
D’s belief that 7 is attempting to get to a missile firing
position, and so on. Each operator in this operatorp,
hierarchy indicates D’s model of 7’s joint commitment
to that activity.

OPERATOR W.H'IERARCHY
IXECT] ON

OPERATOR . HIERARCHY

INTERCEPT INTERCEPT

EMPLOY- WEAPONS

START-RIGHT
£ SUBTEAM! SUBTEAM2 SELF (TRACKER) LEADER
® ® [C]

Figure 3: Team tracking in air-combat simulation and
helicopter simulation.

When the team in Figure 1-a splits into two sub-
teams, role overload failure causes employ-weaponsp
to fail. After current state backtracking, operatorp,
hierarchy in Figure 3-b results, which correctly
tracks the on-going pincer. Here, pincerp,<LEFT,
RIGHT> has two roles. The children of :;Eis operator
specify activities — starting left and right arms of the
pincer — for the two subteams formed.

Team models and RESC;eqyn provide improved ex-
pressiveness required for team tracking. Team op-
erators are expressive, since they explicitly encode a
team’s joint activity, with roles expressing different ac-
tivities for subteams. For instance, the team opera-
tor hiearchy in Figure 3-b clearly expresses the team’s
joint pincer, the subteams involved and their roles in
it. Team operators also facilitate real-time ambiguity
resolution by enforcing jointness. Furthermore, role
coherency in team operators adds further constraints,
since subteams may only fill unassigned roles. For in-
stance, in Figure 3-b, if one subteam is assigned to the
LEFT role of a pincer, the other must also be part of
the pincer, and in fact, must fulfill the RIGHT role.
Additionally, team models also execute fewer opera-
tor hierarchies, e.g., instead of executing four separate
operator hierarchies corresponding to four individual
opponents, D executes only one team operator hierar-
chy.

Team models and RESC;eqm are applicable for

87

tracking even if an agent is a collaborative participant
in the team. To track team activities, a team member
executes a team model, using RESC;.qm. The result
of applying RESC;eqm to the situation in Figure 1-c
is shown in Figure 3-c (the tracker happens to be a
subordinate in the team). That is, the tracker believes
its own team as jointly engaged in execute-mission. In
service of mission execution, the team is flying a flight
plan via a technique called travelling. Travelling in-
volves a LEAD role, and two other FOLLOWER roles,
causing the operator hierarchy to branch out. One key
point here is the uniformity of an agent’s generation of
its own actions and its tracking of its teammates’ ac-
tions. The tracker executes the follow-leader operator
branch to generate its own behaviors, while executing
the fly-contour branch to track the leader’s flying along
the terrain contour. (The third dashed branch is used
to track the other follower).

The soccer domain appears more dynamic than the
above two domains, and raises additional issues. First,
although there are eleven players in a team, not all
members are active as participants in the on-going
play. Indeed, the “active team” size dynamically
varies, which changes the types of tactics possible. Fig-
ure 4 provides an illustration — it is player-9’s perspec-
tive of its opponents’ team play (from Figure 1-d). The
bold lines are active team operators, while the dashed
lines are unselected alternatives. Thus, the oppnents’
team is launching an ATTACK in service of winning
a game. The attack can be a SINGLE ATTACK or
as is the case here, a ONE-TWO ATTACK. The dy-
namic oscillation of the “active team” size is related to
the opportunities presented at any point in time. In
the current situation, it is the participation of player-3
into the active team that causes the switch to a ONE-
TWO ATTACK. As part of the ONE-TWO ATTACK
Player-9 tracks the on-going pass as a single/wall-pass.
A wall-pass maneuver is tracked as two immediate ad-

jacent passes, from a sender to a receiver and then
back.

| wincame |

ATTACK
S |
[ONE_TWOATTACK | | SINGLEATTACK |
\\ _________
e
SINGLEWALL PASS | ATTACK-SUPPORT |
Skt
- ~
=l O
SENDER RECEIVER l[_ DRIBBLE | [LSUPPORT |

Figure 4: Team tracking: Soccer Hierarchy.

Implementation Results and Evaluation

To evaluate RESC;eqm, we have implemented ex-
perimental variants of Soar-based pilot agents for

both simulated fighters(Tambe et al. 1995) and
helicopters(Tambe, Schwamb, & Rosenbloom 1995)
(the soccer agents’ development is still in prelimi-
nary stages) . The original pilot agents have partic-
ipated in various large-scale exercises, including one
involving expert human pilots(Tambe et al. 1995).
Our experimental pilots (called pilot*"#¢¥¢") incorpo-
rate RESCieam (contain over 1000 rules). These agents
can track teams: opponents’ teams in the case of
fighter pilots and their own team in case of helicopter
pilots.

We have run the pilots'"®°k¢" agents in several com-
bat simulation scenarios outlined by our human ex-
perts. Figure 5-a compares a fighter pilot’"3¥¢"’s per-
formance when tracking with team models versus when
using individuals’ models. The scenario in Figure 1-a
is used as a basis for comparison, with four agents in
the opponents’ team. Figure 5-a shows the percent
of its total time that pilot’"*°*¢" spends in acting and
tracking. Thus, when using team models in tracking,
a pilot*r*°¥er gpends only 18% of its time is tracking.
In contrast, it spends 71% of its time in tracking when
using individual agents’ models. Basically, individual
agents’ models fail to correctly track the team’s pincer.
This failure is not simply in terms of inexpressivity,
but also, unable to exploit the teams’ jointness, they
engage in a large unconstrained tracking effort. Thus,
they run out of time, before they can each at least indi-
vidually detect the pincer. Similarly, with team mod-
els, pilot!"®°¥¢" spends only 7% of its time in deciding
on its own actions(SELF), since it can quickly and ac-
curately track its opponents. In constrast, pilot!racker
incorrectly readjusts its own maneuvers when using in-
dividual models; hence spends 28% of time deciding on
its own actions. Figure 5-b provides similar compara-
tive numbers for a team consisting of three opponents.
The key point here is that team models are not wedded
to a specific numbers of agents in a team.?

Summary and Discussion

Our world is full of collaborative and competitive team
activities: in team-sports (soccer, cricket, hockey), an
orchestra, a discussion, a coauthored paper, a play, a
military alliance, etc. It is only natural that this team-
work is (and will be) reflected in virtual and robotic
agent worlds, e.g., robotic collaboration by observa-
tion(Kuniyoshi et al. 1994), RoboCup robotic (and vir-
tual) soccer(Kitano et al. 1995), virtual theatre(Bates,
Loyall, & Reilly 1992), virtual battlefields(Tambe et al.
1995). If agents are to successfully inhabit such worlds,
they must be proficient in understanding and tracking
team activity. This paper has taken a step towards

®Thus, with team models, an agent spends 25% (18%
TRACKING + 7% SELF) of time in mental activity, and
the rest it waits. Waiting is essential because pilot®"acker’s
maneuvers take time, e.g., to complete a turn, or reach
missile range. When using individual agents’ models, most
of the cycles are spent tracking.

88

70 _ _ 70 _|
E mm TEAM MODEL
BN INDIVIDUAL MODELS

60 |

PERCENT 50
OF TOTAL _'
TIME

PERCENT
OF TOTAL
TIME 40

30 |
20 |

10 |

TRACKING SELF
(b) Three Agents in TEAM

TRACKING SEF
(a) Four Agents in TEAM

Figure 5: Comparing efficiency of tracking with team
and individual models.(a) Four Agents in TEAM; (b)
Three Agents in TEAM

this goal by outlining some key questions and present-
ing some initial solutions. Key contributions/ideas in
this paper include: (i) the use of explicit team mod-
els for team tracking; (ii) uniform application of team
models regardless of an agent’s being a participant or
non-participant in a team; and (iii) some demonstra-
tion of the efficiency and expressivity gained via team
models.

While teamm models could be applied in differ-
ent approaches to tracking, we presented one spe-
cific approach: RESCiqm. Although based on
RESC, RESC;¢qmm includes several additions to ad-
dress subteam formation(merging) and role assign-
ments. RESCieqam has been (or is being) applied to
three different simulation tasks: (i) air-combat simu-
lation; (ii) helicopter mission simulation; (iii) robocup
soccer simulation. We hope these synthetic yet real-
world teamwork tasks provide a solid foundation for
further investigation of team tracking.

References

Anderson, J. R.; Boyle, C. F.; Corbett, A. T.; and
Lewis, M. W. 1990. Cognitive modeling and intelli-
gent tutoring. Artificial Intelligence 42:7-49.

Bates, J.; Loyall, A. B.; and Reilly, W. S. 1992. In-
tegrating reactivity, goals and emotions in a broad
agent. Technical Report CMU-CS-92-142, School of
Computer Science, Carnegie Mellon University.

Calder, R. B.; Smith, J. E.; Courtemanche, A. J.:
Mar, J. M. F.; and Ceranowicz, A. Z. 1993. Modsaf
behavior simulation and control. In Proceedings of
the Conference on Computer Generated Forces and
Behavioral Representation.

Cohen, P. R., and Levesque, H. J. 1991. Teamwork.
Nous 35.

Cremer, J.; Kearney, J.; Papelis, Y.; and Romano,
R. 1994. The software architecture for scenario con-
trol in the Iowa driving simulator. In Proceedings of
the Conference on Computer Generated Forces and
Behavioral Representation.

Grosz, B. J., and Sidner, C. L. 1990. Plans for dis-
course. Cambridge, MA: MIT Press. 417-445.

Jennings, N. 1995. Controlling cooperative problem
solving in industrial multi-agent systems using joint
intentions. Artificial Intelligence 75.

Kautz, A., and Allen, J. F. 1986. Generalized plan
recognition. In Proceedings of the National Confer-
ence on Artificial Intelligence, 32-37. Menlo Park,
Calif.: AAAI press.

Kinny, D.; Ljungberg, M.; Rao, A.; Sonenberg, E.;
Tidhard, G.; and Werner, E. 1992. Planned team
activity. In Castelfranchi, C., and Werner, E., eds.,
Artificial Social Systems, Lecture notes in AI 830.
Springer Verlag, New York.

Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and
Osawa, E. 1995. Robocup: The robot world cup
initiative. In Proceedings of IJCAI-95 Workshop on
Entertainment and AI/Alife.

Kuniyoshi, Y.; Rougeaux, S.; Ishii, M.; Kita, N.;
Sakane, S.; and Kakikura, M. 1994. Cooperation by
observation: the framework and the basic task pat-
tern. In Proceedings of the IEEE International Con-
ference on Robotics and Automation.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence. Artifi-
ctal Intelligence 33(1):1-64.

Maes, P.; Darrell, T.; Blumberg, B.; and Pentland, S.
1994. Interacting with animated autonomous agents.
In Bates, J., ed., Proceedings of the AAAI Spring
Symposium on Believable Agents.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, Mass.: Harvard Univ. Press.

Rao, A. S. 1994. Means-end plan recognition: To-
wards a theory of reactive recognition. In Proceedings
of the International Conference on Knowledge Repre-
sentation and Reasoning (KR-94).

Searle, J. R. 1990. Collective intention and action.
Cambridge, MA: MIT Press. 401-415.

Tambe, M., and Rosenbloom, P. S. 1995. RESC: An
approach for real-time, dynamic agent tracking. In

Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI).

Tambe, M., and Rosenbloom, P. S. 1996. Archi-
tectures for agents that track other agents in multi-
agent worlds. In Intelligent Agents, Volume II: Lec-
ture Notes in Artificial Intelligence 1037. Springer-
Verlag, Heidelberg, Germany.

Tambe, M.; Johnson, W. L.; Jones, R.; Koss, F.;
Laird, J. E.; Rosenbloom, P. S.; and Schwamb, K.
1995. Intelligent agents for interactive simulation en-
vironments. AI Magazine 16(1).

Tambe, M.; Schwamb, K.; and Rosenbloom, P. S.
1995. Building intelligent pilots for simulated rotary
wing aircraft. In Proceedings of the Fifth Conference

89

on Computer Generated Forces and Behavioral Rep-
resentation.

Tambe, M. 1996a. Executing team plans in dynamic,
multi-agent domains. In Pryor, L., ed., AAAI FALL
Symposium on Plan Ezecution: Problems and Issues.
Tambe, M. 1996b. Tracking dynamic team activity. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI).

