
Cooperator-Base (~ Task-Base for Agent Modeling: the Virtual
Secretary Approach

Wen Cao, Cheng-Gang Bian, Gunnar Hartvigsen
Department of Computer Science

Institute of Mathematical and Physical Sciences
University of Troms0, N-9037 Troms¢, Norway

cao@cs.uit.no, bianQstud.cs.uit.no, gunnar@cs.uit.no

Abstract

The Virtual Secretary (ViSe) is a kind of intelligent
agent that could assist its user in major secretarial
work. Users give the orders of what to do, while agents
figure out how to do and carry out the tasks. This pa-
per presents the ViSe agents in two aspects: (1)
construct individual agent on three intelligence lev-
els: knowledge-base level, learning level and coopera-
tion level; and (2) to model other agents’ activities by
cooperator-base ~J task-base for the purpose of efficient
cooperation. We argue that this agent modeling could
achieve intelligent cooperation, high performance and
easy maintenance in multi-agent systems.

Introduction
For most people, a common problem is to retrieve the
wanted data from many different information sources.
Imagine that you are visiting a city for the first time
and you want to buy a suitable dress for a welcome-
party. Since you are a stranger in this city, you may
have to spend a lot of time walking the streets in or-
der to become familiar with the local shopping sys-
tem, and roaming from store to store to get an idea
of where to buy the right clothes at the right price.
Alternatively, you might ask advice from people who
know the city well. Following their advice, you could
select several interesting stores and go there to seek
the right clothes, but it still wastes a lot of time. The
third approach is to hire an agent to finish these jobs.
You may just give the agent your personal profile and
an order "I need some clothes for a welcome-party",
and leave your agent to roam the streets and shops to
find suitable clothes for you. The agent could give you
such an answer: "You could buy an evening dress at
Linda Fashion on 15th avenue no.15 with price about
$150". No doubt, many similar scenarios happen all
the time in our daily life, i.e. shopping, kids’ teaching,
job applying, or even vacation planning, people are so
tired of going through these boring, iterative and time-
consuming tasks. Ideas of software agents’ delegating

in human’s tedious tasks have motivated us to build
one type of Virtual Secretary (ViSe) agent, that can as-
sist its user in major secretarial tasks, i.e., information
filter and retrieval, personal calendar scheduling, daily
life administration etc (Hartvigsen et al. 1996). In this
user-agent interactive environment, the user just gives
a specification of a task -- a high level goal that the
agent may achieve. Based on the goal, the agent will
figure out how to do, and carry out the task. As such,
the problem is: how to build the ViSe agents?

By imitating human activities, we will build the ViSe
agents to be intelligent enough to take over most of the
secretarial work from their employers. Then the ques-
tion becomes: how much intelligence should our agents
have? Let us generalize the shopping story to illus-
trate this point. When a person hires an agent from a
ViSe agent bureau, the agent has basic knowledge of
how to deal with shopping problems, and we name it
as the first level of intelligence agent. Agents on this
level could fulfill any amount of tasks with the help
of their knowledge-based systems, but their knowledge
is static. If agents only stay on this level, they will
soon be eliminated. As people fetch new knowledge
all the time, the key issue for agents on the second
level of intelligence is to keep their knowledge fresh and
updated by learning. Agents could learn new knowl-
edge from their users or other agents. Smart people
always know how to make use of other people’s intel-
ligence and experience, so do our agents. Agents on
the third level of intelligence should know how to co-
operate with each other to solve problems efficiently.
An important characteristic for agents with such coop-
erative behavior is to find out who can help me -- to
predict the other agents’ activities, and contact them
for assistance. In this respect, we propose a twin-base
system (cooperator-base ~J task-base) to monitor the
other agents’ activities. Every agent maintains a twin-
base for the purpose of cooperation: (1) while receiving
a task which is beyond its capabilities, the agent could
directly find out who can help me from the task-base;

105

From: AAAI Technical Report WS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

(2) while detecting changes of other agents’ activities,
the agent could reason out who can do the tasks and
update the task-base. In other words, agents carry out
users’ tasks on-line, and perform reasoning and main-
tenance work off-line. Our work is based on the as-
sumption that agents are truly connected to a reliable
network and they are willing to cooperate with each
other.

This paper describes the ViSe agents in two aspects:
(1) to construct individual agent on three intelligence
levels, and (2) to model other agents’ activities by a
twin-base system for the purpose of efficient cooper-
ation. In the end, we give an overview of the ViSe
multi-agent system architecture.

ViSe Agents at Three Intelligence
Levels

We have mentioned that ViSe agents were structured
at three intelligence levels. An agent on the first level
could perform user’s pre-defined tasks with the help of
its knowledge-based system. Taking the user’s task as
an input goal, the agent searches its knowledge-base
to recognize the goal and carry out the related actions.
The knowledge-based system provides not only general
information, but also expert knowledge of the problem
solving, so an agent on the first level could play the role
of an expert in some specific domains. In the shopping
example, the agent’s knowledge-base consists of:
(1) general information:

shop(Name, ID, Type, Location, Clothing_Type).
clothing(Shop_ID, Clothing_Type, Clothing_Name,

Size, Price, Color, Material, Brand).

(2) search rules:

search(Clothing_Name, Price,
Shop_Name, Shop_Location):-

clothing(Shop_ID, _, Clothing_Name, _, Price, _, _, _),
shop(Shop_Name, Shop_ID, _, Shop_Location, _).

(3) expert knowledge:

expert_shopping(Society_Role, Activity, Clothing_Name).
e.g.,

expert_shopping(businessman, work, suit).
expert_shopping(factory-worker, work,

uniform-for-factory).
expert_shopping(middle-class-youth, party, suit).

and (4) high level goals:

agent_shopping(Society_Role, Activity, Clothing_Name,
Price, Shop_Name, Shop_Location) :-

expert_shopping(Society_Role, Activity, Clothing_Name),
search(Clothing_Name, Price,

Shop_Name, Shop_Location).

Given this knowledge-based system, the agent could
help its user select the right clothing information by
following search:

agent_shopping(middle-class.youth, party,
Clothing_Name, Price,
Shop_Name, Shop_Location)

Although agents on the first level could supply some
expert services to their users, their knowledge is fixed
once and for all. They cannot be customized to in-
dividual user habits and preferences (Maes 1994), and
they cannot be adaptive to information change and ex-
tension which exist in our daily life. To overcome these
problems, we raise our agents’ intelligence into the sec-
ond level by giving them learning abilities, so that they
can enlarge their knowledge and become more adap-
tive to users’ interests. We believe that agents could
learn new knowledge from different sources. Firstly,
agents could integrate existing information sources,
i.e. database, expert system etc., through some well-
defined interfaces into their knowledge-base. Secondly,
agents could learn new knowledge from their users and
other agents in the group. These two learning tech-
niques are called storage learning since they install new
facts and rules into agents’ knowledge-base. Thirdly,
agents could learn their users’ habits and preferences
adaptively. As we know, people will keep their habits
and preferences for a long period, so agents may re-
gard this information as stable data and collect it in
the database for later use. We could use memory-based
learning technology to help agents learn their users’
profile. The memory-based learning technology was
first introduced by (Stanfill & Waltz 1986), and later
developed by Maes’ agent group (Maes & Kozierok
1993) (Maes 1994).

Until now, either on the first or on the second intel-
ligence level, agents could solve problems alone with
a goal-oriented reasoning model. Agents compare the
users’ tasks against goals in their knowledge-base and
invoke the related actions to perform the tasks. The
process will succeed on conditions that both the in-
ference rules and information needed are stored in the
knowledge-base. If an agent can not recognize a task
from its knowledge-base, it has to ask for help. In
other words, when an agent faces a task that is be-
yond its problem-solving capability, it should cooper-
ate with other agents to solve the problem. We believe
that agents with such cooperative behavior come into
the third intelligence level and this is the most com-
plicated work. For better cooperation, it is important
to know the other agents’ activities, but it is difficult
to catch this information in a distributed environment,
where each agent has complete local knowledge of it-
self, incomplete and uncertain knowledge of the oth-

106

ers, and no one has total knowledge and global control
over the system. As such, how does an agent know
the others’ activities? The most straightforward way
is through communication. It is time-consuming and
may decrease the system performance tremendously.
Alternatively, agents could predict the others’ activ-
ities through agent modeling, which yields two ques-
tions: (1) how to model an agent’s knowledge for the
purpose of intelligent cooperation? and (2) how
update and maintain this information consistently for
later prediction?

Agent Modeling in a ViSe Multi-agent
System

As yet, there is no consensus on how to model a gen-
eral agent. (Jennings 1994) classify an agent’s knowl-
edge as state knowledge, intentional knowledge, evalu-
ative knowledge and domain knowledge, while (Dunin-
Keplicz & Treur 1994) define an agent’s information as
material world, mental world of the agent itself, men-
tal world of other agents, interaction with the material
world, and communication with other agents. (Gene-
sereth & Ketchpel 1994) declare that an agent supports
the other agents with information about their capabil-
ities and needs. In general, what kind of information
that is appropriate to represent an agent depends on
the agent’s application domain. Since there is no agree-
ment about the terminology of an agent, which means,
there are many diverse agent types co-existed (Riecken
1994) (Wooldridge & Jennings 1994), we believe that
many theories on agent modeling exist. In this section,
we first define the type of ViSe agent, and then ex-
plore an agent modeling mechanism: cooperation-base.
By considering the efficiency of cooperation and eas-
iness of information maintenance, we further improve
the cooperation-base as cooperator-base ~ task-base.

Step I: Cooperation-Base

In a ViSe multi-agent environment, there are tens (or
hundreds) of agents organized in a group. Each agent
is related to one user and takes the role of a virtual
secretary. In a user-agent interaction, a user gives
the specification of the task -- what to do, and leaves
the details of how to do to the agent. Agents in the
group are connected by a reliable network and are will-
ing to help each other, meaning that they are benevo-
lent agents (Rosenschein gz Genesereth 1985) (Durfee,
Lesser, & Corkill 1987).

To define the type of ViSe agent and to model such
an agent for cooperation yield three questions:

1. What are the tasks of the ViSe agent?

2. When do agents need cooperation to perform a task?

3. What kind of information do agents need for the
purpose of cooperation?

Agents carry out most of the secretarial work that is te-
dious and boring for their users. They could cover gen-
eral diary functions, i.e. personal information search-
ing, calendar scheduling, traveling arrangements etc.,
furthermore, they could play the roles of specialists in
different areas, such as shopping guides, kids’ teaching
experts and so on. When an agent receives a goal that
is beyond its problem-solving capabilities, it has to co-
operate with the other agents in order to finish the
task. Generally speaking, an agent needs cooperation
in the sense that:

1. The agent has no idea of how to handle a task. It
could ask for assistance from those who are experts
in the field, or who have experienced the same kind
of problem before. Cooperation in this area con-
siders that agents share the problem-solving capa-
bilities and results, in this sense, it falls into result
sharing.

2. The agent lacks some information to complete a task.
It should ask those who own the information for help.
Cooperation in this area could be called information
sharing.

3. The agent only has the ability to perform one frac-
tion of a large task so that many agents have to work
together to fulfill the job. Cooperation in this envi-
ronment is called task sharing and agents cooperate
with each other to play a joint action.

We have assumed that the agents in the group might
not only ask for help, but also be willing to help the
others. Helping the others could be applied in the
above three cases, as well.

By analyzing the above cooperation scenarios, we be-
lieve that cooperation is necessary when one agent is
facing a task that is beyond its capabilities and knowl-
edge, or the agent achieves some capabilities that the
other agents are waiting for. In both situations, it
is important for an agent to know the others’ capa-
bilities and needs so that it could talk to the right
one instead of a blind inquiry broadcasting. In other
words, to have cooperative behavior, agents must know
the other agents’ capabilities and interests in advance.
To satisfy this specification, we could let each agent
maintain a cooperation-base that includes the activi-
ties of the other agents in the group. Each tuple in the
cooperation-base contains one agent’s meta-level infor-
mation that consists of the following domains:

state It contains the agent’s name, address, status in
the group. Status information is important in the

.

107

sense that it could help the agent decide the manner
in which it cooperates with the others, e.g., agents
with a flat relationship (with the same level status)
may be willing to help each other and share infor-
mation, while agents in a master-slave relationship
(with a hierarchical organization status) may need
some access control for information sharing for the
sense of security. The status information could also
help the agent find out who can help me. Like hu-
man beings, agents would like to have contact with
those who have similar status in the group.

capability It deals with an agent’s problem-solving
abilities. The agent’s capabilities are actually those
goals in its knowledge-base with recta-language de-
scriptions.

need It describes what kind of help an agent currently
is interested in.

statistics It indicates the agent’s problem-solving
power. The statistics information could also help
the agent figure out who can help me. The Agent
prefer to ask for help from those that have more
problem-solving power.

To summarize, each agent maintains its cooperation-
base that includes meta-level descriptions of all agents
in the group. The recta-level description could be de-
fined by a descriptor in the following form:

agent-descriptor(
state [name, address, status, availability],
capability [description, time, location],
need [description, time, location],
statistics [number-of-rules, number-of-information]
)

Step II: Cooperator-Base ~ Task-Base

An important step in the cooperation process is to find
out who can help me as quickly as possible. To satisfy
this demand, we need a database to store the most
updated activities of the other agents in the group.
As explained in Step I, each agent in the group could
be represented as a descriptor and every agent main-
tains such descriptors in its cooperation-base for the
purpose of cooperation. Now let us figure out how
the cooperation-base works for a cooperation process.
When an agent receives a goal that is beyond its ca-
pabilities, it will check its cooperation-base to find out
who can help me. What the agent does is to compare
the goal received with the capability domain of descrip-
tor in the cooperation-base. If more than one agents’
capabilities match the goal, then the agent will select
the most suitable cooperator based on the state and

statistics information, and send messages to the se-
lected one for assistance. Let us go further to analyze
the procedure:

¯ The main purpose of exploring a cooperation-base is
to help agents reason out who can help me. Facing
a specific task, the agent searches domain capabil-
ity to find out the matched descriptor(s), and uses
domains state and statistics to select the most suit-
able cooperator. In fact, for a particular task, the
cooperation-base will give a relatively stable result
of who can help me over a period of time. Thus,
if we let agents do these reasoning jobs before they
accept tasks from users, then the system on-line per-
formance will be tremendously increased and the re-
peated reasoning process could be avoided. The trick
is to improve the cooperation-base by directly map-
ping each task with a set of agents that could carry
out the task.

¯ For an agent, to record the other agents’ activities
into cooperation-base is one step, while to maintain
this information for later use is another step that is
quite costly. In a distributed environment, it is most
difficult to maintain the activities of others since this
information is being changed. With such changes,
we hope that we could minimize an agent’s gath-
ering information of the others so that less main-
tenance work is required, but the cooperation re-
quires that each agent could keep as much of the
other agents’ information as possible. Considering
the balance between maintenance and cooperation,
our agent modeling should include minimal informa-
tion for covering the requirement of cooperation.

¯ Our agents serve their users for most of the tedious
and boring work. It is not easy to distinguish what
kind of capabilities the agents need, and which are
not needed. We hope our agents could capture as
many skills as possible so that they could serve their
users in the best way they can. With this specifi-
cation, it is meaningless to set the need domain in
the descriptor, especially when the scale of coopera-
tion group is not very large, so we allow every agent
broadcast its newly learned skills to the others no
matter when they need them.

In response to the above analysis, we have built a
twin-base system: cooperator-base U task-base. The
cooperator-base is derived from the cooperation-base
with two domains: state and statistics, while the task-
base is improved from the cooperation-base by enhanc-
ing the capability domain. Employing such a twin-base
modeling will greatly improve the system performance.
As discussed before, single cooperation-base modeling

I08

costs an agent’s on-line time for reasoning out who can
help me, the cooperator-base ~J task-base architecture
will leave this time-consuming work to the agent in
its free time. In other words, agents perform reason-
ing and maintenance work off-line, and carry out user-
defined tasks on-line.

Unlike the cooperation-base where each descriptor
stands for one agent in the group, in the task-base, each
tuple is related to one task and recorded in the form
of {task-description, agent-set(subtask)}. The task-
description states goals that agents in the agent-set
could perform jointly or separately. If agents perform
the task together, then the domain subtask is needed
to specify individual operation. If more than one agent
performs the same task separately, we need the follow-
ing rules to set up their priorities in the agent-set:

Rule 1 Self-solving has the highest priority. The host
agent always holds the first place in the agent-set.
There are two reasons for us to employ this rule.
Firstly, to ask assistance from the others will increase
the communication overheads, and thus reduce the
system performance. Secondly, for security reasons,
the agent should trust itself more than anyone else.

Rule 2 Non-host agents are sorted by their status and
statistics information described in Step I. It is better
to choose the agents that belong to similar status
levels and have good statistics records.

The task-base is quite simple and easy for mainte-
nance. Could it fit the purpose of our ViSe agent co-
operation? To answer this question, we should review
the situations where cooperation is necessary which is
discussed in Step I:

¯ When an agent faces a task that it does not know
how to do, the agent could search its task-base
and retrieve the agent-set whose task-description
matches the goal. If there are several agents that
could do the tasks, choose the one with the highest
priority.

¯ When an agent lacks information for solving one
task, the agent could search the agent-set in its task-
base and retrieve the second one who could perform
the task (the first one is the agent itself).

¯ When an agent receives a large task, the agent could
search its task-base to find a set of agents which take
different sub-tasks, since we have such tuples in the
task-base: { task-description, [agent-1 (sub-task.I),
agent-2 (sub-task.2), ...]}. Ideas from contract net
protocol (Smith & Davis 1989) (Davis & Smith 1989)
could be used to distribute workload among agents
and set up such tuples, and the adaptive scheduling

strategies (Sen & Durfee 1994) could be employed
allow agents take the joint action.

To summarize, we argue that our cooperator-base ~J
task-base modeling covers necessary requirements of
the ViSe agent cooperation with advantages of high
performance and easy maintenance.

Task-Base Maintenance

The task-base provides the direct mapping between
tasks and the related agent sets that could perform
such tasks. As we know, the capabilities of agents in
the group may be changed. Agents could adapt new
abilities from users and other agents, some agents may
leave the group or do not carry out some tasks any
more. So even if an agent has great information snap-
shot over a group at one time, it does not mean that
the agent knows the others’ information at all times.
In order to correctly predict the other agents’ capabil-
ities, it is necessary to set up one capability revision
process to update the task-base consistently. The revi-
sion process could proceed in the following way:

¯ Detecting a unavailable agent in the group (the agent
left the group or does not carry out tasks any more),
our ViSe agent should check the domain agent-set of
its task-base to see which tasks are dependent on
this agent. The matched tasks should be deleted if
they are solely dependent on the unavailable agent,
or the agent should be removed from the agent-set
under the matched tasks if there are other agents
that could also carry out the tasks.

¯ Detecting some unavailable capabilities of an agent,
our ViSe agent should check the domain task-
description of its task-base to delete the related tasks
if only the agent could perform them, or remove the
agent from the agent-set if other agents could also
perform these tasks.

¯ Receiving a message of new capability announce-
ment from an agent, our ViSe agent should make
a new tuple in the task-base if the capability is new
to the group, or put the agent into the agent-set if
the related capability already exists in the task-base.

Let us make a simple example to illustrate the above
revision procedure. Assume we have five agents in the
group with related capabilities:

agent-l: shopping clothes in the TromsCya
agent-2: shopping clothes in the Tromsdalen
agent-3: shopping clothes in the Kvalcya
agent-4: shopping food in the Tromscya
agent-5: inviting people for party

Assume there are the following tasks in the group:

109

task-l: to buy clothes
task-B: to buy food
task-3: to arrange a party including food shopping,

clothes shopping and people inviting
task-4: to select the cheapest clothes in the TromsO1

So one agent, e.g., agent-2, has the following informa-
tion in its task-base:

{task-l, ([agent-B], [agent-l], [agent-3])}
{task-B, ([agent-#)}
{task-3, ([agent-B, agent-4, agent-5],

[agent-i, agent-4, agent-5],
[agent-3, agent-4, agent-5])}

{task-4, ([agent-i, agent-B, agent-3])}

For example, if agent-1 leaves the group and broadcasts
the message to all the others in the group, agent-2 will
update its task-base as following:

{task-l, ([agent-B], [agent-3])}
{task-B, ([agent-#)}
{task-3, ([agent-B, agent-4, agent-5],

[agent-S, agent-4, agent-5])}
Obviously, with the task-base, it is very convenient to
manipulate the changing of agent’s capabilities. There
is no backtracking, no sophisticated reasoning process,
just simple set operation.

System Architecture

Based on the agent modeling and problem definitions
declared above, we have constructed a ViSe agent that
consists of the following modules (Figure 1):

Figure 1: The ViSe Multi-agent System Architecture.

User Interface This module offers an interface be-
tween a normal user and a ViSe agent. The user
gives the specifications of tasks through the inter-
face.

1Troms~ consists of Tromstya~ Tromsdalen and Kval~ya.

Communication Interface This module offers an
interface among different agents. It is responsible for
sending and receiving messages over the network.

Agent Brain This is a central control module. It is
responsible for scheduling agent work on learning
and performing tasks. An agent could learn how
to do from its users, or other experienced agents. It
could perform tasks specified by its user, or asked
by other agents in the group.

Knowledge-Base Each agent is a specialist in some
areas, and the knowledge-base consists of this
domain-dependent information.

Cooperator-Base (~ Task-Base This twin-base in-
cludes all the necessary knowledge for agent cooper-
ation.

Generally, a ViSe agent works in two different states:
performing tasks or learning new knowledge. These two
action-scenarios are described as following:

Performing tasks A ViSe agent will perform tasks
ordered by its user, or asked by other agents. In both
cases, it should activate its knowledge-base to per-
form the related operations and retrieve the wanted
information for the user or other agents.

Learning new knowledge A ViSe agent is intelli-
gent enough to learn new knowledge so that it will
become more and more clever. The agent could learn
new knowledge from its user or the other more expe-
rienced agents in the group. Users could teach the
agents new information, rules, or their preferences
and habits. The agents could also learn new knowl-
edge from the others by importing information and
rules.

Concluding Remarks

This paper presents two aspects of the ViSe agents:
(1) to construct individual agent on three intelligence
levels; (2) to model other ViSe agents’ activities by
using a twin-base system for the purpose of efficient
cooperation. Results received so far indicate that the
twin-base system achieves intelligent cooperation, high
performance and easy maintenance in the ViSe multi-
agent system. Considering the cooperation in our sys-
tem, there are some other issues that we are going to
working on, i.e. establishment and management of a
cooperation group, organization structure, communi-
cation paradigm and policy, security problems etc.

References

Davis, R., and Smith, R. G. 1989. Negotiation
as a Metaphor for Distributed Problem Solving. In

ii0

H.Bond, A., and Gasser, L., eds., Distributed Artifi-
cial Intelligence, 333-356. Morgan Kaufmann.

Dunin-Keplicz, B., and Treur, J. 1994. Composi-
tional Formal Specification of Multi-Agent Systems.
In Wooldridge, M. J., and Jennings, N. R., eds., In-
telligent Agents, 102-118. Springer-Verlag.

Durfee, E. H.; Lesser, V. R.; and Corkill, D. 1987. Co-
operation through Communication in a Distributed
Problem Solving Network. In Huhns, P., ed., Dis-
tributed Artificial Intelligence, 29-58. Pitman.

Genesereth, M. R., and Ketchpel, S. P. 1994. Software
Agents. Communication o/ the ACM 37(7):48-53.

Hartvigsen, G.; Johansen, S.; Helme, A.; Widding,
R.; Bellika, G.; and Cao, W. 1996. The Virtual Secre-
tary Architecture for Secure Software Agents. In Pro-
ceedings o/ the First International Conference on the
Practical Application of Intelligent Agents and Multi-
Agent Technology, PAAM 96, 843-851. The Practical
Application Company Ltd.

Jennings, N. 1994. Cooperation in Industrial Multi-
agent Systems. World Scientific.

Maes, P., and Kozierok, R. 1993. Learning Interface
Agents. In Proceedings of the Eleventh National Con-
ference on Artificial Intelligence. Cambridge, MA:
MIT Press.

Maes, P. 1994. Agents That Reduce Work and In-
formation Overload. Communication of the ACM
37(7):31-41.

Riecken, D. 1994. Intelligent Agents. Communication
of the ACM 37(7):18-21.

Rosenschein, J. S., and Genesereth, M. R. 1985. Deals
among Rational Agents. In Proceedings o/the Ninth
International Joint Conference on Artificial Intelli-
gence, 91-99.

Sen, S., and Durfee, E. H. 1994. On the Design
of an Adaptive Meeting Scheduler. In Proceedings
of the Tenth Conference on Artificial Intelligence for
Applications, 40-46.

Smith, R. G., and Davis, R. 1989. Frameworks for Co-
operation in Distributed Problem Solving. In H.Bond,
A., and Gasser, L., eds., Distributed Artificial Intelli-
gence, 61-70. Morgan Kaufmann.

Stanfill, C., and Waltz, D. 1986. Toward Memory-
based Reasoning. Communication of the A CM
29(12):1213-1228.

Wooldridge, M. J., and Jennings, N. R. 1994. Intel-
ligent Agents. Springer-Verlag.

iii

