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Introduction
Modeling the activities, knowledge, and requirements
of agents (both human and automated) has been rec-
ognized as a recurrent theme in research conducted by
members of the Software and Systems Technology Area
(SSTA) at the Honeywell Technology Center (HTC).
In fact, we have formed a special interest group that
aims to collate and clarify the broad range of task and
agent modeling experiences of the hundred-odd SSTA
members. This paper gives a high-level overview of
the various functions agent modeling has played in our
research, as exemplified in several projects. We hope
that this effort will eventually lead to fruitful cooper-
ative activities with other researchers pursuing related
work.

Why Honeywell Cares
ttTC is Honeywell’s main corporate research center,
tasked with researching cutting-edge technologies re-
lated to the main corporate lines of business, includ-
ing industrial control systems, space and aviation con-
trol products, and home and building control systems.
Many of the advanced concepts in control systems we
investigate have one or more of the following critical
aspects that make agent/task modeling essential:

Distribution, making it imperative that different dis-
tributed control centers have useful models of what
can be done by others, and what they are planning
to do.

High-Level Automation, requiring powerful tech-
niques for specifying automated behavior.

Human Interaction, making it essential for the sys-
tem to understand what the human can do, is doing,
should do, needs to know, can assimilate, etc.

Defining the Problem(s)
The general term "agent modeling" subsumes a large
number of modeling tasks including representing and
manipulating:
¯ Capabilities (what an agent can do).
¯ Desires/goals (what an agent wants to do).
¯ State information (what an agent knows and is do-

ing).
At HTC, the applications-oriented nature of our

work has tended to focus projects on these problems

with a particular slant that we loosely label "task mod-
eling." As the name implies, the focus tends to be on
modeling the tasks an agent can perform, as opposed
to the agent-centered focus implied by "agent model-
ing." Still, many of the modeling issues are similar or
identical. Task modeling is generally aimed at describ-
ing and reasoning about what tasks need to be done,
what resources they take, who is in charge of them,
how automation can do them, what human operators
need to know in order to do them, etc. In other words,
it’s a very practical orientation centered around accom-
plishing some tasks in a given domain, as opposed to
being centered around enabling capabilities in agents.
Task modeling is also used for widely varying purposes
ranging from static analysis of a system design to au-
tomating the system design process to actually driving
the behavior of a dynamic control system. Perhaps the
best way to describe what we mean by task modeling is
through examples; the following sections of this paper
describe some of the major classes of task information
we model, the tools we use, and examples of the related
research projects.

Modeling for a Single Human

Some of the earliest uses of task modeling focus on
modeling the behaviors of a single human engaged in
various tasks. Such task models can be used during
the design process for complex human interfaces and
other systems, to facilitate effective human-centered
design. Many fairly generic software tools are avail-
able to capture models of human tasks and analyze
those models to extract various performance features
with respect to operational environments and candi-
date system designs. For example, the W/Index and
CREWCUT tools can be used to study the expected
performance qualities of an aircraft cockpit design (Du-
ley el al. 1994). Designers input descriptions of the
tasks the human can perform, the interface capabili-
ties the cockpit design provides, and a "scenario" that
drives the tool’s analysis, simulating the human en-
gaging in a series of tasks. The tools output workload
analyses showing how busy the various human capabil-
ities (e.g., visual perception, cognition) were at various
times during the scenario (see Figure 1).

The Lab Notebook project, part of Honeywell’s
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Figure 1: Example RPA workload profile with and without intelligent task reallocation between pilots.

Prototyping Technologies (ProtoTech) program, also
exemplifies the use of task modeling information in
a static, design-time role. Prototech is an ARPA-
sponsored effort to develop a next-generation environ-
ment for the rapid assembly of large software proto-
types. Our Prototech environment includes a Labora-
tory Notebook tool that helps engineers record their
design decisions and rationales. The Lab Notebook
tool is based on a model of human question asking and
answering and is designed to maximize communication
between members of a design team while minimizing
engineer workload in recording rationales. This is ac-
complished via an interview process which provides a
simple, familiar structure on natural language ratio-
nales. This structure can be used for later retrieval
and navigation of the recorded rationales.

Task models of a single human can also be used in a
much more dynamic, run-time environment to control
the behavior of an interactive system. For example, the
Pilot’s Associate (PA) system, sponsored by DARPA
and the U.S. Air Force, contained models of many tasks
that pilots were expected to perform (Miller & Riley
1994). During a flight, the PA actively monitored the
human pilot’s activities and attempted to match them
against its task models, in order to understand what
information needs the human had, and what tasks the
PA should perform autonomously when, for example,
the human was too busy. One successor to the PA,
the Rotorcraft Pilot’s Associate, is described in more
detail in Section .

Modeling for Multiple Humans

Significant extensions to a single-agent modeling
method are required when capturing a description of
multiple agents interacting or cooperating. For exam-
ple, HTC has a NASA Advanced Air Transport Tech-
nologies (AATT) Topical Area Study program titled

"Analyzing the Dynamics of a Next-Generation Air
Transportation Management System". This one-year
program is investigating methods for improving hu-
man performance simulation tools at NASA and Hon-
eywell (such as NASA’s MIDAS and HTC’s W/Index)
for evaluating candidate advanced air transportation
technology concepts long before working prototypes are
available for human-in-the-loop studies. There are two
thrusts within this program. First, we are developing
techniques, utilizing HTC’s Mixed-Initiative Model of
human/machine interactions (Riley 1989), for extend-
ing current simulation tools so that they can consider
the information flow between multiple distributed in-
telligent actors-- enabling them to better analyze the
complex interactions between ground crews, multiple
air crews, and intelligent automation systems which
will characterize most advanced air traffic management
concepts. The Mixed-Initiative Model, illustrated in
Figure 2, breaks out the various perceptual, cognitive,
and actuation capabilities of each agent, expressing
functional behaviors and interactions between these ca-
pabilities. In essence, these capabilities represent mod-
ular sub-elements of a single agent’s behavioral model,
and we are starting to use task modeling methods to
specify each capability.

Second, we are working to make the use of hu-
man/machine performance simulations more affordable
by beginning the construction of a knowledge-based
suite of model-building and analysis tools around the
simulation systems themselves. In this program we
are concentrating on the construction of an object-
oriented, graphical model-building tool to facilitate
the construction of simulation scenarios and expected
agent tasks/behaviors. This tool will be built using
HTC’s Domain Modeling Environment (DOME) and
will instantiate an "information model" of the concepts
and entities used to construct mixed-initiative system

113



PREDICT
OPERATOR’S
BEHAVIOR

INFER
OPERATOR’S
KNOWLEDGE

REQUESTINFORMA~ON
OPERATOR’S
GOALS

em~
MACHINE INPUT

MACHINE OUTPUT
DE-I’ERMINE OPERATOR’S~
NEED FOR INFORMATION |

CHECK PERMISSION

REQUEST
PERMISSION

REQUEST
INFORMATION

PRIORITIZE

WORLD HUMAN OUTPUT
HUMAN INPUT

Figure 2: The Mixed-Initiative Model of human-machine systems [from (Riley 1989)].

performance simulations. One piece of this informa-
tion model will be a set of task modeling structures
and forms suited to expressing the behavior of each
MIM capability.

Modeling for Automation

Much of the AI community’s work on "agent modeling"
is focused on capturing the capabilities and behaviors
of fully automated systems. At HTC, many of the
real-world programs are aimed at developing mixed-
initiative systems, and thus modeling for automation
alone is less common. However, several technology ar-
eas have consistently involved models for fully auto-
mated systems. For example, our work on constraint-
based scheduling systems uses complex task models
to describe the control semantics and temporal de-
tails of a set of tasks to be scheduled on a set of
resources (e.g., petrochemical processing units). The
SAFEbusTM scheduler, for example, builds static pro-
cessing schedules for a networked multiprocessor sys-
tem that controls the Boeing 777 aircraft information
management system. The scheduler is given a detailed
model of the set of tasks to be executed, their pe-
riods, jitter, latency, and other temporal constraints,
and various additional information such as precedence
requirements. Using this task model, the scheduler
uses an iterative constraint envelope scheduling tech-
nique (Boddy, Carciofini, & Hadden 1992) to develop
a schedule that meets all the requirements. Although

this program initially seems less related to agent mod-
eling, the complex task modeling capabilities (particu-
larly the expressive temporal constraint language) are
closely tied to traditional AI planners and plan repre-
sentations.

HTC also has projects that use models of au-
tonomous behavior in the prescriptive plan-and-
execute fashion common in AI. For example, one
project is pursuing an agent-based approach to human-
computer interaction and dynamic generation of
context-sensitive displays. In this program, the UM-
PRS (Lee et aL 1994) implementation of the Pro-
cedural Reasoning System (Georgeff &: Ingrand 1989;
Ingrand, Georgeff, & Rao 1992) is being used to cap-
ture and reactively execute the procedures involved in
a search-and-rescue (SAR) domain. UM-PRS provides
an underlying task representation and syntax, and
complex task models are instantiated to express the
numerous SAR activities. In addition, the task models
describe how to generate effective displays based on the
current context and available display resources. Thus
explicit task modeling serves to capture several levels
of the system’s behavior.

Modeling for Mixed-Initiative Teams

As noted above, many HTC projects involve complex
mixed-initiative systems in which humans and automa-
tion systems share responsibility and control. Task
models play a variety of roles in these systems, ranging
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Figure 3" The RPA Cognitive Decision Aiding System Architecture.

from the design-time analysis illustrated in the above
AATT example to specification of run-time behavior
to the target information form for learning systems.

Rotorcraft Pilot’s Associate (ttPA)

The RPA program is a five-year Advanced Technol-
ogy Demonstration (ATD) sponsored by U.S. Army’s
Aviation Applied Technology Directorate to develop,
extensively evaluate, and flight-test an intelligent as-
sociate system in the cockpit of an advanced Army
attack helicopter. The objective of this program is
to establish revolutionary improvements in combat he-
licopter mission effectiveness through the application
of knowledge-based systems for cognitive-decision aid-
ing and the integration of advanced pilotage, target
acquisition, armament and fire control, communica-
tions, controls and displays, navigation, survivability
and flight control equipment. Similar to the Pilot’s As-
sociate programs, the RPA will consist of a suite of five
cooperating knowledge-based systems whose collective
goal will be to assist the aircraft crew in understanding
the vast array of battlefield information, planning the
mission, and managing the complex systems of an ad-
vanced helicopter (McBryan & Hall 1994). Figure 
illustrates the overall architecture for the RPA sys-
tem. Task modeling plays significant roles in several
of the system modules and their inter-module commu-
nications.

Honeywell is participating in the design, develop-
ment and evaluation of the Cockpit Information Man-
ager (CIM) module (Miller & Riley 1994). Overall, 
RPA architecture relies on task modeling to coordinate
its cooperating knowledge-based systems. The situa-
tion assessment modules must recognize and announce
the tasks that the pilots are pursuing, as well as the
external situation, potentially including the task plans
being pursued by other entities in the domain. The

planning module uses this information to generate a
projected course of action for the automation system
and the humans, and again this is essentially expressed
as a task model. Then the CIM uses this task mod-
eling information to actively manage the cockpit dis-
plays and interaction mechanisms. Figure 4 illustrates
the CIM architecture and shows several roles for task
models, including the inputs to the CIM system, the
outputs of the crew intent estimator module, and the
stored elements of the goals/side-effects modeling mod-
ule.

At HTC, we are using a set of workload assessment
and human factors analysis tools to optimize crewsta-
tion design and function allocation policies between
multiple crew members and automation during the ini-
tial phases of the program. In addition, the policies de-
veloped using these analysis tools will be captured in
dynamic information management and function alloca-
tion algorithms to increase the flexibility and context-
sensitivity of the CIM.

Learning Systems for Pilot Aiding (LSPA)

The LSPA program was a 3.5 year effort sponsored
by AFWAL’s Crewstation Directorate to demonstrate
machine learning applications for large scale, pilot-
aiding expert systems-- specifically, Lockheed’s Pilot’s
Associate. The program consisted of two interacting
parts, Learning System for Tactical Planning (LSTP)
and Learning System for Information Requirements
(LSIR). Our goals were to facilitate knowledge acquisi-
tion and knowledge engineering by semi-automatically
learning tactical plans and pilot information require-
ments from simulator-flown learning instances, thereby
reducing the time and cost associated with knowledge
base scale-up and modification. At program end, LSTP
has successfully used an Explanation-Based Learning
approach to learn eight new leaf-level plans for the
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Figure 4: The RPA Cockpit Information Manager.

Tactics Planner (TP) module of the PA, substantially
fleshing out the TP branches for degrading SAM sites
and evading missiles. LSIR has developed a "linked
learning" technique which takes a newly-learned plan
from LSTP and reasons about the information a hu-
man pilot will need in order to perform that plan. The
result is an Information Requirements data structure
which is used by the Pilot-Vehicle interface module of
the PA in selecting and configuring displays for Infor-
mation Management. Experimental evaluation of the
LSPA systems indicates that when human knowledge
engineers use LSPA outputs, even novices can create
plans and IR data structures faster and with greater
accuracy and completeness than when relying on tra-
ditional knowledge engineering techniques alone.

Explanations for Model-Based Systems

The purpose of this IR&D project was to provide expla-
nation and "argumentative" capabilities for a model-
based diagnostic expert system. The target appli-
cation was tIoneywell’s model-based Flight Control
Maintenance and Diagnostic System. We developed
an approach to organizing the presentation of large
amounts of model-based data in an interactive format
patterned after human-human explanatory and argu-
mentative discourse in order to increase user trust,
accuracy of usage, and embedded training potential.
The discourse approach was a convenient, powerful,
intuitive and broadly applicable method of organizing

model-intensive data for information exchange in hu-
man/machine and human/human interactions.

¯ Summary
These examples display the broad scope of task model-
ing and agent modeling efforts at the Honeywell Tech-
nology Center. Many of these projects have a more
human-centered focus than current AI software agent
modeling work, but we see many common themes and
approaches. In the long term, we hope to develop
shared agent modeling representations and tools that
can fulfill several of the roles currently addressed by
separate techniques. At HTC, task modeling supports
many roles including:

¯ Automated control and associate systems, through
dynamic planning, scheduling, and execution of task
models.

¯ Domain knowledge acquisition, through models of
discourse and communication, as well as abstract
task models representing structural constraints on
the target knowledge being acquired.

¯ Intelligent tutoring systems, using task models aa
both the object to be trained and as a guide for how
to provide training.

¯ Intent inferencing (plan recognition), by mapping
observed user activities against existing task mod-
els.

¯ User interface generation, using task models as the
basis of determining what information a user needs.
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¯ Interface design and analysis, using explicit task
models for domain-specific scenarios as the testbed
against which to evaluate various hypothetical inter-
face designs.

¯ Information management and interaction manage-
ment systems, which may build task models dynam-
ically (in conjunction with an intent inferencing or
task tracking system), to provide adaptive assistance
to human operators.
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