
Some Explorations in Reinforcement Learning Techniques Applied to
the Problem of Learning to Play Pinball

Nathaniel Scott Winstead
Tulane University Department of Computer Science

New Orleans, Louisiana 70118
winstead@cs, tulane, edu

Abstract

Historically, the accepted approach to control prob-
lems in physically complicated domains has been
through machine learning, due to the fact that know-
ledge engineering in these domains can be extremely
complicated. When the already physically complicated
domain is also continuous and dynamical (possibly
with composite and/or sequential goals), the learn-
ing task becomes even more difficult due to ambigu-
ities of reward assignment in these domains. However,
these continuous, complicated, dynamical domains can
effectively be modeled discretely as Markov Decision
Processes, which would suggest using a Temporal Dif-
ference learning approach on the problem. This is the
traditional method of approaching these problems. In
Temporal Difference learning, the value of a discrete
action is defined to be the difference in some value
(usually an expected reward) between the current state
and and its predecessor state. However, in the prob-
lem of playing pinball, the traditional Temporal Dif-
ference methods converge slowly and perform poorly.
This leads to the addition of knowledge engineering
elements to the traditional Temporal Difference meth-
ods, which was previously considered difficult to do.
However, by making straightforward, simple changes
to the basic Temporal Difference algorithm to incor-
porate knowledge engineering I was able to both speed
convergence of the algorithm, and greatly improve per-
formance.

Composite and/or sequential tasks may similarly be
modeled as Markov Decision Processes, which again
suggests the use of Temporal Difference learning.
However, applying Temporal Difference learning to
composite and/or sequential continuous, dynamical
tasks has been traditionally viewed as a burdensome
task, involving complex changes to the basic learn-
ing architecture. Again, one goal was to keep the
learning architecture simple, despite the complexity of
the environment. Starting with the existing compos-
ite Temporal Difference methods, I have constructed a
new composite technique which maintains the elegance
and simplicity of the Temporal Difference architecture,
while enabling for learning of composite tasks.

Why Pinball?
Motivations

Previous research on learning problems in robot ma-
nipulation (Christiansen, Mason, & Mitchell 1991) has
focused on tasks with dynamic behavior of short dura-
tion, where dynamic aspects could be abstracted from
the learned models. The research reported in this pa-
per considers tasks with a significant temporal depend-
ency, rather than the (apparently) more static tasks that
have been previously considered.

One can argue that a pinball machine, when inter-
faced to a computer and a vision system to track the
ball, is in fact a robot. The system has sensors (vision
and contact sensors for the game targets) and effectors
(the flippers). The pinball task has a goal (score lots
points), and automated planning to achieve the goal is
required for performance above the novice level. The
pinball task is also very dynamic.

Pinball is also interesting as a control task in that
the player has only intermittent opportunities to af-
fect the system state, unlike other well-studied control
tasks such as pole balancing (Moriarty & Miikkulainen
1996), (Hougsen, Fischer, ~ Johnam 1994), et cetera.
Only when the ball is close to the flippers is there any
chance to change the ball’s velocity, as "bumping" the
table has not been implemented. When the ball is away
from the flippers, the player is "at the mercy" of the
environment, which is complex and not completely de-
terministic. Thus, credit assignment for good and bad
actions becomes difficult.

A final advantage of the pinball task is that the sys-
tem’s performance can be compared directly to human
performance. Novice and expert players may play the
game, and those scores can be compared to the av-
erage score achieved by the pinball agent. Though it
would be interesting to construct the best agent pos-
sible, based on human knowledge of the game, the cur-
rent research focuses on learning agents, which can im-
prove their performance via practice in the task.

Markovian Decision Tasks

Many problems for reinforcement learning tasks are
Markovian Decision Tasks (MDT’s). MDT’s are finite-

From: AAAI Technical Report WS-96-03. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

state, discrete-time, stochastic dynamical systems with
some important attributes. Namely, there exists a finite
set of states S, and a finite set of actions A available
to the agent. At each time step t, the agent performs
an action at E A based on the observation of the cur-
rent state xt E S. The agent receives some real-valued
payoff, R(xt, at) and the state makes a transition
state xt+l E S with probability P~,~,+~(at). The en-
vironment satisfies the Markovian Property: the cur-
rent state and future actions determine the expected
future sequence of states and payoffs independently of
the state trajectory prior to the current state.

The goal of any development within the MDT frame-
work is to create agents which are capable of establish-
ing closed-loop policies which will maximize the total
payoff over time.

We say that a control policy is optimal when it
achieves the agent’s goal Or goals. Optimal policies
derived by RL techniques are usually able to perform
the agent’s goal or goals without failure. Because of the
fact that the agent in the pinball environment only has
intermittent control over the ball, is is unclear what an
optimal control policy would be. Would it mean that
the ball could be kept in play forever, and continue to
score points? Therefore, we will not use the term "op-
timal" with regards to control policies in the pinball
environment.

Clearly, then, Pinball is not an MDT. It fulfills all of
the criteria, including the Markov Property. However,
the game of Pinball is neither discrete-time nor finite-
state. Fortunately, a problem which has infinite or
countably infinite states may be modeled as an MDT
by simply specifying a set of discrete values onto which
real values (or a subset of them) will be mapped. Sim-
ilarly, we specify intervals at which the agent can exert
control over the environment, instead of allowing con-
trol at any time. This allows us to apply all of the
properties of an MDT to the learning task we are con-
sidering.

The Pinball Simulator
Currently, all trials are done with a simulated pinball
machine. The simulator software was written in C++
for a Unix/X-Windows environment. Currently, the
simulator comprises approximately 1800 lines of code.

Some simplifying assumptions were made for prac-
tical purposes in creating the simulator:

¯ Flippers move infinitely fast (i.e., at the time the flip-
per button is pressed, the flipper moves immediately
to the position where it would contact the ball and
then to its fully extended position).

¯ All collisions in the simulator are modeled as elastic
collisions, with various coefficients of restitution.

¯ Collisions are essentially deterministic, but include
small random factors.

¯ A ball is put into play by a fixed mechanism--the
player does not have any control over this initial ball

.... Incoming Velocity
I

, ~ . Surface Norma

-_.:._.’At "x": ’ """ "" Uncertainty Factoi

~ _ _ _ Outgoing Velocity

Figure 1: A simple model of how a collision occurs in
the simulator.

velocity. (A small random factor is introduced into
the initial ball velocity.)

Reinforcement Learning

Reinforcement learning seeks to create control policies
by performing repetitive gradient descent in order to
match the control policy as closely as possible to the op-
timal control policy. Dynamic programming methods
have been developed to solve optimal control policies
(Bellman 1957). However, these methods require
model of the environment a priori, and many of them
are off-line learning algorithms.

Reinforcement learning (RL) methods, on the other
hand, do not require a model of the environment to
find an optimal control policy, and are frequently used
in and on-line fashion. However, as Singh (Singh 1994)
points out, RL methods have not been used to solve
very complex tasks on-line. In fact, the most successful
RL applications have been neural networks trained to
mimic policies developed by RL agents (Tesauro (Te-
sauro 1993) and Boyan’s (Boyan 1992) Backgammon-
players are examples of this scheme). This is partly
due to the conception that RL methods are very slow.

Unfortunately, because of RL’s independence from
environment models, they are often stigmatized as weak
methods (i.e. they do not require domain knowledge,
nor do they adapt well to including domain knowledge).
This has been an area of great interest lately, and I
will demonstrate some effective ways of incorporating
domain knowledge into the pinball problem.

Further, RL methods have long been believed to scale
poorly to tasks which are composite (i.e. tasks which
require the completion of several smaller, atomic tasks).
Due to the fact that these methods have adapted poorly
to other tasks in the past, I have chosen to implement
my own composite learning architecture. This will be
discussed in more detail in Section .

The TD-Learning Paradigm

A useful paradigm to use to illustrate Reinforcement
Learning and Q-Learning was invented by Sutton (Sut-
ton 1988). This method is called Temporal Difference
(TD or TD(A)) learning. The goal of any system in

the TD-learning paradigm is to take a series of ob-
servations (usually of a MDT), and produce predictive
estimates of the outcome based on these observations.

Consider an agent which makes the following obser-
vations:

culminating in some scalar reward, Z. The goal of the
system is to produce a prediction function P(xt) which
is updated at each observation.

In TD()t) systems,)~ is used for exponential weight-
ing of predictions of observations within k steps of the
most recent action, according to the rule:

t

k--1

where 0 <)~ < 1. It should be pointed out that when
= 1, the update rule will associate each observation’s

predictive value with the final scalar outcome. When
= 0, only the ,~0 term contributes to the sum, giving

the Q-Learning update rule:

Awt = a(Pt+l - Pt)V,oPt

The goal of these TD methods is to produce predict-
ive functions which preserve the temporal nature of the
problem. They do this by "exponential weighting with
recency" i.e. observations which are temporally close
to the current state affect the adjustment of the current
state’s prediction more than other observations (Boyan
1992), (Sutton 1988).

Compositional Q-Learning

Siugh (Singh 1994) proposed a method for learning
complex, composite and/or sequential tasks within the
Q-Learning framework. His system does this success-
fully by combining maps of Q-values for each of the
sub-tasks with a learning stochastic switch which learns
the map of Q-values to associate with the current state
of the composite and/or sequential task, and a bias
module that compensates for differences between the
Q-values for the current state space location and the
desired Q-values for the composite and/or sequential
task (thus allowing for transfer of learned information
across tasks). In most cases, the stochastic switch and
bias module are implemented as learning functions.

Singh’s methods were an expansion over the previ-
ous concept of competing domain experts, described
by Jacobs (Jacobs 1990), which only included a purely
stochastic switch (rather than a learning one) and maps
of Q-values for each sub-task of the composite or se-
quential task. I chose to only use Singh’s notion of
the learning stochastic switch, to allow the maps of Q-
values to compete to learn the sub-task knowledge.

The results of these methods are discussed in detail
in the following section.

Q +- a set of values for the action-value function (e.g.,
all zeroes).

For each x E S : f(x) ~ a such that Q(z,a) "-
maxbeA Q(x, b).

Repeat forever:

1. x +- the current state.

2. Select an action a to execute that is usually con-
sistent with f but occasionally an alternate. For ex-
ample, one might choose to follow f with probability
p and choose a random action otherwise.

3. Execute action a and let y be the next state and r be
the reward received.

4. Update Q(x,a), the action-value estimate for the
state-action pair (x, a):

Q(x, a) +- (1 - c~)Q(x, a) -4- a[r "yU(v)]

where V(y) = Q(y, f(y)).

5. Update the policy f:

f(x) +-- such that a) = b).

Figure 2: Pseudo-code for the Q-Learning algorithm,
taken from Whitehead et al.

Experimental Results
Initially, I developed some useful calibration agents:

¯ "Do-Nothing" which never performs any action.

¯ "Flail" which oscillates the flippers whenever the
ball enters the area near the flippers.

¯ "Cheat" which is a simple knowledge-engineering
method which knows where the obstacle (or
obstacles) which score points are located, and uses
this knowledge to determine when the ball should be
struck with the flipper.

The results for these agents are illustrated in Figure
4. It should be explained that there are various factors
for the poor performance of humans in the simulator
environment, such as network delays, slow keyboard
input under X Windows, and lack of training of the
human test subjects.

Two different table configurations were tested in our
learning trials. These table layouts are displayed in
Figure 3. The first of the two (on the left) is the layout
used in the "Single Obstacle Results" section and the
second of the two (on the right) is used in the "Compos-
ite Task Results" sections. Both tables are arranged so
that the scoring obstacles are surrounded by obstacles
which prevent agents or players from scoring points in-
advertently. This has been shown to allow for simpler

I~’1~11~o, oI
illll

t,.J
o

Figure 3: The pinball simulator table layouts used for
the tests described in this subsection.

18 I I i I
16

14

12

10

8

6

4

2

0

1 Obstacle/6 Points per Collision (PPC)
3 Obstacles/2 PPC with Composite Tasks +

+
+
O

+

<> <>

i i i
Do-Nothing Human Flail Cheat

Figure 4: Mean scores for calibration techniques and
human performance.

agent design, as the agent does not have to discern
between intentional and inadvertent scoring increases.

Furthermore, consistency in the results has been en-
sured by making the scoring obstacle in the "Single
Obstacle Results" score six points, while each ofthe
three scoring obstacles in the "Multiple Obstacle Res-
ults" scores two points.

Single Obstacle Results
Standard Reinforcement Learning Agent code
has been developed in C++ which has been linked into
the simulator. Thus far, the agent has been limited
to acting only by flipping both flippers simultaneously,
and always returning them instantaneously to the "rest-
ing" position. For this reason, "catching" the ball with
the flippers is not a possible action for the agent.

The pseudo-code for our reinforcement learning
agent is shown in Figure 2. I have found that dis-
cretizing the state space into a region 50 by 25 cells in
the z and y positions, and 50 by 25 cells for the velo-
city components (the V~ and Vy directions) provides

25

20

15

10

I I I I I

I I I I I /
5 10 15 20 25 30

Number of balls x 1000

Figure 5: Results for directed RL versus standard RL
over 30000 trials. The directed RL plot is dark, and
the standard RL plot is dotted.

reasonable trade-off between optimality of the obtained
control policy and the time that the agent requires (in
terms of number of trials) to converge on that policy.
I have also discretized and mapped Q-values only for
a region near the flippers corresponding to where the
agent has control over the ball.

The results of a Q-Learning agent described above in
this environment are shown in Figure 5. It appears that
the agent quickly achieves a the best observed policy,
then oscillates around it over the remainder of the trials.

Incorporating Domain Knowledge Into RL
Knowledge Engineering provides quick and consistent
results, while RL possibly provides steadily improv-
ing results. However, it is never immediately appar-
ent whether the RL agent is producing a control policy
which will converge to some acceptable performance
level. We desire the exploration of the RL agent to be
non-random and directed by a Knowledge Engineering
method. Interestingly, this approach did not produce
any noticeable advantage over the previous RL agent
over the first few thousand trials. However, after that
time, the directed RL technique showed significantly
faster improvement. These results are shown in Figure
5.

Composite Task Results
Next a composite task was created by allowing three
obstacles to score two points each, and giving a score
bonus of one-hundred points for striking each of the
three obstacles. The straight RL technique was applied
to this composite task table. These results are shown
in Figure 6 as the lower of the two histograms.

Next, the learning stochastic switching agent was ap-
plied to the composite goal table configuration. These
results are illustrated in Figure 6 as the upper of the two

4

60

50

40

30

20

10

0

j ~ ; i ; i i... i .I .~

; ", : . . ,.. ,..,,i,

0 I0 20 30 40 50 60 70 80 90 i00
Number of bMls x 1000

Figure 6: Results for straight and composite reinforce-
ment learning in a composite environment.

histograms. The learning stochastic switching agent
simply learns to associate the state of the composite
task, and the desired sub-task to be performed, and
the success (or failure) of each of each of the Q-maps
in performing that task. This procedure (in theory)
allows competition between the Q-maps to learn the
various sub-tasks of the composite task.

Conclusions
This work has shown that while machine learning in
physically complicated, dynamical, continuous (an pos-
sibly composite and/or sequential) domains can be dif-
ficult, they are easily modeled for temporal difference
(TD) learning methods through a straightforward map-
ping into the Markov Decision Process (MDP) frame-
work. From within this framework, control policies
for these problems can be developed using TD meth-
ods. Further, though coding domain knowledge into
TD methods was once thought to be a difficult thing
to do, the author has shown a simple, straightforward
method to code domain knowledge into TD architec-
tures which preserves the elegance and simplicity of
these methods.

The problem of using TD methods to find control
policies in composite and/or sequential environments
was previously thought to require cumbersome addi-
tions to the architecture. I have demonstrated an archi-
tecture able to solve a composite task with a minimum
of overhead to the standard Q-Learning algorithm.

I have attempted to demonstrate that there exist use-
ful, efficient, and simple methods to solve problems
of substantial complexity. A recent attempt at a sys-
tem to play checkers produced a system which con-
sisted of four gigabytes of main memory, and thirty-
two three-hundred megahertz processors (Schaeffer et
al. 1996). While gargantuans like this are becoming
commonplace in the AI community, they are a far, far

cry from Samuel’s IBM 704 of 1959 (which arguably
played to roughly the same level: both systems beat
world-champions of their day) (Samuel 1963). While
it would be nice if the AI community could concentrate
on finding the simplest solution to complex problems, it
is unlikely that the community would ever unite behind
one goal, no matter how sensible it seems.

References
Bellman, R. 1957. Dynamic Programming. Princeton,
N.J.: Princeton University Press.
Boyan, J. A. 1992. Modular neural networks for
learning context-dependent game strategies. Master’s
thesis, Computer Speech and Language Processing,
Cambridge University.

Christiansen, A. D.; Mason, M. T.; and Mitchell,
T.M. 1991. Learning reliable manipulation
strategies without initial physical models. Robotics
and Autonomous Systems 8:7-18.
Hougsen, D.; Fischer, J.; and Johnam, D. 1994. A
neural network pole-balancer that learns and operates
on a real robot in real time. In Proceedings of the
MLC-COLT Workshop on Robot Learning, 73-80.

Jacobs, R.A. 1990. Task decomposition through
competition in a modular connectionist architecture.
Ph.D. Dissertation, COINS Department University of
Massachussets.

Moriarty, D. E., and Miikkulainen, R. 1996. Efficient
reinforcement learning through symbiotic evolution.
Machine Learning 22:11-32.

Samuel, A. L. 1963. Some studies in machine learning
using the game of checkers. In Feigenbaum, E. A., and
Feldman, J., eds., Computers and Thought. McGraw-
Hill. 71-105. Originally published in The IBM
Journal of Research and Development, July, 1959
3:211-229.
Schaeffer, J.; Lake, R.; Lu, P.; and Bryant, M. 1996.
Chinook: The World Man-Machine Checkers Cham-
pion. AI Magazine 17(1):21-29.
Singh, S. P. 1994. Learning to solve Markovian de-
cision processes. Ph.D. Dissertation, University of
Massechussetts.

Sutton, R. S. 1988. Learning to predict by the meth-
ods of temporal differences. Machine Learning 3:9-44.
Tesauro, G. 1993. TD-Gammon, A Self-Teaching
Backgammon Program, Achieves Master-Level Play.
Neural Computation.

5

