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Abstract

In this paper we present an intelligent believable agent
development environment. This was achieved by con-
necting dMARS, an agent-oriented system, and Open
Inventor, an animation system. We describe the design
of this environment which involves a connecting layer
and some plan templates for (i) managing the synchro-
nisation between actions determined in the reasoning
system, and their execution in the virtual world of the
animation; and (ii) managing the physical aspects of
the agents, including sensing. Emotions and personal-
ity are also modelled to some extent. We successfully
implemented a real-time animation using this environ-
ment which we call Dog World, with dogs which be-
haved in interesting ways, reasoning and interacting
with their environment. The merits of the system are
evaluated conceptually and a comparison is made with
two other believable agent systems.

1 Introduction

This paper describes an environment which we have
developed for modeling intelligent believable agents in
a dynamic world. Intelligent agents (in a computer sci-
ence context) are robust software modules which drive
conceptual entities, causing them to behave rationally,
in a complex and dynamic world. Believable intelligent
agents require these conceptual entities to in addition
be engaging and believable. A necessary criterion is
that the agents and their behaviours can be directly
perceived in real time. We achieve this by using a
graphical animation system to represent the agents vi-
sually. We combine this animation system with a ra-
tional agent reasoning system, giving a platform where
we can experiment with various aspects of believable
agents, such as personality and emotions, and interac-
tion with the environment.

2 dMars and Open Inventor™

The two systems used for creating our intelligent be-
lievable agent environment were the rational agent sys-
tem, dMars® (distributed Multi Agent Reasoning Sys-
tem), an updated version of PRS (Procedural Reason-
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ing System) [GI89, IGR92], and the object oriented
animation system Open Inventor”2, We give a brief
overeview of these two systems in order to set the stage
for the description of our environment.

2.1 dMars

PRS, the precursor to dMars, and dMars itself, have
been used in a number of demanding real-time applica-
tions, including an application automating the moni-
toring of the Reaction Control System of NASA’s space
shuttle, an airport traffic control system, and a system
for supporting service staff of a large telecommunica-
tions company.

The system is based on a cognitive model of beliefs,
desires and intentions which determine what any agent
does at a particular time. Each dMARS agent con-
sists of a database of current beliefs or facts about
the world, a set of current goals to be realized, a set of
plans describing how a sequence of actions may achieve
a given goal or be a reaction to a particular situation
and an intention structure containing a set of plans
that have been chosen for eventual execution. An in-
ference mechanism manipulates these components, se-
lecting appropriate plans based on the agent’s beliefs
and goals, placing those selected plans in the intention
structure and executing them. The system interacts
with its environment through its database by acquir-
ing new beliefs and through the actions it performs.

Plans are complex specifications of how agents can
achieve goals. They may be hierarchical in nature,
creating subgoals which must be realised as the plan is
carried out. Plans consist of a body, which describes
the different steps in the procedure, and an invocation
consisting of a triggering part and a context condition
part. The triggering part describes the events that
must occur for the plan to be executed. They can be
the acquisition of a new goal or some change in the
belief database. The context condition describes con-
ditions which must be satisfied in the belief database.
A AMARS agent decides which plans are applicable by
matching beliefs and goals with invocation conditions.
For more information about how the inference mecha-
nism selects the applicable plans, manages them in the
intention structure and decides on execution we refer

to [GI89, IGR92).
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2.2 Open Inventor™

Open Inventor™™ [Wer94, SC92] is an object-oriented
animation system providing a toolkit which allows the
creation of interactive 3D graphics. It is composed of
libraries of graphical primitives each with their own
attributes and methods.

Most graphical applications have to deal with the
drawing of graphics and the methods which achieve
this. Open Inventor”™ supports this by encapsulating
all the methods for objects, such as displaying, manip-
ulating etc., into the objects themselves. User defined
methods can also be added. For example, to create a
cube, one simply creates an instance of a cube, defin-
ing it’s attributes and Open Inventor™ will then take
care of drawing it. If the view is changed Inventor will
re-calculate the cube’s appearance and re-display it.

Inventor creates a scene graph of all the objects in
the environment, which contains the objects and any
transforms that might be applied to them. Information
can be added to this scene graph either by C++ code
which creates or manipulates objects, or by reading in
a model file.

The ability to load model files is particularly useful
as it allows a graphical model of an agent to be created
using a 3D drawing tool. The agent can be built up
out of simple graphical primitives, such as cubes, cones
and spheres, thus allowing any visual changes to the
agent to be handled by Open Inventor”M’s built in
methods for these primitives.

Open Inventor’ also allows parts to be dynami-
cally connected to each other. For example a dog tail
can be connected to a dog body via a dynamic con-
nection (known as an engine) which allows the tail to
move in relation to the body. These dynamic connec-
tions can also be specified in the model file, and turned
on and off when desired. For example, a motion path
for a dog tail can be specified in the model file as the
engine between the tail and body, allowing a wag ac-
tion by turning on this engine.

The system also provides facilities such as ray inter-
section objects which are useful for modeling accessi-
bility in an area relative to an object. For example
sight can be modeled using a ray intersection object
emanating from the agent’s eye. (This will return a
list of objects that are visible along a 3D vector with
starting point at the agent’s eye).

The provision of high level methods and modeling
constructs greatly simplifies the specification of the an-
imation aspects of the agents and their environment.

3 System Design

The successful integration of dMars and Open
Inventor™™ has involved using the ‘Foreign Process
Agent’ supplied by dMars, which allows communica-
tion with dMars as if it was another agent, but allows
application code to be connected to the Foreign Pro-
cess Agent under control of the application. The For-
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eign Process Agent also supports communication via
a socket, allowing us to use separate hardware for the
animation and dMars software.

We have implemented a connecting layer which uses
the Open Inventor™ library and is connected to
dMars using the Foreign Process Agent. We also found
1t necessary to design a set of plan templates to be
followed in writing dMars plans that involve actions
where the time taken to execute the action in the ani-
mation world must be taken into account.

plnn Sun machine
templates
dMars
application
plans
communication
via socket

Connecting layer Foreign Process sal
Agent (dMars)

Open Inventor | [ Agent model | { Agent capability
library files specifications

Figure 1: Architectural overview.

We give an overview of the architectural structure
in figure 1, and then describe in more detail the con-
necting layer and the plan templates.

3.1 Connecting Layer

Open Inventor™™ models both the physical environ-

ment and the physical bodies of the agents, while
dMars models the reasoning processes for each agent.
The connecting layer includes two major subsystems,
one for managing actions - how the bodies of the agents
move within the physical environment, and are syn-
chronised with the reasoning processes in dMars; and
one for managing senses - how the agents percieve the
environment, and communicate these perceptions to
the dMars reasoning processes.

3.1.1 The action subsystem

The action subsystem of the connecting layer enables
high level actions, appropriate to the reasoning system
to be transformed to the primitive actions needed for
the animation system.

There are three different types of actions that were
identified and catered for. The simplest are atomic
actions which are conceptually instantaneous and have
a negligible duration. As far as the reasoning system
is concerned they can either succeed or fail. These
actions are at the same level of granularity as atomic
actions in the animation system and can be mapped
to a single command in the animation system. An
example is a turn action, which would be mapped to a
rotation.



The other two kinds of actions have duration. They
can either have a known end condition such as an ac-
tion to move to a particular location, or they can have
no fixed end point such as the action to wag a tail.

Comawnds Messages about actions

Command Action Action
Parser Tokens Bvaluator

Event

Queue

Altributes
Control commands Action Dynamic Auributes
Bxecuter Attribute Modi
tmer
Enviroameat |

Figure 2: Action section of Joining Layer

A figure of the architecture for the action subsection
of the connecting layer is shown in figure 2.

The Command parser looks at commands received
from the agent layer, of which there are two types, con-
trol commands and action commands. It then trans-
lates them into ‘action tokens’, which are the actions
matching the granularity of the animation system.

Action commands are mapped into one or more ac-
tion tokens which are placed in the queue. An action
token is the lowest level graphical action and is atomic
in nature, taking a single time frame to realize.

Control commands are used for controlling the queue
in ways other than the normal execution. In or-
der to allow the system to be fully reactive, new
goals/intentions must be able to take priority over cur-
rent goals at any point in time. This requires that
executing actions must be able to be aborted and/or
suspended, at the animation level as well as the dMars
level. Currently, only flushing is supported, allowing
the reasoning system (agent mind) to tell the physical
system (agent body) to abort the current action.

The Action evaluator checks the validity of the next
command token. The reasoning system (agent mind)
might start an action, but some time during its exe-
cution a condition could arise which means the action
is no longer able to finish executing. In this case the
action evaluator sends a message to the agent and the
current activity is aborted. Thus the action evaluator
checks the agents capabilty with respect to the action,
at each step.

Finally, the action token executer sets the values of
the graphical models in the world at each timer event
by reading the head of the event queue. Each action
token has associated with it a motion path, allowing
Open Inventor”™ to create a smooth animation for
that atomic action. For example an action like ‘take
a step’ can have the motion path for leg movement
included in the model file, allowing smooth walking to
be easily realised.

3.1.2 The sensing subsystem

The other subsystem of the connecting layer is the
sensing subsystem. Senses are not modeled at all in
dMARS but are an important part of fully believable
agents. It is appropriate to model senses in the con-
necting layer as they are part of the agents physical
body but also have a direct influence on the agents
reasoning.

Two types of sensing are modeled - goal-directed
sensing and automatic sensing. Goal directed sensing
allows an agent to explicitly ask for a piece of sensory
information, receiving a response from the connecting
layer. An automatic sense is triggered whenever a cer-
tain condition occurs. For example smell may be mod-
eled as an automatic sense. As soon as an object is
within range of the agent’s smelling capability, a mes-
sage would be triggered, alerting the agent to the newly
found smell.

An automatic sense is set up by indicating what con-
ditions would trigger the sense, for the given agent. For
example smell may be triggered by any object with a
smell attribute, within a certain radius of the agent.
The connecting layer then monitors for the occurrence
of this situation.

At each timer event, the connecting layer checks to
see if something is sensed, based on the agents capa-
bilities and the current environment. If the sensory in-
formation is different from that of the last timer event,
then a message is generated and sent to the agent.
This mechanism avoids redundant messages when sen-
sory information remains unchanged.

3.2 Plan Templates

As mentioned previously, three distinct types of ac-
tions were identified, with respect to this environment
- atomic actions, durational actions with indetermi-
nate end-point, and durational actions with fixed end-
point. Atomic actions are non-problematic because
of the match in granularity between the two systems.
Durational actions with indeterminate end-point can
be fairly trivially mapped to pairs of atomic actions
that are to start and stop the action. Durational ac-
tions with fixed end-point are however more complex
to manage. We have developed a template to be used
for the dMars specification of plans involving these ac-
tions. Use of this template simplifies the appropriate
co-ordination between dMars and Open Inventor™ in
the management of these actions.

The issue is that in order to keep the two systems
synchronised, it is important for dMars to know when
a durational action has been finished, allowing further
processing of subsequent actions. The processing of a
durational action such as ‘move to a location’ takes
negligible time at the dMars level, compared to the
time it takes to execute in the virtual world of the
animation system. Thus a mechanism must exist for
the dMars processing to suspend until notified by Open
Inventor™™ that the physical action has completed.
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To facilitate the necessary synchronisation process
a set of plan templates have been developed for spec-
ifying standard durational actions. There are three
plan templates - an action initiation template, a suc-
cessful completion template, and a failed completion
template. For each standard durational action in a
dMars plan, three sub-plans following these templates
must be created.

The action initiation template plan has as its invoca-
tion condition, the posting of a goal which corresponds
to the action. For example, the move agent to an ob-
ject action has an initiation plan which is invoked by
the posting a (move-to $obj) goal.

The action initiation plan starts by asserting a be-
lief which is a description of the particular action, (for
example state moving). The next step in the initi-
ation plan is to tell the connecting layer (through a
message) to do the action. Following this is a wait ac-
tion, which suspends the plan until the current state
belief is negated.

When a sequence of action tokens constituting a
dMars action is finished in the animation level, or if
an action token fails due to the action evaluator, then
a message is sent to dMARS informing it of the event.
This message triggers either the plan for success or the
plan for failure. Both the success and the failure plans
negate the state belief, thus causing the suspended wait
action to finish and the initiation plan to terminate.

This set of templates provides a mechanism for im-
plementing standard durational actions. A goal is
posted to perform the action and will not complete un-
til the action at the animation layer finishes. If another
action command is posted whilst an action is executing
(due to a higher priority action being required) then
the goal plan will be aborted in favor of the new action.

4 Dog World Prototype

Figure 3: Two dogs in Dog World

We have developed a sample scenario which we call
Dog World as a prototype application using this envi-
ronment. This world is relatively simple. It is a large
square region that contains both dogs and bowls of dog
food. The dogs are agents while the food is part of the
environment. Figure 3 shows a screen dump of 2 dogs
modeled in this world. One of the dogs’ desires is to
find and eat food.

The dogs have a sense of smell with which they can

locate objects, namely food and other dogs. Their
sense of smell is limited to a certain radius around the
dog.

Dogs also have emotions of aggression, fear and
hunger which can affect their behavior. The dogs be-
come more hungry as time goes by, and less hungry
as they eat. A dog is capable of performing actions
to walk, eat, bark, wag his tail and run away from a
threat.

How a dog behaves at a certain time depends on a
combination of it’s goals, it’s internal belief states and
it’s emotional states of aggression, fear and hunger.
Emotions are modeled in the reasoning system by vary-
ing the quantities of aggression, fright and hunger.

Aggression is the dog’s current aggression level and
aggression_threshold is the point at which the dog’s
behavior can be considered ‘aggressive’, the same ap-
plies for fright. The combination of these represents
the dog’s emotional state. A dog with a high aggres-
sion level and a low fear level would behave differently
from one with the opposite set of values.

The food and food_threshold correspond to the dogs
hunger level, i.e. a small food value means that a dog is
hungry. The food_threshold is used as a level at which
the dog starts to become aggressive due to not eating.

Different personalities can be modeled by varying
the threshold where these quantities start to take ef-
fect. In this way, dogs modeled using the same set of
plans will act differently just by changing these thresh-
olds. Rate of change of hunger/aggression/fear can
also be modified to give agents differing personalities.

Dog 1

Aggression Fear Hunger
Dog 2
Aggression Fear Hunger

Figure 4: Personality using emotions.

To illustrate this point, in figure 4, there is an ex-
ample of two dogs. The solid portion represents the
current value for that quantity whilst the line com-
ing out of the right hand side represents the threshold
which needs to be reached to trigger the reaction of
that emotion. Dog 1 can be viewed as a passive dog
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who takes a lot to anger but is not too hard to scare.
It will also only become aggressive when very hungry.
Dog 2, on the other hand, is very aggressive and is very
hard to scare, even if remotely hungry it will start to
become aggressive quickly.

A final point is the concept of time. The connecting
layer manages a timer based on one click per frame, so
that things that change over time can be modeled. In
the Dogworld scenario the hunger level rises over time.

A dog can be motivated in two ways, either through
goal-directed events or by automatic sense events. The
goal-directed behaviors are what the dogs decide to do
themselves. In the plans, if a dog is idle, then it will
invoke the find-food goal. This does two things, if there
is food in smell range, the dog will move to it and eat
it. If there is none, then the dog will wander around
looking for some.

The rest of the dog’s behavior is modeled through
automatic sense events. There are three possible
events, food or dogs coming into range and being
barked at. The simplest is when food is sensed. The
behavior is then exactly the same as the goal directed
event, the dog will move to the food and eat it.

When a new dog is sensed different behaviors will
result depending on the dog’s aggression level. If it is
passive then it will start to wag its tail, if it is aggres-
sive then it will start to bark at the other dog. Being
barked at has numerous behavioral reactions depend-
ing on the emotional state of the dog. If the dog is
aggressive, it will bark back. This can result in a “bark-
ing match” between two dogs. If a dog is frightened,
then it will run away from the barker. If it is neither,
then it will simply ignore the other dog. When a dog is
barked at its fright level goes up, and when it barks, its
aggression goes up. In this way if a “barking match”
is started the first dog to become frightened will end
up running away.

Even this very simple Dog World allows the creation
of rich and varied animations with considerable com-
plexity. By combining all the above elements believ-
able dogs were created which appeared to have differ-
ent personalities.

5 System Comparison

The environment we have created does allow for the de-
velopment of intelligent believable agents - intelligent
because they exhibit complex rational behaviour, be-
lievable because they exhibit differing “personalities”
and because their physical behaviour can be seen in a
real-time animation. We compare the system we have
created to two of the most well known believable agent
systems in the literature, the SodaJack Project (part
of the AnimNL project) [LB94a, LB94b], and the TOK
system [Bat94, BLR92b, RB92, KWB92, Bat93, LB91,
BLS92, LB93, BLR92a].

These three systems all share significant elements in
common. They all have a goal-based reasoning system

which drives an animation. The reasoning system in
TOK and the ItPlanS system used by Jack are sim-
ilar but less sophisticated versions of agent oriented
reasoning systems. For example the Jack system does
not have advanced modelling features such as mainte-
nance conditions, and TOK does not allow the same
complexity of plans as does dMars.

One useful feature of TOK is the ability for an agent
to recognise when its current goal has been achieved
due to a change in the environment (which may have
been caused by another agent). In our system this
recognition can only be achieved by carefully hand
crafting plans and their interactions.

One of the issues addressed to some extent by all
three systems is that of achieving smooth animation.
However the systems approach this problem in quite
different ways. The TOK system anticipates the next
move prior to the current animation sequence’s com-
pletion. In this way the motor section can be aware
of what it is expected to do next and it allows for a
smooth transition as motion can be continuous from
one action type to another. Smooth transitions are a
natural by product of the method used by the Jack
system. Inverse-kinematics and dynamics are used to
simulate the way that Jack moves.

In our system a simpler approach was taken, using a
‘neutral pose’. Any action which took the agent away
from it’s natural pose would then place it back in it
on completion, thus avoiding jerky transitions. This is
obviously not as sophisticated as the above methods
but has proved to be adequate so far.

Another important constraint on actions, is their
feasibility. For actions to seem realistic they must be
able to fail in certain situations. This can happen in
two ways, one is when multiple actions are attempted
which can’t be performed at the same time, the other
is when some environmental condition disallows an ac-
tion.

The TOK system avoids situations like walk left,
together with walk right by using a notion of body
resources, which can only be used by one action at a
time. TOK also has explicitly disallowed combinations
of actions. The Jack system has a section of the OSR
devoted to feasibility checking. If there is a failure this
is reported to the planner to allow it to formulate a
new plan.

Our system takes a different approach for disallow-
ing use of the same resource by using the maintenance
field. For example, if a dog is performing an action,
then a state will be asserted which represents what is
being done. If another action is desired then the state
is checked. If this is incompatible and if the agent
still asks for the action to be performed, it will then
abort the previous action as there is a conflict with the
maintenance condition.

Sensing is handled differently in the three systems.
Jack has only a limited form of sense capability which
is modelled as requests to the environment. The TOK
system uses a more advanced method of sensing, where
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sensors are attached to plans and are turned on and off
as the plans are invoked. These sensors are very low-
level and report information such as ‘can I see woggle®
X jumping?’ [LB93, page 4].

In our system conceptually higher level senses are ex-
plicitly modelled in the connecting layer and attempt
to approximate real senses such as smell. These are
always active and report messages back to the agent
when relevant new conditions arise. These conditions
are specified by an agents sensory capabilities which
are a part of the declarative information about an
agent.

The final comparison involves the way emotions and
personality are handled by the systems. Jack does not
really model emotions, as it is intended more for sim-
ulation of characters. The TOK system has complex
emotional process. These are modelled by passing suc-
cess and failure results to Em (Tok’s emotional subsec-
tion). This takes these results and infers emotions from
them, e.g. a failed plan causes unhappiness. Our ap-
proach is simpler, as we let emotional quantities vary
according to different actions. This is not as power-
ful as a full emotional simulation, however complex
emotional behaviour perceived as different personali-
ties can occur.

6 Discussion and Conclusion

The system described here provides a base for creat-
ing and manipulating powerful intelligent and believ-
able agents, in a relatively simple way. This environ-
ment provides a tool for further research exploring such
things as aspects of personality, interaction of deliber-
ative and reactive behaviour and interaction of person-
ality types in a multi agent system.

Believable agents is a relatively new research field,
and as a result there are not yet many implemented
systems/environments available. Comparison of our
system with the two main systems discussed in the lit-
erature indicates that our system provides more com-
plex reasoning (using dMars) than the other systems,
and a more intuitive modeling of senses. However TOK
has a more complex emotional component, and Soda-
jack has more complex animation.
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