
Knowledge-directed Adaptation in Multi-level Agents

John E. Laird and Douglas J. Pearson Scott B. Huffman
Artificial Intelligence Laboratory Price Waterhouse Technology Center

The University of Michigan 68 Willow Road
1101 Beal Ave. Menlo Park, CA 94025

Ann Arbor, MI 48109 huffman@tc.pw.com
laird@umich.edu, dpearsonQumich.edu

FAX: (313) 747-1761

Abstract

Most work on adaptive agents have a simple, single layer architecture. However, most agent architectures
support three levels of knowledge and control: a reflex level for reactive responses, a deliberate level for goal-
driven behavior, and a reflective layer for deliberate planning and problem decomposition. In this paper we
explore agents implemented in Soar that behave and learn at the deliberate and reflective levels. These levels
enhance not only behavior, but also adaptation. The agents use a combination of analytic and empirical learning,
drawing from a variety of sources of knowledge to adapt to their environment.

Introduction
Over the last ten years, there has been a convergence in the design of architectures for con-
structing intelligent autonomous agents that must behave in complex environments. Many
architectures support three levels of knowledge with corresponding levels of control: a reflex
level made up of independent rules or a finite state machine, a deliberate level that provides
simple decision making and the ability to pursue multiple goals, and a reflective layer for
deliberate planning. In theory, each of these levels can draw from a variety of sources of
knowledge to adapt to their environment. However, the vast majority of work on adaptive
agents has emphasized only a single source of knowledge, reinforcement, with improvement
only at a single reflex layer. The advantage of these approaches is that they can make use
of simple feedback that is available in many environments; however, in return, agents using
these techniques are limited in the complexity of behavior that they can learn.

In order to extend adaptivity to more complex agents -- agents with multiple levels of
knowledge and control -- we have developed a more deliberate approach which has been
instantiated within two systems built within the Soar architecture: Instructo-Soar (Huffman
& Laird 1994; Huffman 1994) and IMPROV (Pearson & Laird 1996). We find that agents
with multiple levels of knowledge and control are not only more able to achieve complex goals,
they also can use these layers to adapt to their environment. These agents use analytic and
empirical learning techniques to draw on multiple sources of knowledge, including external
instruction, internal domain theories, and past behavior.

We have focused on systems that learn at the two higher levels, deliberate and reflective,
within agents that employ all three levels of control. This research complements the work
that has been done to combine empirical and analytic learning methods (such as EBNN
(Mitchell & Thrun 1993), EBC (DeJong 1995) and EBRL (Dietterich ~ Flann 1995))
typically focus on agents that use only a single level of control.

35

From: AAAI Technical Report WS-96-04. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

arbitrary subgoal processing of
impassed deliberation using available
domain knowledge

sequential selection and
application of operators to states
based on current situation

parallel productions firing based
on current situation inworking
memory

Input/Output
fixed transduction of input and output

Reflective Level:
Impasses and Subgoals

Deliberate Level
Decision Procedure

Reflex Level ~ II

Ii !T~irking Mem°rY]. ~

Figure 1: Levels of Processing

Although our approach is deliberate in many ways, it is distinguished from deliberate
approaches that treat the knowledge of the agent as a declarative structure that can be
examined and modified at will. Such first-order declarative access to the agent’s complete
knowledge base poses significant computational complexity problems as the agent’s knowl-
edge grows in size and complexity. In contrast to our approach, these declarative/deliberate
methods are therefore typically restricted to noise-free domains with instantaneous actions
(Gil 1991; Ourston & Mooney 1990) which require relatively small domain theories.

In the remainder of this paper, we present our general approach to agent design and
adaptation within the context of Soar. We then illustrate this approach by examining two
integrated systems, Instructo-soar which learns to extend its knowledge through situated
instruction, and IMPROV which learns to correct errors in its knowledge through interaction
with its environment. Instructo-Soar uses analytic learning at the reflective level to gain
new task knowledge at the deliberate level. IMPROV then uses largely empirical learning at
the reflective and deliberate levels to identify and change incorrect knowledge learned from
either bad instructions or incorrect generalizations of good instructions. IMPROV’s recovery
method can in turn be directed and guided by knowledge gained from further instructions
processed by Instructo-Soar. We have combined IMPROV and Instructo-Soar to produce
a single integrated system. This integration allows knowledge from instructions and from
external experiences to be combined to improve the agent’s learning and task performance.

Multi-Level Agent Structure

Our approach assumes that an agent consists of the three levels as shown in Figure 1.

1. The reflex level is where knowledge is directly and automatically retrieved based on the
current situation. Most adaptive agents have only this level with the knowledge encoded
in rules, finite-state automata, or similar fixed network structures. In Soar, the knowledge
for this level is encoded in rules that fire in parallel whenever their conditions are matched.

36

2. The deliberate level is where knowledge is used to decide what to do next based on the
current situation and goal. This allows for the integration of multiple chains of reasoning
into a single decision in a manner that is not possible at the reflex level. In Soar, this
level consists of the selection and application of deliberate operators. Rules propose and
compare operators, and then a fixed decision procedure selects the preferred operator.
Once an operator is selected, rules perform the appropriate actions. The advantages in
terms of adaptation of this additional level of deliberations:

(a) Selection knowledge (when and why to do something) can be learned and corrected
independently of implementation knowledge (what to do).

(b) Learning can be incremental, so that existing knowledge does not have to be modified
(Laird 1988). This greatly simplifies learning so that it is not necessary to identify
which piece of knowledge is incorrect, only which operator selection or implementation
is incorrect.

(c) Conflicts or gaps in the agent’s knowledge can be detected when there is insufficient
knowledge to decide which operator to select or apply next.

3. The reflective level is where arbitrary knowledge is used to either select the next deliberate
action, or decompose a complex action into smaller parts. This level is invoked automati-
cally when the deliberate level fails, either because there is insufficient knowledge to select
or apply an operator. If there is insufficient selection knowledge, the agent can attempt to
plan at the reflective level, using whatever knowledge it has of the domain to predict the
worth of prospective actions. If there is insufficient application knowledge, the agent can
treat the current action as a goal to be achieved, and then attempt to select and apply
deliberate actions that can achieve that new goal.

The advantages in terms of adaptation of this additional level of reflections:

(a) The agent can create hypothetical situations distinct from its current sensing that it can
reason about and learn from.

(b) The agent can decompose a problem into subproblems that have commonalities with
other, previously solved problems.

(c) The agent can incorporate more declarative forms of knowledge, such as instruction.

(d) Complex, time-consuming behavior at the reflective level can be compiled into rules for
real-time processing at the deliberate and reflex levels.

Adaptation
In our approach, adaptation is based on a cycle in which the agent attempts to first correct
or extend its reflective knowledge (which is essentially a multi-level domain theory), and
then use the reflective knowledge as a basis for correcting its deliberate and reflex knowledge
(which in turn influences which goals it can achieve in the world and can lead to the need
for more extensions and corrections to its reflective knowledge, completing the cycle).

Figure 2 shows a simplified view of this cycle. In the first phase, information from the
environment flows into the reflex level where it is parsed and interpreted. In parallel, the
deliberate level is trying to make decisions so that the agent can pursue its goals. If the agent

Figure 2: Adaptation of Multi-Level Soar Agent

is unable to make a decision this means its deliberate and reflex knowledge is in some way
incomplete or incorrect. When this happens, the reflective level is automatically invoked.

At the reflective level, the agent attempts to determine what part of the domain theory is
either missing or incorrect. To date, we have focused on knowledge errors at the deliberate
or reflective levels. If knowledge is simply lacking then instruction might be appropriate.
However, if its experiences in the world suggest that its reflective knowledge is incorrect, then
it uses both analytic and empirical means to determine how to correct its reflective domain
theory. For some errors, this can be a complex process that involves multiple interactions
with the environment that are not depicted in the figure. Once the domain theory knowl-
edge has been corrected, it then uses it to replan its behavior. The results it produces are
then compiled into knowledge that can be directly applied at the deliberate level in similar
situations in the future.

Throughout the rest of the paper, we use a running exampleto describe the integrated
instruction/recovery agent’s performance. To date, we have only provided the integrated
agent with enough domain knowledge for these simple examples, with the intention of proving
the feasibility of the integration. First, we describe an instruction scenario that introduces
errors into the agent’s knowledge at the deliberate and reflective levels. Next, we discuss
IMPROV’s recovery technique applied to the error, first with no instruction available, and
then with instruction directing each stage of the recovery process in turn.

Instruction-based Adaptation
In this section we give a review of Instructo-Soar which uses a specialization of the ba-
sic technique called situated explanation to extend its domain theory based on instruction.
Instructo-Soar learns new procedures and extensions of procedures for novel situations, and
other domain knowledge such as control knowledge, knowledge of operators’ effects, and
state inferences.

Instructo-Soar requests instruction whenever its deliberate knowledge is insufficient to de-
termine which action to take next. The request for instruction is situated within its current

38

Green Button

Red Light
Button

Figure 3: (a) The example domain and (b) Instructions on how to push a button

task, and all Instructo-Soar asks for is what step should it take next. For each instruction,
Instructo-Soar first determines what situation (state and goal) the instruction applies to
either the current situation, or a hypothetical one specified in the language of the instruc-
tion. Then, the agent attempts to explain at the reflective level, using its existing domain
knowledge and forward projection, why the instruction will lead to success in the situation.
If this explanation succeeds, the agent can learn general knowledge from the instruction
(as in standard EBL (Mitchell, Keller, & Kedar-Cabelli 1986)). If the explanation fails,
means the agent is missing some knowledge required to complete the explanation. The miss-
ing knowledge can be acquired either through further instruction, or in some cases through
simple induction over the "gap" in the incomplete explanation. However, either instructions
or the agent’s inductions can be incorrect and lead to learning errorful knowledge.

Instructo-Soar’s domain includes a table with red and green buttons and a light on it (see
Figure 3 (a)). The red button turns the light on and off, but the agent does not know this.
Consider an example in which the agent is first taught a general procedure for how to push
buttons, using the instructions in Figure 3 (b). Some time later, the instructor says:

"To turn on the light, push the red button."

To perform a situated explanation, the agent first determines that this instruction applies
to a situation where the goal is to turn on the light. Then, using its existing domain theory,
it forward projects the action of pushing the red button in that situation. However, since it
does not know that the button affects the light, this projection does not explain how pushing
the button causes the goal of turning on the light to be reached.

In this case, the agent makes a simple inductive leap to complete the explanation. It guesses
that since there is a single action specified to reach a goal, that action directly causes the
goal to be reached - e.g., pushing the button has the effect of turning on the light. Its
inductive bias specifies that in this type of induction, the types of objects involved and their
relationship to one another are important but other features, like the button’s color, are not.
Thus, the agent learns a rule that says "pushing any button on the same table as a light

39

causes the light to turn on." This rule allows the agent to complete its explanation of the
original instruction, producing a control rule that applies at the deliberate level that says "if
the goal is to turn on a light on a table, choose the action of pushing some button on that
table."

Previous versions of Instructo-Soar would ask the instructor to verify the inductive leap -
Instructo-Soar was a "paranoid" agent, afraid to learn any wrong knowledge. However, as
we will see, the addition of IMPROV, allows this verification step to be skipped, with the
result being that errors in future performance will be corrected through interaction with the
environment.

IMPROV’s recovery technique

We will first describe each stage of IMPROV’s recovery process and then how it can be
informed by instruction. There are three principle stages to error recovery: (1) Detecting
error, (2) Finding a plan that, when executed, leads from the errorful state to achievement
of the current goal, and (3) Identifying the piece of knowledge which led to the error and
correcting it. IMPROV achieves these stages by (1) recognizing when the agent is no longer
making progress in its problem solving, (2) using case knowledge of previous external inter-
actions to guide a search for a successful plan, and (3) comparing successful and incorrect
plans to identify the incorrect operators and then training an inductive learner on the results
of executing the plans, which in turn leads to new case knowledge.

In our example, when the agent is asked to turn on the light, its overgeneral knowledge
("pushing any button causes the light to turn on") may lead it to push the wrong (green)
button. When it does, IMPROV detects the failure (the light doesn’t come on), searches
for the correct plan (pushing the red button) and then learns that to turn on the light, the
agent must push the red button, not the green one. Alternatively, at any (or all) stages
the recovery process, the instructor can provide simple guidance that speeds up the process
by avoiding search.

Error Detection

IMPROV detects errors when executing a plan by recognizing that the agent is unable to
make progress towards its goals. This can be because either it does not know how to achieve
a goal from the current situation, or because it has conflicting suggestions as to what to do
next. In our example, IMPROV detects an error when no operator is proposed after the
agent pushes wrong button and the light doesn’t come on. This is a weak error detection
strategy that may signal errors when the agent’s knowledge is correct but an unplanned for
event occurs. However, reporting unplanned events as errors is acceptable as the agent’s first
step in recovering from an error is to replan.

Finding a plan that reaches the goal

After detecting an error in its deliberate knowledge, IMPROV searches and extends its
reflective knowledge in an effort to correct the deeper reasoning that lead to the original
error. It does this by searching for alternative plans, executing each in turn, to find one that

4O

satisfies the current goal 1. This search is biased towards plans which are believed to be most
likely to succeed, based on previously seen training cases. If additional causal or diagnostic
knowledge is available to the agent, this search can be further focused. In our example, plans
that include the push-button operator are preferred over plans that do not include operators
associated with turning on lights. If the agent has no previous case knowledge and no other
guidance, this search defaults to iterative deepening.

Identifying the cause of the error and learning a correction

There are two credit assignment problems to be solved in identifying and correcting an error
in the agent’s knowledge: first, identifying which operator is incorrect and second, identifying
how that operator’s knowledge is incorrect.

IMPROV identifies which operator(s) have incorrect knowledge by comparing the success-
ful plan to the original (incorrect) plan. Ordering and instantiation differences between the
plans indicate potentially incorrect operators. In our simple light example, both the correct
and incorrect plans contain a single operator (push-button) with different instantiations,
it is identified as the erroneous operator.

Once the operators with incorrect knowledge have been identified, IMPROV uses an ex-
tension of the incremental category learner, SCA (Miller 1991; 1993), to identify how the
operator is incorrect. The category being learned is which operator to select for a given
state and goal. To avoid the error in future, the agent must decide which features of the
state or goal caused the operator to succeed or fail. In our example, the agent must learn
that the reason pushing the red button works is because the button is red, not because it is
the button on the right, or because the robot’s hand is open or closed etc. 2 In its weakest
form, IMPROV simply relies on the induction made by SCA to determine the features that
are responsible for the failure. It revises the reflective knowledge accordingly and replans to
correct the original error in the agent’s deliberate knowledge. The inductive guess may be
wrong, leading to a future error and the need for another recovery.

Instruction to inform recovery
We have augmented IMPROV by allowing an instructor to interrupt the recovery process at
any time and provide instructions that guide the recovery. Figure 4 lists how instructions
can apply to each phase of recovery. In particular, instructions can be used to warn the
agent that an error is about to happen, to help the agent find the correct way to achieve its
current goal or to help identify the reasons for the error.

Error detection
IMPROV’s instructor can indicate that an error is about to happen by interrupting deliberate
processing with the command "Stop!". Our agent assumes that this command means that
the currently selected operator will lead to a execution error, rather than to the current
goal. In our example, if the agent chooses the wrong (green) button, the instructor may say
"Stop", realizing an error is about to occur as the agent moves it’s hand over the wrong

1We currently assume that a successful plan exists and therefore the agent does not have to determine when to
abandon an impossible task.

2This explanation is limited by the agent’s representation language. To determine the real cause, that the red
button is electrically connected to the light, the agent would need a deeper theory.

41

Weak Recovery Method Assistance from Instructor Example Instructions

Error Detection Detect inability to make Instructor indicates a failure "Stop!"
progress toward the goal. is about to occur.

Finding the Case-guided search Instruction-guided search ’Push the red button."
correction path ’Think about the red button.

Identifying the
Induction to identify

Instructor indicates important "Think about color."
cause of the failure.

differences between
instances. differences between instances.

Figure 4: The stages of a recovery and how instruction can help.

button. The system then treats this situation as if an error had occurred and begins the
recovery process. IMPROV records the operator push-button(green), along with the state
when the operator was chosen, as a negative training instance for the inductive module and
starts a search for the correct way to turn on the light.

Finding a plan that reaches the goal
Once an error has been detected, IMPROV searches for a correct plan to achieve the current
goal. At any time during this search, the instructor may provide guidance in the form of
one or more steps in that plan. In our example, the instructor can interrupt the search by
saying:

"Push the red button."

This leads the agent to prefer plans that include pushing the red button. As the agent
believes pushing any button turns on the light, it believes this plan will succeed and imme-
diately executes it. After it succeeds, the agent’s knowledge is corrected just as if it had
discovered the plan through search instead of instruction. In the event that the instructions
are incorrect, IMPROV will try the suggested path, see that it fails and continue searching
for a correct plan.

Identifying the cause of the error and learning a correction

Once a correct plan has been found (either through search or with the aid of instruction),
IMPROV needs to identify the cause of the error. IMPROV must determine the key dif-
ference(s) between the plan that succeeded and the plan that failed, which in general is
difficult credit assignment problem. In our example, the green button is to the right of the
red button. Without help from the instructor, IMPROV must guess whether the reason
push-button(green) failed was because the button was on the right, or because it was green.
If it makes the wrong induction, the agent may fail later. However, the instructor can inter-
rupt the learning process and guide the choice of features for the induction. In our example,
if the instructor says:

"Think about color."

this leads IMPROV to focus on the colors of the buttons (rather than their positions) and
ensures that the correct induction is made.

42

Reflex
Level

Source Delikex&te
Level Level

Dsstinatian

Reflex ~ ~te Level Beflective

RL/~apirical

?? ??

(Refinsm~t) (S2nth~.~)

?? IMPROV/~npirical ??

(ompilatian) (Refit) (~)

Instructo-Soar IAnalytic
I Analytic & E~oiri, IMPROV/~npirical
I Analytic & ~lPiri,

T_us ~ - s oar l..~,-’,al:~.~
EITHER/Enloirical

~C I Analytic & m~/rk
IMPROVl ~oirical

EXPO/Empirical
(Oampilatian) (Ompilation) (Refit)

Figure 5: Matrix of Learning between Levels

Conclusion
The thrust of this paper has been to explore adaptation in multi-level agents. Our current
work has made some important inroads by demonstrating the feasibility of using analytic
and empirical processing at the reflective and deliberate level to improve the agents abilities
at those levels. The agents are able to learn new things about their environments that would
not be possible in a single level agent. However, there is still more to be done before we have
agents that can adapt at all levels from all available sources of knowledge.

Figure 5 is a matrix that attempts to classify current progress in learning across levels
using both analytic and empirical techniques. Each row contains the problems of transferring
knowledge from one specific level to another level. Implicit in these rows is that the knowledge
in that level is combined with knowledge from the external environment, thus learning from
the reflex level does not just use the agent’s current reflex knowledge at that level, but uses
that knowledge together with its experiences in its environment to improve that level. The
columns are the destination of the knowledge -- where the learning happens. Many systems
appear in multiple columns because learning at one level immediately transfers to the higher
levels. That is true in both IMPROV and Instructo-Soar. One weakness in this figure is
that it does not identify specific learning problems that cross all levels. For example, a
particularly challenging area is the learning of new representations for tasks.

There are still some missing entries, and even when there is an entry, there are undoubtably
many research issues. Furthermore, additional research is needed on how to create agents
that integrate methods from the complete matrix. Our hope is that the workshop will fill in
some of the missing entries (that we are not aware of), but also stimulate the community
look at integration of multiple techniques to help create more complete multi-level adaptive
intelligent agents.

43

References
DeJong, G. 1995. A case study of explanation-based control. In Proceedings of the Twelth
International Workshop on Machine Learning, 167-175.

Dietterich, T. G., and Flann, N. S. 1995. Explanation based learning and reinforcement
learning: A unified view. In Proceedings of the Twelth International Workshop on Machine
Learning, 176-184.

Gil, Y. 1991. A domain-independent framework for effective experimentation in planning.
In Proceedings of the International Machine Learning Workshop, 13-17.

Huffman, S. B., and Laird, J. E. 1994. Learning from highly flexible tutorial instruction.
In Proceedings of the l$th National Conference on Artificial Intelligence (AAAI-9~).

Huffman, S. B. 1994. Instructable autonomous agents. Ph.D. Dissertation, University of
Michigan, Dept. of Electrical Engineering and Computer Science.

Laird, J. E. 1988. Recovery from incorrect knowledge in Soar. In Proceedings of the National
Conference on Artificial Intelligence, 618-623.

Miller, C. M. 1991. A constraint-motivated model of concept formation. In The Thirteenth
Annual Conference of the Cognitive Science Society, 827-831.

Miller, C. M. 1993. A model of concept acquisition in the context of a unified theory of
cognition. Ph.D. Dissertation, The University of Michigan, Dept. of Computer Science and
Electrical Engineering.

Mitchell, T. M., and Thrun, S. B. 1993.
of symbolic and neural network approaches.
Workshop on Machine Learning, 197-204.

Explanation based learning: A comparison
In Proceedings of the Tenth International

Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T. 1986. Explanation-based general-
ization: A unifying view. Machine Learning 1.

Ourston, D., and Mooney, R. J. 1990. Changing the rules: A comprehensive approach
to theory refinement. In Proceedings of the National Conference on Artificial Intelligence,
815-820.

Pearson, D. J., and Laird, J. E. 1996. Toward incremental knowledge correction for agents
in complex environments. In Muggleton, S.; Michie, D.; and Furukawa, K., eds., Machine
Intelligence, volume 15. Oxford University Press.

44

