
Dynamic Operators in Child Creation and Fitness for Improved Performance
of a Genetic Algorithm

David C. Rich*
149 E. Countryside Circle

Park City, Utah 84098-6102, USA
Dave_Rich @ out.trw.com

ABSTRACT

A genetic algorithm has been applied to optimizing a university class schedule. A complete
description of the algorithm is beyond the scope of this paper, which will address the adaptive
controls applied to the progress of the Genetic Algorithm. The benefits of dynamic operator selection
in the genetic processes of child creation are described. A dynamic penalty function also guides the
fitness and population selection of better-fit solutions. These adaptive controls are not inclusive of
all possible adaptations but only hint at the improvements that can be achieved by using dynamic
controls.

KEY WORDS

dynamic, adaptive controls, Genetic Algorithms, dynamic creation, dynamic penalty function

1 INTRODUCTION

A steady-state, value-based GA is used to explore the large search space of potential
university class timetables [5, 6]. The steady-state GA allows the new chromosomes to immediately
become part of the population. The child is kept or discarded according to the results of a fitness
tournament, with the fitness determined by a penalty function. The value of each gene is an integer
representing the start time of the first period that the class meets each week. Dynamic adaptation was
used in the birth of new individuals as well as the population evaluation and the ranking and selection
of the more fit individuals.

2 DYNAMIC CONTROLS IN CHILD CREATION

The common methods used for creating children in a GA are crossover and mutation. Many
researchers have experimented with different types of crossover as well as different mutation rates.
Typically, both crossover and mutation are applied to the creation of the same child. In this
application, these two operators were separated and applied separately. That is, either crossover or
mutation was used. A major objective in separating the two is the analysis of the results, ff both
operators are applied at the same time, it is difficult to determine which of the two operators resulted
in an improvement--when there is one--in the fitness of the resulting child. By separating the two
operators and applying them individually, it is possible to track the origin of improvements.

"Dave Rich has worked in nuclear physics engineering and research for over twenty years. He works full time
for TRW, teaches part time for Utah Valley State College, and does consulting.

65

From: AAAI Technical Report WS-96-04. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

The probability of selecting either crossover or mutation is dynamic. The initial probabilities
for each one was 50%. Each operator selection rate changes during a run according to the success
of each operator in improving the fitness of the best chromosome [2, 7]. As one operator provides
more improvement in the fitness, its selection probability increases at the expense of the other
operator. As a result, one operator can dominate in the early generation, which crossover often does,
while the other operator, normally mutation, can domir/ate in the later population improvement.
Each operator is assigned a base probability that it cannot go below. This maintains the integrity of
always having a finite probability and not "losing" an operator. In this study, the base probability was
maintained at 20%.

Each operator has a success rate that keeps track of the fraction of the child chromosomes
created by it that remain after each fitness competition. Each operator also has an integer credit that
is incremented each time that the operator generates a chromosome with a fitness better than the
previous best fitness. The "add-on" selection probability for mutation is calculated as the ratio of the
mutation "credit for best" to the summation "credit for best" plus the ratio of the mutation "success
rate" to the summation "success rate." The total mutation selection probability is the sum of the base
selection probability plus the add-on selection probability:

sumCredit
sumSuccess
mutate.addProb

mutate.opProb

= mutate.creditForBest + xover.creditForBest
= mutate.successRate + xover.sucessRate
= mutate.creditForBest / (1. + sumCredit) + mutate.successRate / (i.

sumSuccess)
= mutate.baseProb + mutate.addProb

The crossover operator selection probability is calculated as one minus the mutation operator
selection probability:

xover.opProb = 1. - mutate.opProb

The dynamic operator selection probabilities were different in every run. In some runs, there
would be large excursions in the selection probabilities, while in others the selection probabilities
would be close to 50%. They would vary for each run as a different part of the scheduling landscape
was explored. The dynamic selection rate, however, would progress toward the operator with the
currently-best success rate. At the beginning of a run, the small numbers of successes for each
operator would result in a few large changes before settling down to more gradual changes. Figure
1 displays a sample of the changing operator selection probabilities.

In this run, crossover dominated the selection probabilities for over two hundred chromosome
generations. The dominance then changed dramatically to favor mutation, which almost achieved the
maximum selection probability of 80%.

66

The later
dominance by mutation
is not always the case.
Figure 2 displays a
different operator
selection graph. In the
run represented by this
graph, crossover
dominated for a short
time, then mutation
took over. However,
mutation only
dominated for a short
time before crossover
became dominant,
again. As the run
continued, both
crossover and mutation
selection probabilities
remained close to 50%.

The benefit of
dynamic operator
selection is that the
selection rates can
change according to the
benefit to the population
progression--without the
programmer being
required to preprogram
or have prior knowledge
of where these changes
should occur. And the
changes should occur at
different times in the
operation, depending on
the domain that is
randomly selected for
searching. Because this
random domain selection
cannot be known in
advance, it is impossible
for the programmer to
hardwire the best
operator selection rates

0.8

o 0.7

o.6
O

0.5

0.4

~0.3©

0.2

_"’na-,’-/"-n..,.~
I

Crossover

0 500 1000 1500 2000
Chromosomes Evaluated

Figure 1. Dynamic operator selection rates of mutation and
crossover during the generation of 2000 chromosomes. The selection
rates are adjusted according to the success of each operator to create
chromosomes that improve the population fitness.

0.8

0.7

"~ 0.6 [".-. , , Ix] Crossover

~’w’ 0"4 "[i
" "j

Mutationi11

0.3

0 1000 2000 3000 4000
Chromoson~es Evaluated

Figure 2. In this run, crossover dominated, then mutation took
over, andthen crossover dominated, again. The operator selection
probabilities of both operators remained close to 50%.

67

for every potential landscape. The important concept is that whatever operators are selected, the
population progression will be enhanced by creating a dynamic selection process for the operator set.
This will allow the population to explore any area of the search landscape with prime operator
selection. When small changes need to be made, mutation can be emphasized, with a potential to try
large changes through crossover to jump to a new part of the landscape. When large changes are
needed, crossover can be emphasized.

3 DYNAMIC PENALTY FUNCTION

The fitness of a chromosome is calculated, in this study, using a penalty function. A penalty
function allows the opportunity to gain information fi’om data points that are valid for the GA but not
for the problem. Instead of discarding genes that do not satisfy the physical constraints, they are
assessed a cost that causes the GA to move toward more acceptable results. This study addresses
both hard constraints and soft constraints. Hard constraints are those constraints that can never be
violated in an acceptable schedule. Instead of disallowing these data points during the processing,
these points are assessed a high cost. All hard constraints have the same high cost, since a schedule
is unacceptable if any hard constraint is violated. The high cost does not require an immediate repair
of an unacceptable solution but causes evolutionary pressure to move the solution away from the hard
constraints.

Soft constraints are those things that would be nice to have (or not have) but their lack (or
existence) does not make a solution unacceptable. Soft constraints are restrictions that can be
allowed but are not preferred. These are assigned a much lower cost than hard constraints, so that
the hard constraints can take precedence over the soft constraints during evolutionary search
procedures. The costs of the soft constraints can also be varied according to the relative value of
each constraint.

The hard constraint costs are added to the soft constraint costs to calculate the chromosome
fitness. The fitness of the chromosome is the inverse of the cost, which results in a value (fitness) for
each chromosome that is in direct proportion to its value as a solution:

fitness = 1. / (1. + cost)

The fitnesses of all chromosomes in the population are summed, and a fitness ratio is assigned
to each chromosome. The fitness ratio is the chromosome fitness divided by the summation of all
fitnesses, which identifies the value of each chromosome relative to the other chromosomes. The
summation of all fitness ratios is 1.

As the population of schedules evolves toward better and better schedules (chromosomes),
there will come a point where the schedules are all equally good, or almost so. This point of almost-
equal fitness values is called convergence. Beasley [1] defines convergence as, "... progression
toward increasing uniformity." In this project, when the average chromosome fitness is within 95%
of the best-fit chromosome, the population is said to have converged. After convergence, there is
very little improvement that can evolve through crossover, since the chromosomes are all almost
alike. Figure 1 implies that crossover is only effective for a few hundred chromosome generations.

68

Since the operator selection rate is based on the success of each operator, the program could be left
to continue to exploit mutation at an increasing rate. However, greater benefits can be achieved by
having a break in the procedures after convergence.

When the population converges, all but the best-fit chromosome are reinitialized to random
values within the legal gene range. Reinitializing a converged population provides for greater
diversity and improves the search process [3]. The best fit chromosome is not reinitialized but is kept,
which is called elitism. Elitism provides some assurance that vital information already discovered is
not lost through the reinitialization process. After reinitialization, the search continues with the new
chromosomes blending their genes with those from the best chromosome previously discovered. This
break in the search process not only expands the domain searched, but also allows for an operational
point where the penalty function can be made dynamic.

Constraint violation costs are made dynamic at the point of population reinitialization. The
scheduler begins with each constraint associated with a basic cost and a basic cost increment. Each
time the population converges and is reinitialized, the best-yet chromosome will (probably) have some
constraints unresolved. The cost associated with each constraint violated by the best-yet chromosome
is incremented by the associated cost increment. The increasing constraint costs put pressure on the
scheduler to increase the priority in resolving those constraints. The greater the cost of an individual
constraint, the greater is the pressure for that constraint to be resolved in the next evaluation. The
slowly increasing costs on violated constraints create increasing pressure on the scheduler to find the
lowest-energy, most stable solution.

With the total costs dynamic, the important factor is the relative cost increment. Those
constraints with the larger increments receive greater pressure more rapidly and will be resolved more
quickly. As violated constraint costs are increased, those constraints will also be resolved until the
best possible schedule is discovered. In the real world, the physical resources (rooms) rarely match
exactly with the required resources. Typically, the physical resources are greater than the minimum
required, and there may be multiple timetable configurations that have a minimum-energy, or almost-
minimum-energy, class schedule.

Constraints that are difficult to resolve can generate very large costs through multiple
convergence cycles. Sometimes, the cost of a constraint can be increased significantly but then
become dormant and insignificant when the constraint is satisfied. If the constraints would stay
satisfied, the large dormant costs would be irrelevant. However, as other constraints are satisfied,
some previously-satisfied constraints may become violated again due to the highly interrelated, or
epistatic, environment. The constraints forced into renewed violation when some other constraint is
resolved, are immediately assessed the large dormant cost previously built up.

It is possible to avoid some of these down-the-road surprises by starting over. This program
is designed to accept a seed chromosome as a member of the initial population. Therefore, the
scheduling process can be run for a specified number of chromosome generations and then stopped.
The best chromosome is then entered as a seed to a new run begun with all costs initialized to the
basic costs. As a result, the scheduler begins working with a best-yet chromosome but at the
beginning of the dynamic cost cycle.

69

Dynamic costs make it difficult to compare the best chromosome in one cycle with the best
chromosome in another cycle after some constraint costs have increased. To overcome this difficulty,
a "normoliTed cost" of the best-yet chromosome is calculated. The normalized costs used are the cost
increments that have been entered relative to the importance of each constraint type. These
increments do not change. The summation of cost increments of all violated constraints therefore
provides a good comparative (normalized) measure of each chromosome’s value throughout the many
cost-increasing convergence cycles.

The normalized costs can also increase as well as decrease. When one constraint is increased
in priority with the increasing penalty costs, it may dislodge other less-penalizing constraints. This
can actually result in an increase in the normalized cost even when the total cost decreases. A
solution to this problem has not yet been designed, except to continue with the evolution.

18000 1200

Average Costs

15000 "x 1100

Best Chromosome Cost

12000 I000

9000 900

6000 800

3000 700

Normalized Best Cost

0 600

0 I00002000 4000 6000 8000
Chromosomes Evaluated

Figure 3. Cost data showing the increasing costs using a dynamic penalty function and the
normalized cost of the besl-fit chromosome. This run was extended to 10,000 chromosome
evaluations to allow the dynamic costs more opportunity to force improvements in the solution.
The best schedule found still had a cost of 620, with many hard constraints violated. The
acceptable solution had to be found using the dynamic penalty function in conjunction with other
controls.

Figure 3 shows the costs of a sample run using a dynamic penalty function. Note that at about
4000 evaluations, the normalized cost of the best chromosome began to increase. However, later in
the run, the normalized cost was forced back down lower than it had been before the increase.

7O

4 SUMMARY

This study has shown that dynamic controls applied to Genetic Algorithms helps the GA
search the potential landscape more efficiently from emphasizing large changes to emphasizing small
changes. They allow the program to modify the search procedures to the best advantage of the local
position in the search space, thereby improving the speed of the search. The methods applied herein
are only examples. Recognizing the potential for improved performance, continued research will
undoubtedly discover more and better dynamic controls to enhance evolutionary performance.

REFERENCES

lo Beasley, D, Bull, D.R., and Martin, R.R. An Overview of Genetic Algorithms: Part 1,
Fundamentals. In University Computing. 15, 2 (1993), 58-69.

2. Davis, L. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

.
Karr, C.L. Air-Injected Hydrocyclone Optimization via Genetic Algorithm. In Handbook
of Genetic Algorithms, by L. Davis, 222-236. Van Nostrand Reinhold, New York, 1991.

.
Khuri, S., B~ick, T., and Heitkotter, J. An Evolutionary Approach to Combinatorial
Optimization Problems. In Proceedings of the Computer Science Conference, 1994. March
8-10,1994. ACM Press.

.
Rich, D.C., Automated Scheduling Using Genetic Algorithms, 2nd Annual Utah Workshop
On: Applications of Intelligent and Adaptive Systems, The University of Utah Cognitive
Science Industrial Advisory Board and The Joint Services Software Technology Conference
’94, April, 1994.

.
Rich, D.C., A Smart Genetic Algorithm for University Timetabling, 1st International
Conference on the Practice and Theory of Automated Timetabling (ICPTAT), Napier
University, Edinburgh, Scotland, UK, August, 1995.

.
Tate, D.M. and Smith, A.E. Dynamic Penalty Methods for Highly Constrained Genetic
Optimization. Submitted to ORSA Journal on Computing, (Aug. 1993).

71

