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Abstract

We have designed and implemented autonomous software agents. Our agents are programs
that can move independently through a heterogeneous network of computers. They can sense
the state of the network, monitor software conditions, and interact with other agents. The
network-sensing tools allow our agents to adapt to the network configuration and to navigate
under the control of reactive plans. In this paper we illustrate the intelligent and adaptive
behavior of autonomous agents in distributed information-gathering tasks.

1 Introduction

Modern information systems have data distributed over heterogeneous and unreliable net-
works. We wish to develop sophisticated methods for browsing, searching, and organizing
distributed information systems. Traditional approaches to distributed information access
co-locate the data and the computation needed to process it by bringing the data to the com-
putation. We advocate a novel approach that brings the computation to the data in the form
of transportable agents. A transportable agent is a program that can migrate from machine
to machine in a heterogeneous network. Transportable agents have navigation autonomy,
that is, they are capable of traveling freely and independently throughout a computer net-
work. This approach requires an agent to have substantial intelligence in making decisions
and filtering information.

In this paper we discuss our transportable-agent system called Agent Tcl and describe a
distributed information-gathering experiment. We focus on aspects of the system that allow
the agents to observe changes in their world and to navigate through a network, guided
by reactive plans. The reactive plans endow transportable agents with the ability to adapt
to their environment. We support adaptation with an infrastructure of network-sensing
modules. Agents can sense hardware conditions (for example, whether a host is connected
to the network) or software conditions (for example, a specific change in a database).
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Transportable agents provide an intelligent paradigm for implementing distributed appli-
cations. First, by migrating to the location of an electronic resource, an agent can access the
resource locally and eliminate costly data transfers over congested networks. This reduces
network traffic, because it is often cheaper to send a small agent to a data source than to
send all the intermediate data to the requesting site. Second, the agent does not require
a permanent connection to the host machine (e.g., the computer from where an agent is
launched). This capability supports distributed information-processing applications on mo-
bile computers such as laptops. Third, the network sensing capabilities enable agents to
autonomously find the host computer, even when the host changes its geographical location.
Our work on using mobile agents for mobile computing is described in [GKNRC95]. Fourth,
the network software- and hardware-sensing capabilities permit transportable agents to be
driven by reactive plans. Finally, agents have autonomy in decision making: by using feed-
back from visiting a site, they can independently modify the overall plan or refine ill-specified
queries.

2 Previous Work

Although little has been published on transportable agents, much work has been done con-
cerning the general concept of remote computation. Remote Procedure Call (RPC) [BN84]
was an early form of remote client-server processing. Falcone [Fal87] discusses a distributed-
system in which a programming language provides a remote service interface as an alter-
native to RPC calls. Stamos and Gifford [SG90] introduce the concept of Remote Eval-
uation (REV), in which servers are viewed as programmable processors. The Telescript
technology introduced by General Magic, Inc. in 1994 was the first commercial description
of transportable agents [Whi94]. Prototypes of transportable agent systems are described in
[KK94, Gra95, Gra96, JRS95].

In the software-agents literature, much time and effort has been devoted to designing
task-directed agents and to the cognitive aspects of agents. Agents are called knowbots
by [KC86], softbots by JEW94], sodabots by [KSC94], software agents by [GK94], personal
assistants by [Mae94, MCF94], and information agents by [RS93]. We are interested in
the same class of tasks as [EW94, Mae94, MCF94, KSC94]. Etzioni and Weld [EW94] use
classical AI planning techniques to synthesize agents that are Unix shell scripts. Mitchell and
Maes [MCF94, Mae94] study the interaction between users and agents and propose statistical
and machine-learning methods for building user models to control the agent actions. Rus and
Subramanian [RS93, RS96] propose a modular, open, and customizable agent architecture
organized around a notion of structure recognition. In our previous work [Gra95, Gra96,
NCK96, GKNRC95, KGR96] we describe other aspects of Agent Tcl.

3 Transportable Agents

Autonomous agents should move independently. A transportable agent is a program that
can migrate under its own control from machine to machine in a heterogeneous network.
In other words, the program can suspend its execution at an arbitrary point, transport to



another machine, and resume execution on the new machine. Transportability is a powerful
attribute for information-gathering agents since their world is usually a distributed collec-
tion of information resources, each of which can contain tremendous volumes of data. By
migrating to the network location of an electronic resource, a transportable agent eliminates
all intermediate data transfer and can access the resource efficiently even if the resource
provides only low-level primitives for working with its contents. This benefit is particularly
great with a low-bandwidth network connection for which moving the data is often infeasible;
moving the computation to the data with a transportable agent is a convenient and efficient
alternative.

Before transportable agents can be used effectively, several challenges must be met. Most
difficulties arise from the fact that we are allowing code to roam at will through a distributed
system. The most important issues are to protect machines from malicious agents and agents
from malicious machines; to provide effective fault tolerance in the uncertain world of the
Internet; to allow programmers to write and debug agents quickly and easily; to make agents
almost as efficient as highly tuned, application-specific servers; and to provide a location-
independent namespace in which agents can communicate. We are currently addressing these
issues.

3.1 Agent Tcl: a system for transportable agents

Agent Tcl [Gra95] will reduce migration to a single instruction, provide transparent com-
munication among agents, support multiple languages and transport mechanisms, run on
generic platforms, and provide effective security, fault tolerance and performance. In the
current implementation, agents are written in a modified version of the Tool Command
Language (Tcl) [Ous94]. Tcl is a high-level scripting language and is an attractive agent
language since it is highly portable, easy to use, and easy to make secure (due to the large
amount of existing work that addresses the problem of executing a Tcl program from an
untrusted source). Our modified version of Tcl is the same as standard Tcl except that
the internal state of an executing script (the stack, the contents of variables, etc.) can 
captured at an arbitrary point. In addition, the modified version of Tcl provides a special
set of commands that allow a Tcl script to migrate and communicate with other migrating
scripts.

Thus, one of our transportable agents is simply a Tcl script that runs in the modified
Tcl interpreter and uses the agent commands to roam through a network and interact with
other agents. A Tcl script can decide to move to a new machine at any time. It issues the
agent_jump command, which suspends script, execution, captures and packages the internal
state of the script, and sends this state image to a server on the destination machine (a
special server runs on every machine to which transportable agents can be sent). The server
restores the state image and the Tcl script continues execution on the new machine from
the exact point at which it left off. The Tcl scripts can communicate via message passing,
or remote procedure call [NCK96]. An agent can use the Tk toolkit to present a graphical
user interface on either its home machine or on a remote machine to which it has migrated.
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4 Sensing

To remain efficient, agents unleashed in the network must operate without continuous contact
with their home sites, without user intervention, and despite complications. For example, if
the agent was launched from a mobile platform that has since become temporarily discon-
nected from the network, it must be prepared to proceed on its own rather than waiting an
unknown amount of time for the mobile platform to reappear. Complications arise because
agents operate in a dynamic and uncertain world. Machines go up and down, the infor-
mation stored in repositories changes, and the exact sequence of steps needed to complete
an information-gathering task is not completely known at the time the agent is launched
into the world. Without external state (what the agent can perceive about the state of its
world) an autonomous agent is crippled since it has no way of perceiving and adapting to
the dynamic changes in its environment. This section elaborates on the "sensors" that allow
an agent to discover important information about its environment and establish its external
state. We focus on the following three components of external state: hardware, software and
other agents.

4.1 Sensing the state of the network

Our agents can determine whether a network site is reachable and can predict the expected
transit time across the network and the expected processing time at the site. This information
allows an agent to adapt to currently unreachable or overloaded sites by visiting other sites
first. Smart agents can use information about teachability, network delays, and available
bandwidth to intelligently construct routing plans. We have implemented several network
sensors:

Checking whether the local host is physically connected. This sensor works by
"pinging" the broadcast address on the local subnet; if there is any response in a short
interval, the network is connected.

Site Reachability. This sensor returns true if a specific site is reachable. This is imple-
mented by using the Unix ping command.

Network Load. This sensor tests the expected bandwidth to a remote host. It predicts
latency by consulting a local table that compiles traffic history information. The table
estimates bandwidth for several time ranges: 0-15 seconds; 15-30 seconds; 30 seconds-3
minutes; 3 minutes-2 hours; 2 hours-1 day; 1 day-2 weeks; and 2 weeks and up. The table
gets updated incrementally and each category is weighted differently in the computation for
the estimate.

4.2 Sensing software changes

Agents are often faced with the problem that a resource is unavailable, does not contain the
desired information, or is expected to contain additional relevant information at an unknown
point in the future. Depending on the application, the agent might choose to report failure,
move to an alternative resource, or wait for the desired resource or information to become
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available. Our agents use information retrieval techniques to detect when the state of a
software resource has changed. Significant activity on a resource is signaled by an increase
in the resource size (detected by looking at the size) or a shift in content (detected by 
information retrieval methods we use in Section 6). (Figure 1 shows an agent that monitors
a set of files and directories and sends an email message when it senses significant activity on
a file.) The agent works by creating one child agent for each remote filesystem. Each child
monitors one or more directories and sends a message to the parent when there is significant
file activity. The parent then contacts the user’s mail agent to send the message. Although
simplistic, this agent illustrates the general task of waiting for an event to occur and then
reacting appropriately, a task that is faced by nearly every agent.

Bald

Moose

*essage)

" Alert

(rile .me ~1 [ ) Create
size change)

set email_agent "bald rgray_email" # machine and name of email agent

set machines "bald moose"
set directory "-rgray"

# get a name from the server

agent_begin

# sub, nit the "file" agents that watch for changes in file size

for each m Smachines (
agent_submit Sm -vars directory -proc file_watch {file_watch Sdirectory)

}

# wait for one of the "file" agents to send a message saying that a
# file has changed size; then send an alert message to the user by
# asking the user’s e/nail agent to send a message to its owner

while {i) 

agent_receive code string -blocking

set alert [construct_alert Sstring]

agentsend Semail_agent (SEND OWNER Salert)

}

Figure 1: The alert agent monitors a set of files and sends an email message to the user when it
detects a significant file activity. A simplified version of this agent appears at bottom. The network
location of the various agents is shown at top. filo-watch looks at the size of the file and compares
the content of the file against a query or a previous version of the file using information retrieval
techniques [Sal91].

5 Navigation

Agents implemented in Agent Tcl have the ability to move by themselves through a network.
But where should they go? Agents need either a partial model or partial knowledge of both
the task and the environment. We use an implicit scheme that provides a system of virtual
yellow pages to help the agents decide where to go. These yellow pages contain listings of
services and resources. By consulting these virtual yellow pages and using the network-
sensing tools, an agent selects a list of services relevant for its task and formulates adaptive
plans to visit some of the sites.

Virtual Yellow Pages. The virtual yellow pages are a distributed database of service
locations maintained by a hierarchical set of navigation agents. Services register with the
navigation agents that are scattered throughout the system (Figure 2). Each machine has
a specialist agent that knows the location of some of the navigation agents (which in turn
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know the locations of services and other navigation agents). In general, by consulting the
local specialist agent and then visiting one or more navigation agents, an application agent
can obtain the necessary list of services and their locations.

Since the information landscape changes, the virtual yellow pages are not static entities.
We use adaptive learning methods to keep the virtual yellow pages up to date.

Machine 3 Machine 1 Machine 2 Machine 4

Figure 2: An example of navigation. Each machine has a number of fixed agents (denoted by
rectangular blocks.) The specialist agents know about the location of one or more navigation
agents. There are two navigation agents shown here: one on machine 1 and one on machine 2. The
navigation agent on machine 2 knows about service 1, but the navigation agent on machine 1 does
not. The specialist agent on machine 3 knows about both navigation agents. The customer agent
on machine 3 uses the following protocol to locate service 1. It first contacts its local specialist
agent and finds the location of navigation agents 1 and 2. Then it migrates to machine 1 and
queries navigation agent 1 about service 1. This navigation agent does not know about service
1 since service 1 is only registered with navigation agent 2. The customer agent then migrates
to machine 2 where it queries navigation agent 2 and finds the location of service 1. Finally, the
customer agent migrates to the location of service 1.

Construction of Virtual Yellow Pages. New services register with one or more naviga-
tion agents to advertise their location. They describe their service through a list of keywords.
For example, in Figure 2, Service 1 first contacts the specialist agent on its machine to find
the location of Navigation Agent 2. Service 1 then sends a registration message to Navigation
Agent 2, which adds Service 1 to the database.

Locating Services. An application agent locates a list of navigation agents by querying
the specialist agent on the local host (Figure 2). The application agent then consults the
navigation agents by providing a list of keywords. The navigation agent returns a list of
matching services from its database.

Adaptive selection of the best service. After visiting some of the services, the ap-
plication agent revisits the navigation agents to provide feedback about the sites (speed of
service and usefulness of results). These "consumer reports" enable the navigation agents to
learn which services are most useful and to prioritize services accordingly.

As a general policy for identifying the optimal service, we keep the average feedback
of each of the service providers. In most cases the virtual yellow page should recommend
the best service it knows. This method converges to the best service in a static system.
We consider a dynamic system, where services appear and disappear 1 by augmenting the
best-first policy with a method that encourages initial exploration of other agents. The

1When a new service appears in the system it registers with a yellow page. When a service disappears,
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exploration function returns an overly optimistic estimate of the usefulness of a service until
the service is explored N times; after that the real average value of the agent is used for
ranking. Figure 3(left) shows the performance of two exploration functions in a system where
an initial virtual page consists of 5 services, not ranked in any particular order. We ran a
simulation in which agents visited the services and returned with feedback on the goodness
of the service. Several iterations in this experiment, a new and better service (Agent 6)
was added. We examined evaluation functions for several values on N. The case N = 1 is
denoted by Avg and N = 5 is denoted by High and both cases converge to Agent 6.

This algorithm does not take into account that the relative usefulness of an agent may
vary over time. One agent may improve on another’s service, or it may become outdated
or congested. To discover bad services that have radically improved their performance, a
small randomization factor is added in the exploration function (see Figure 3(right)). 
experiments with dynamic service landscapes show that the best service is always found,
although it may take on the order of 100 trials to converge to it.

Introduction of New Agent Initial Exploration
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Figure 3: Selection of the best service. The services are listed in an increasing order of
"goodness" and they are numbered 1-6 on the right hand side of the diagram. The left graph
shows the service selection numbers when a new and better service (Agent 6) is added. The
right graph shows the effects of randomization on the service selection numbers.

Navigation Plans. Agents construct an initial plan, e.g., an ordered sequence of sites,
from the information provided by the virtual yellow pages. The agent uses this list to
sequentially move from site to site, advancing when the necessary processing at the current
site has been completed. The agent might also choose to launch child agents at certain points.
The plan of the agent need not be static, however. The agent formulates and reformulates
the plan by consulting its sensors and adapting on-line to changes in network configuration
and software content. For example, if the plan consists of the sequence A, B, C, D and
machine A is sensed to be down while B is sensed to be up, the agent greedily rearranges
the sequence to B, A, C, D. Analogously, if the bandwidth to A is much lower than to B,
the agent can decide that there is a higher payoff in executing the sequence B, A, C, D, even
though A had the first priority.

we use a lazy method to detect it. When an agent is sent to the location of a service gone out of business it
comes back to report this finding to the yellow page.
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6 Adaptive Information-Gathering Agents

We have used transportable agents for distributed information access. In distributed infor-
mation gathering, a distributed collection of corpora is searched based on a query and the
results extracted from each site are fused in a coherent picture.

We have built information-gathering agents and Smart agents that interface with the
Smart information retrieval system [Sal91]. 2 Our data is a distributed collection of Smart
repositories running the Smart system. Each collection consists of computer science technical
reports. For a given query, an information agent visits a sequence of sites and interacts with
the local Smart agent to search the local collection. The results retrieved are brought home,
or used as relevance feedback to refine the query.

In our experiment, the agent extracts a list of sites (DEC stations, PCs, and SGIs) that
run Smart servers by consulting a virtual yellow page. The agent routes itself through the
sites using the reactive-planning techniques outlined in Section 5, visiting each place exactly
once. The query is run on the local server and a ranked’list of documents is returned to
the agent. Some simple error-detection and recovery mechanisms are incorporated into this
system. If the plan of the agent takes it to a crashed or non-existent site, the error-recovery
wrapper around the jump command enables the plan to continue. If the current site is down
or on a low bandwidth connection, the agent greedily attempts to. go to the next site. In
our current implementation, if the Smart server crashes, the agent times out while waiting
for the answer and continues the task at the next site. If the site crashes, the agent dies. A
sample session from running this information-retrieval agent is shown in Figure 4.

7 Summary

We have described a system that implements autonomous software agents and illustrated
an application of agents to distributed information gathering. We argued that autonomous
agents require mobility and independent decision making. Mobility is an important attribute
for dealing with an increasingly networked world. Independent decision making is critical
for a mobile agent to adapt to a dynamic environment, especially when far from "home".
We implement mobility with transportable programs (agents). As they travel, these agents
sense the current network and software conditions and adapt their behavior to the sensed
values. Our agents can be viewed as virtual robots that are equipped with virtual sensors
and effectors and are capable of maintaining internal state, registering external state, and
interacting with their environment.

2The Smart system is a successful statistical information-retrieval system [Sal91] that uses the vector-
space model to measure the textual similarity between documents. The idea of the vector-space model is
that each word that occurs in a collection defines an axis in the space of all words in the collection. A
document is represented as a weighted vector in this space. The premise of this system is that documents
that use the same words map to neighboring points and that statistics capture content similarity.
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Figure 4: A sample session for the information-retrieval agent. The query screen is shown in the
upper right corner of the figure. The agent follows the path described with dotted arrows from
the home site to a first document collection on Tuolomne, to a second collection on Tioga, to a
third collection on Muir, and finally, to the last collection on Tenaya. The agent returns to the
home site and displays the results as (1) a ranked list of titles and (2) four graphs that show 
inter-document similarities. The nodes in these graphs represent documents and the edges show
similarity connections. The user may click on a node to view the text of the document
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