Asking Queries about Frames

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Alexander Borgida and Deborah L. McGuinness*

Dept. of Computer Science
Rutgers University
New Brunswick, NJ
{borgida,dlm}Q@cs.rutgers.edu

Abstract

Frame-based knowledge representation and
reasoning systems typically provide procedu-
ral interfaces for asking about properties of
individuals and concepts. We propose an al-
ternative declarative approach that extends
standard interface functionality by support-
ing selective viewing of components of com-
plex objects. Instead of just returning sets of
individuals, our queries match concepts and
filtered fragments of descriptions. The query
language is an extended form of the language
used to describe the knowledge-base contents,
thus facilitating user training.

In this paper, we describe a variety of possi-
ble semantics for answering queries in descrip-
tion logics. We investigate the algorithms re-
quired when answers are deduced by match-
ing queries against a “structural normal form”
of descriptions. As part of our approach, we
introduce a useful refinement of the notion of
structural subsumption.

1 Motivation

Our experience developing large knowledge bases us-
ing frame-based knowledge representation and reason-
ing systems (FR-KRSs) — cLAsSIC [3] in our case
— has revealed a significant lacuna: when display-
ing or explaining complex concepts and individuals,
the system’s built-in functions (such as print) flood
the knowledge engineer with uninteresting and irrel-
evant information. For example, these functions do
not differentiate widely-known “definitional” knowl-
edge (e.g., PEOPLE’s ages should be of type INTEGER)
from more specific constraints (the age value is re-
stricted to be of type “[min 14]” - the set of integer
values no less than 14). Also they can not distinguish

*AT&T Labs-Research, Murray Hill, NJ

dlm@research.att.com

07974,

-15 -

special-purpose roles/slots (e.g., roles describing how
to retrieve information from data bases or how to pro-
duce multimedia displays), which are of interest for
different audiences. Moreover, knowledge representa-
tion and reasoning systems (KRSs) typically focus on
context independent needs and neglect context depen-
dent, domain specific requirements. Still, many appli-
cations demand attention to context and the domain.
For example, although in general we might not care
to see the sugarContent of an instance £ of the FOOD
class, this becomes crucial when £ appears as filler for
the eats role of a diabetic person. Currently, such
difficulties can be resolved only by writing one-of-a-
kind special-purpose procedures, which use the appli-
cation program interface (API) to the KRS. For exam-
ple, one can retrieve the value restriction on the age
role by invoking get-~value-restriction(Joe,age);
and then check whether the answer returned is strictly
more specialized than the concept INTEGER, by using
the function concept—subsumes.

This is symptomatic of a more general problem with
KRSs in general, and Description Logics (DLs) in par-
ticular: Considerable effort has been expended in look-
ing for “good” languages in which to make assertions
to be stored in the knowledge base (for so-called TELL
operations) — languages which, for example, permit
only statements whose logical consequences are effec-
tively computable. In contrast, very little attention
has been paid to languages for asking questions (or for
describing answers), leaving this aspect to the proce-
dural interface. This reliance on a procedural solution,
rather than a declarative solution, is undesirable for
several reasons:

1. Declarative queries are preferable since they are
more concise, can be analyzed (e.g., for coher-
ence), can be optimized, etc. The advantages of
powerful declarative query languages have in fact
long been recognized and exploited in database
systems.

2. Declarative queries can also be cached, organized

and reused more easily, which is increasingly im-
portant for tasks such as data exploration and op-

timization [4, 5].

3. A query notation unrelated to either the TELL lan-
guage or to the structure of the objects is harder
for users to learn.

4. Even powerful query languages based on First
Order Predicate Calculus (FOPC), such as in
LooM[13], do not to support questions returning
concepts and formulas, such as the ones provided
by the API procedures.

We will propose a declarative language for querying
FR-KRSs that addresses many of the above issues. In
particular, queries will resemble concepts in a natural
way, and answers to queries can be concepts, or even
new descriptions in DLs, not just individual values.
We will show with examples that the precise notion of
“desired answer” is in fact not obvious, and will choose
to pursue our own research in the paradigm of concepts
in “structural subsumption” normal-form. In order to
develop and study query-answering algorithms, we will
need to take a detour to refine the notion of structural
subsumption introduced in [6]. Finally, we will de-
scribe some enhancements to the query language which
have been motivated by our initial practical applica-
tions [19, 4].

An earlier design, which lead in part to the ideas in
this paper, has been implemented for the CLASSIC sys-
tem [18] and has been used in an application to greatly
simplify the presentations and explanations of config-
urations [15).

2 Concepts and Queries

Frame-based knowledge base management systems
represent information using individuals, grouped into
concepts, and inter-related by binary relationships
called slots or roles. Concepts are related by a sub-
sumption/IsA relationship, written here as =—> , while
individuals are instances of concepts, written as —-.
Thus, we will write PERSON —> MAMMAL and Charles
—PERSON.

2.1 Description Logics

For concreteness, we shall use the syntax of a DL re-
sembling cLASsIC, which supports both primitive con-
cepts, such as BEAR, and composite ones. Structured,
composite concepts are built with so-called concept
constructors, and may be, among others, enumerations
of individuals (e.g., [one-of Amy Lulu}), or number and
type restrictions on roles. For example, the concept
PICKY-EATER, defined as [and [at-most 2 eats] [all
eats SWEET-FOOD]|, is intended to denote individuals
that have no more than two fillers for the eats role,
and all such fillers must be instances of the concept
SWEET-F0OD, defined elsewhere.

-16 -

Concept :=
ConceptName |
one-of Ind; ... Ind,] |
all Role Concept] |
at-least Integer Role] |
at-most Integer Role] |
fills Role Ind] |
min Integer] |
max Integer] |
and Concept ... Concept]
ConceptName ::= Defined Concept Identifier |
Primitive Concept Identifier
Role ::= Role Identifier
Ind ::= Individual Identifier

Table 1: Syntax of MiniDL

[CONCEPT DENOTATION
primitive A AT
one-of By,...,.B,] {BZ,...,BL}
min nj {deN|d> n
max nj deN|d< n
all p C] {d € AT | p*(d) C C}
some p C] {d € AT | p*(d) N C* # 0}
at-least n p) {d € A" | |p*(d)] > n}
at-most n p) {d € AT ||pT(d)] < n}
fills p B] {d € AT | BT € p*(d)}
and C D] CTn DT

Table 2: Semantics of MiniDL

The syntax of the language is given by the grammar
in Table 1. In Table 2, we provide the denotational
semantics of this DL fragment, using the notion of a
valuation Z that assigns a subset of a domain AZto
primitive concepts, and assigns a subset of AZ x A%
to primitive roles.

Finally, a particular KB contains, in addition to con-
cept declarations, information about the membership
of individuals in concepts, and their role fillers: “Amy
is a BEAR with at least 3 friends”, “Lulu’s age is
9”. Both of these can be recorded as membership as-
sertions: Amy—[and BEAR [at-least 3 friendsl],
Lulu—{fills age 9].

Systems based on DLs perform a number of opera-
tions on descriptions and individuals, such as checking
for consistency and “classifying” concepts into a sub-
sumption or IsA hierarchy, where D1 subsumes D2 iff
the denotation of D1 contains that of D2 in all possi-
ble interpretations. Thus, MAMMAL subsumes PERSON if
and only if every individual that is a PERSON is also a
MAMMAL in all possible interpretations.

2.2 Query Concepts

The conventional knowledge-level view of asking a
knowledge base KB some question is to determine
whether the query formula Q is logically entailed by
it: KB = Q. While this yields only “Yes” or “No”
as answers, a standard generalization for first-order
logic KBs is to ask queries with free variables, such
as Q(7z,?y); the answer is the set of valid substitu-
tions for the variables: { ¢ | ¢ maps FREE-VARS(Q)
to constants such that KB | o(Q) }, where ¢(Q)
stands for Q with every variable y replaced by o(y).
For example, given the FOPC KB { likes(Ann,Deb),
likes(Ann,Honey) }, the query likes(Ann,?x), re-
turns as answers the substitutions mapping 7x to Deb
and Honey respectively (denoted by { 7x—Deb } and
{ 7x—Honey }).

This suggests that we introduce variables (here, syn-
tactically distinguished by a preceding question mark)
for frame questions as well. To achieve our goal of
querying portions of frames or descriptions, we al-
low variables to appear anywhere identifiers or con-
stants may appear in the syntax of concepts (viz. Ta-
ble 1). For example, [at-least ?n friends] or [all
friends [fills 1liveAt ?x]] will be query concepts.
Such a query Q will be directed against a particular
individual i (written as i::Q) or concept D (written
as D::Q), so that the process of answering D::Q will
resemble the notion of matching. When such a query
concept is matched against an individual or concept,
the result will be a (set of) substitution(s), or failure,
in case no substitution can be found.

The following examples are intended to provide an ini-
tial, intuitive feeling for the notion of query answering.
Consider the knowledge base KB1= {

Lulu—[and BEAR [all friends NICE]],

Lulu—(fills age 9],

Lulu—[at-least 3 friends] }.
The match Lulu: [fills age ?x] should naturally
return the substitution ?x—9, while the match
Lulu: [all friends ?X] returns ?X—NICE.! More
generally, one can have complex query concepts, such
as

[and [at-least 7n friends]

[all friends [all age ?all]

which, when matched against Lulu, would result in
failure, since the nested match NICE::[all age 7a]
does not produce a substitution.

Clearly, this approach provides two of the advantages
we desired: the query language mirrors the natural
form of the knowledge base contents, and it allows
queries that return (portions of) frames, as in [all
friend ?X]. We do however need to be circumspect

!Note that variables are typed by context as matching
individuals, roles, concepts, integers, or sets thereof. To
facilitate reading, we use upper case variables for concepts
and lower case for everything else in our examples.

-17-

since matching is more complicated than it appears
at first glance. We will proceed by first presenting a
number of less obvious examples, and then examining
in greater detail two approaches based on structural
subsumption. We will return in the end to describe
some enhancements to the query language.

In the rest of this paper we will concentrate on the no-
tion of matching query concepts against concept de-
scriptions, rather than individuals, both because of
lack of space and because in several systems reasoning
about individuals can be reduced to reasoning about
concepts. (We have investigated matching query con-
cepts against individuals in a slightly different setting
in [14].)

2.3 On the semantics of matching

First, note that it would be very reasonable to ex-
pect the match [all pets NOTHING] [at-most
?n pets] to succeed with 7n—0. The meaning of
NOTHING is the empty set, thus [at-most 0 pets] is
semantically equivalent to [all pets NOTHING]. Sup-
pose we treat descriptions as terms, with concept
constructors as functors, so that [all pets NOTH-
ING] is represented as all(pets,NOTHING). A purely
syntactic notion of matching is then clearly unde-
sirable, since the standard unification of the terms
all(pets,NOTHING) and at-most(7n,pets) fails.

Even if we used unification modulo a theory of
concept equivalence, the result would not be satis-
factory, because the match of PICKY-EATER, whose
definition was [and [at-most 2 eats] [all eats
SWEET-F0OD]], against [all eats ?X] would fail, be-
cause the conjunct with the at-most restriction is
missing in the pattern. This match failure would pre-
vent us from using queries to extract interesting parts
of concepts, as we originally wanted.

We are therefore naturally led to consider the meaning
of C::Q as a request for a substitution ¢ such that C
is subsumed by o(Q). For example, given the concept
PICKY-EATER above and the query concept [all eats
?X], we can would like the substitution ?X+—SWEET~
FOOD since this substitution applied to the query con-
cept yields [all eats SWEET-FOOD], which subsumes
PICKY-EATER. However, even here we run into trou-
ble because the match PICKY-EATER:: [at-most ?n
eats] would return in addition to ?n—2, an infi-
nite number of substitutions, 7n—3, Tn—4, etc., since
[at-most 3 eats], etc., all subsume PICKY-EATER.
Yet, again, for the purpose of displaying part of PICKY-
EATER, we only want to see the first substitution. The
reason we would prefer the first is because of all the
substitutions in the infinite set, this one, when applied
to the query concept, results in the most specific con-
cept. Therefore, we propose the following as a base-
line definition:

Definition 1 Given query concept Q and description
D, the match D::Q succeeds with substitution o if and
only if D is subsumed by o (@), and there is no o’ such
that D is subsumed by o’(Q), with o’(Q) strictly sub-
sumed by o(Q).

Let us review now the possible results of matching a
query concept against a description.

Obviously, the match may fail because there is no
substitution o such that o(Q) subsumes D. But
it may also fail according to the above defini-
tion because there is no such minimal substitu-
tion. The simplest example of this case involves
individual matching: if we have the KB describ-
ing Amy as a bear with exactly one best friend,
namely herself, { Amy:BEAR, Amy—[fills bestFriend
Amy], Amy—[at-most 1 bestFriend] }, then it fol-
lows that Amy is an instance of the following sequence
of descriptions: [all bestFriend BEAR],

fall bestFriend [and BEAR [all bestFriend
BEAR]]], etc., each of which is subsumed by the pre-
vious one. Therefore, for the query [all bestFriend
7X], a substitution ¢ mapping ?X to any one of the
above descriptions provides a situation where Amy is
an instance of o[all bestFriend 7X], but there is no
most general lower-bound to this infinite descending
chain.

If we want to consider only concept subsumption,
the same problem arises in languages supporting
role-chain equality (same-as), where the conjunction
of [all bestFriend BEAR] and [same-as (best-
Friend) (bestFriend bestFriend)]] is subsumed
by every description in the above sequence.

When the match succeeds (still using Definition
1), there are once again a number of possibili-
ties. It may succeed with a single substitution,
as in the case of matches for query concepts like
(all p 7X] or [at-least ?n p]. Or it may suc-
ceed with multiple substitutions, as in the case when
we match [fills friend ?x] against [and [fills
friend Amy] [fills friend Lulul], where ?x—Amy
and ?x—Lulu both yield valid matches. In
fact, there may be circumstances where there are
an infinite number of minimal substitutions, as
in the case of matching [and [fraction-min ?7n]
[fraction-max ?n]] against [and [fraction-min
11 [fraction-max 1], which yields as answers sub-
stitutions for 7n of all rational numbers between a half

and two thirds.

In all these cases the multiple substitutions returned
by the match seem equally acceptable. However, con-
sider the match
[and BEAR YOUNG] [and BEAR ?X].

In this case, ?X—YOUNG and ?X—[and BEAR YOUNG]
are both valid substitutions according to our defini-
tion. In fact, so is ?X— [or YOUNG C] for any concept
¢ disjoint from BEAR, such as WOLF. The latter substitu-

-18-

tions seem undesirable, which would seem to indicate
the need for further restrictions on the substitutions
to be returned by a match; in this case, one might re-
quire that each variable be assigned as specific a value
as possible. However, the following example then be-
comes problematic: matching
[and [all width [min 3]]
fall length [max 4]]]
against
[and [all width [min ?n]]
[all length [max ?n]]]
would normally return substitutions 3 or 4 for 7n.
Yet this last definition would quite arbitrarily pick the
“smallest” value of the two, say 3 in this case.

Rather than further explore the intricacies of an ab-
stract specification of matching, we will turn to a the-
ory of normal forms for DLs. This will yield both a
particular approach to dealing with the issues above,
and algorithms for computing the matching substitu-
tions. Note that several other new operations on DLs,
such as least common subsumer [6] and concept dif-
ference [16], also required restriction to normal-form
in order to yield sensible results. However, this does
not preclude the possibility of future work on query
matching in a more general setting.

3 Structural subsumption with
normalized descriptions

In looking for a suitable theory of normal forms,
we note that the three DL systems widely used in
practice (BACK, CLASSIC, LOOM) are implemented
by first preprocessing each concept so that later
operations are made easy. This initial normaliza-
tion phase detects inconsistencies, and makes ex-
plicit all the implied facts or descriptions by con-
structing a normal form containing the most specific
forms of the different kinds of descriptions entailed.
For example, the normal form of the description
[at-most 0 p] might be and({ at-most(0,p),
all(p,NOTHING) }). For subsumption, it is these spe-
cific subterms that are used in a relatively straightfor-
ward procedure, which we call “structural subsump-
tion”.

Our version of structural subsumption (based on our
earlier work on least common subsumers [6, 2]) pro-
poses that every concept constructor k is to be viewed
as a term constructor with a single argument, which
is a value from some set D partially ordered by the
relationship <p (written as D=D). Structural sub-

sumption checking has the property that
k(a) = k/(B) is true iff k = k' and a <p .

The significance of this property is that since the nor-
mal form of a concept is usually a (conjunctively in-
terpreted) set of descriptions built with various other
constructors, one can restrict oneself to comparing ele-

ments built with the same constructor, without consid-
ering interactions between different kinds of construec-
tors. The purpose of the normal form is then to al-
low subsumption to be computed using only structural
comparisons of the above form. To assist this task,
normal forms are also required to be non-redundant
(e.g., in a set of values, none subsumes another).

Let us consider some examples of constructors and
their normal form supporting structural subsumption,
while at the same time introducing some refinements.

Our min concept constructor takes an integer as an
argument, with the ordering being >, since min(n)
= min(m) iff n > m. On the other hand, max also
takes a integer as an argument, but the ordering is <.
Since < and > are in fact inverses over the domain A
of numbers, we will find it essential later to recognize
this explicitly by picking one of them, say >, to be the
standard ordering for A/, and use a new, auxiliary term
constructor invert, to represent explicitly the cases
in which the inverted partial order is used. So [min
2] and [max 3] will have normalized form min(2)
and max(invert(3)), with min and max being said
to have type N2 and Invert(N'2) respectively. Of
course, the comparison rule for the invert operator
will be invert(a) <inyer: invert(f) iff < a.

Some description constructors, such as min, take
an argument that is a value from a “basic” par-
tial order, such as integers ordered by > (N2),
individuals ordered by equality (Znd~), primi-
tive concepts and roles ordered by subsumption
(PrimitiveConcept , PrimitiveRole =). (For
convenience, we will henceforth drop the partial order
superscript.)

Other constructors take a composite value as an argu-
ment. For example, the one-of constructor (used to
denote enumerated concepts) takes a set of individuals
as an argument, while all takes 2 arguments: the role
name and the concept. Since, we want each concept
constructor k to take a single value as an argument,
we shall extend the term notation used for concepts to
also describe composite values by introducing the set
and tuple functors. Thus, the normal form of [all p
€] will be all{tuple(p,C)), while the normal form of
[one-of 2 4 6] will be one-of(set({2,4,6})).

We must then extend the ordering < to compos-
ite domains. In Tupie(Diil,D;z), the values from
D1 x Dy are ordered by =<;upie according to component-
wise comparison: (71, 71)=tupte(n2,72) if and only if
n1=<1n9 and r;<,7r2. For example, the intuitively valid
subsumption [all children FRENCH] —= [all sons
EUROPEAN] shows that the all constructor is contra-
variant on the role argument, and hence its normalized
type is T'uple(Invert(PrimitiveRole),Concept). As a
result, we get the proof

[all children FRENCH]

-19-

CONCEPT
primitive A

Type of Normalized Arg.
Seto f(PrimitiveConcept)

one-of By,....Bn] I'mwert(Setof(Ind))

min n] N

max nj Invert(N)

all p C] Tuple(Invert(Role),Concept)
some p C] Tuple(Role, Concept)

at-least n p] Tuple(N, Role))

Tuple(Invert(N),Invert(Role))
Tuple(Role, Setof(Ind))

at-most n p]
fills p B]

and C D] Seto f(non-redundant terms built

with the above constructors)

Table 3: Normal Form for MiniDL

—> [all sons EUROPEAN]
iff
all(tuple(invert (children) ,FRENCH))
= all(tuple(invert (sons) ,EUROPEAN))
iff
tuple(invert(children) ,FRENCH)
= tuple(invert(sons) ,EUROPEAN)
iff
invert(children) < invert(sons),
and FRENCH < EUROPEAN
iff
sons == children, and FRENCH —> EUROPEAN

which is true, as desired.

For sets, the natural ordering is either C or D, with
one obtainable from the other by inversion: A C
B iff invert(A) D invert(B). For reasons to be-
come apparent later, it is convenient to choose D
as the basic ordering on sets. Therefore, since we
expect [one-of 2 4] —> [one-of 2 4 6], the con-
cept constructor one-of should take a value of type
Invert(Setof(Znd)) as its argument.

The argument of the and constructor is a set of de-
scriptions, and D gives exactly the right formula-
tion for and(set({CAT,BROWN})) to be subsumed by
and(set({CAT})). However, the elements of a set can
be values that are themselves ordered (e.g., descrip-
tions), and this has to be taken into account dur-
ing subsumption checking for set. In particular, for
and, we also expect and(set({CAT,BROWN})) to be
subsumed by and(set({FELINE})). Therefore, in gen-
eral we need to define the <;.; relationship for two
sets V and W as V<, W iff for every element z of W
there is an element y in V such that y<pz.

Table 3 summarizes the type of the normalized do-
mains associated with each of the concept constructors
in our example DL.

The following “structural <” algorithm embodies the
above ideas; it computes structural subsumption for
descriptions, as well as the <set, <tupte and <inyert
relationships, relying on the <p functions provided by
basic types B:

function structural<(a, B) {
if o and f§ are values in basic type B
(i.e., N,Ind,PrimitiveConcept,...) with
partial order comparep
then compareg(a,8)
elseif a=k(o’) & f=k(f’) where kis a
concept constructor
then structural=<(a’,f’)
elseif a=invert(a’) & F=invert(s’)
then structural<(8’,e’)
elseif a=tuple(el,a2) & A=tuple(1,52)
then structural<(a1,81) & structural<(a2,32)
elseif a=set(a’) & P=set(B’)
then for every e in # choose f in «’
where structural=<(f,e)
else fail }

In the above, choose x in S where P is a non-
deterministic operation, which fails if there is no value
in S satisfying property P.

Note that for some DLs there may be no normal
form yielding structural subsumption that is sound
and complete with respect to semantic subsumption,
or such a normal form may be very expensive to com-
pute. For this reason, sometimes the structural sub-
sumption relationship is incomplete with respect to the
semantic subsumption relationship.

We will henceforth consider the case when both
the concepts and queries are in normal form, and
in fact define subsumption to be the relation com-
puted between descriptions by structural<. Therefore
structural< computes D::Q in the case where Q has no
variables.

4 Direct matching with normal forms

Having defined structural subsumption for descrip-
tions and the concomitant normal form, we are now
ready to consider the extensions necessary to match
query concepts that have variables occurring in them.
We obtain the match(a,8) procedure to be used for
this task from the structural subsumption procedure
structural<(a,) by making several changes.

First, if one of the arguments of match is a variable,
then it is bound to the other argument to yield a sub-
stitution.

Second, we need to combine the substitutions returned
by the recursive calls. For this, we shall use a func-
tion combine, which in this initial simple case requires
that the substitutions agree exactly on all variables
on which both are defined. Thus, combine(cl,02)
signals failure if there is some variable ?x such that
o1(?z) # 02(?z), and otherwise returns o1 U 02.2

2We consider a substitution as a partial function from
variables to values, which can then be viewed as a set of

-20-

One additional complication arises because, accord-
ing to Definition 1, we need to return the most spe-
cific substitution realizing a match. To illustrate this
point, consider the concept constructor some, which
intuitively provides typed existential quantification:
[some friend TALL] denotes objects that have at
least one filler for the friend role that is an instance
of TALL. Consider the case of matching the query
Q=I[some friend [at-least ?n cars]] against the
conjunction of [some friend [and TALL [at-least
3

cars]]] and [some friend [and SHORT [at-least
5 cars]]]. Although both the substitutions ¢1:7n—5
and 05:"n—3 have the property that o(Q) subsumes
the concept to be matched, only oy should be re-
turned by match because [some friend [at-least 5
cars]] is itself strictly subsumed by [some friend
[at-least 3 cars]].

This difficulty needs to be handled in the matching of
sets: Originally, if set(a’) is to be matched by set(8’),
we would need to find for every e in 3’ some f in @’ so
that e matches f; however, if e contains variables, we
need to make sure that e matches one of the elements
of o which yields the most specific result. Similarly,
if it is f that has variables (because of an intervening
occurrence of invert), the match needs to return the
most general possible value, so that the inversion will
yield the most specific value later.3

As a result, we get the following algorithm for match-
ing query concepts against descriptions:

function match(e, 8) {
;; returns a matching substitution or signals failure
if (B 1is a variable)
then return substitution { f—o }
elseif (o is a variable)
then return substitution { a—p }
elseif o and B are values in basic type B
(i.e., N\,Znd,PrimitiveConcept,...) with partial
order comparep
then if comparep(e,f)
then return empty substitution
else fail
elseif a=k(o’) & B=k(B’) where kis a constructor
then match(a’,8%)
elseif a=invert(o’) & A=invert(3’)
then match(8’,a’)
elseif a=tuple(al,a2) & B=tuple(f1,52)
then return combine(match(al,81),match(a2,32))
elseif a=set(a’) & fP=set(f’)
then{result empty substitution;
for every e in B {
choose f in o’ where o:=match(f,e)

2-tuples.

3Note, that only one argument of match may have
variables, since originally the first parameter must be a
(variable-free) concept, and invert only swaps the two ar-
guments of match.

succeeds and o(e) is minimal
and o(f) is maximal;
result := combine(result,o)}
return result; }
else fail }

The algorithm just presented is sound, in the sense
that

Theorem 1 If match(D,Q) returns substitution o,
then o is a substitution that is a witness that D::Q
succeeds according to Definition 1.

Note that the match procedure collapses to structural
subsumption checking when the second argument has
no variables; in this case match(e,3) returns the empty
substitution if 8 subsumes «, and fails otherwise. Also,
in order to guarantee the minimality of the substitu-
tion, the proof of this theorem requires that the nor-
mal form of both the concept and the query be non-
redundant, in the sense that in any set, no distinct
pair of elements match each other.

As we shall see later, the algorithm is not com-
plete. Moreover, the non-determinism present in the
choose operation, and the possible relationships be-
tween choices at difference points, can cause complex-
ity problems:

Theorem 2 Consider the DL with concept construc-
tors and, all, and primitive concepts. The problem of
determining whether match(D, Q) succeeds in this lan-
guage is NP-complete. In contrast, both subsumption
and structural subsumption are polynomial time.

The proof encodes propositional satisfiability into the
choice of matches for role variables and primitive con-
cept variables.

The following theorem indicates several cases where
problems do not arise:

Theorem 3 The complexity of checking that match-
ing succeeds is proportional to the complexity of com-
puting structural subsumption with normalized con-
cepts (1) when no variable occurs more than once in
the query; (2) when the choose operation always yields
al most one successful result.

The first case is relevant since it corresponds to what is
known as “matching” with ordinary terms, which is a
linear time operation used in programming languages

such as SML.

5 Semantic matching with normal
form

In the preceding sections we have defined structural
subsumption and the normal form for descriptions that

-21-

supports it, and then modified this subsumption algo-
rithm to find matches when a query concept is passed
to it as an argument. The result resembles matching
of standard first-order terms except that we use sub-
sumption instead of identity in comparing constants,
and we treat the set construct specially, because we
have commutative/associative operators such as con-
junction. We now proceed to make matching closer to
the ideal specified in Definition 1.

To illustrate the problem, observe that the previ-
ous algorithm fails to match [and [all p ?X] [all q
?X]] against [and [all p DOG] [all q CAT]] even
though the substitution ?X~—ANIMAL would yield a sub-
suming concept. The solution is to relax the combi-
nation of substitutions: if ¢1(?X)=D0G, 02(7X)=CAT,
then combine(o1,52)(7X) should be ANIMAL, or in fact
any least common subsumer of CAT and DOG, such as
[and MAMMAL HOUSE—PET].

To find such substitutions, note that match(a,?x)
succeeds whenever 7x is some value greater than a,
while match(?x,b) succeeds whenever 7x is bound to
some value less than b. Since a variable may ap-
pear in several places, there may be multiple restric-
tions on it that act as lower or upper bounds. Hence
our algorithm will associate with a variable a pair
(A, B), representing the set of possible values { f |
a;=<f for each a; € A, f=<b for each b; € B } that
could be substituted for it.

Therefore the first two statements of match(w,3) are
refined as follows:

if (81is a variable)
then return S—({ o },{ })
elseif (o is a variable)
then return a—({ },{ 8 })
As a result, match(min(3),min(?n)) would call

match(3,7n), which would return 7n—({ 3 },{ }).

In turn, combine is modified to behave as follows:
if o1(?x) = (A1,B1) and 03(?x) = (A2, Ba) then
combine(c1,02)(?x) = (A1 U Az, By U Bs).

Finally, we need to extract the required substitutions
from the pair of sets returned by the modified match.
If match returned ?x —(4,{ }), we an answer sub-
stitution that maps ?x to any least upper bound of the
set A. (If no such value exists, then failure is signaled.)
Similarly, for ?x—({ },B) we return any greatest
lower bound of the set B. If the result of match maps
?x to (A4, B), where neither A nor B are empty, then
we return all substitutions ?x—f, where f is greater
than any value in A, and less than any value in B.

Therefore, if we match the query
concept set({ min(?n), max(invert(?n)) }) against
set({ min(2), max(invert(4)) }), we get the answer
n—({ 2}, {4}). This permits values between 2 and 4
inclusive to be substituted for 7n. Matching the same
pattern against set({ min(4), max(invert(2)) }) fails

because ({4 }, { 2 }) is not satisfied by any value.

A simple special case in which the above conditions
can be effectively dealt with is when all basic domains
are lattices, because in this case one must only keep
the least upper bound of A, and the greatest lower
bound of B.

Theorem 4 If all basic domains are either lattices
(i.e., least upper bound and greatest lower bound are
unique) or sets ordered by the identity relation, then
the enhanced match(D,Q) succeeds only if D: :Q accord-
wng to Definition 1, when C and Q are normalized.

6 Enhancements

Our experience with using query concepts shows that
the query language needs to be more expressive than
the language of stating facts and definitions in the
knowledge base. We briefly sketch several extensions
that we have found useful. (For more details, see {14].)

First, we allow restrictions on variable bindings via a
nested as clause. For example

Sally: [at-least ?n [as [max 4]] friends]
will match only if Sally’s lower-bound on the number
of friends is less than four. This is equivalent to a
conjunction of matches

Sally: [at-least ?n friends] & ?7n:[max 4]
but is syntactically preferable since it gives the query a
structure resembling that of the knowledge base itself.
As another example, the following query concept

[and [fills friends ?7x

as [and BEAR [fills age ?y]1]1]
fall friends ?Z as SMALL]]

when matched against an individual, say Sally looks
for friends of Sally who are known to be BEARs, and
also asks for their ages. It also retrieves the most
specific restriction on the friends slot which is itself,
subsumed by SMALL. We found this kind of nested as
clause particularly useful when printing or explaining
aspects of role fillers. For example when generating
a parts list for a stereo systemn configuration in [15],
we wanted to obtain the price information on the in-
dividual stereo components. The simple pattern that
should be matched against stereo systems is:

[fills component ?x as [fills price 7y]].

As illustrated above, we allow a qualifying query
Q to apply to variables that matched a concept,
as in [all friends ?Z as Ql, and, to be consis-
tent, the value bound to ?Z should be viewed as
an individual instance of some (meta)class described
by Q. For this reason, and following a standard
object-centered policy, we will think of descriptions
as meta-individuals in their own right, which have
their own roles and may belong to their own meta-
classes. Among others, we will posit for each meta-
individual a number of attributes concerning the IsA
hierarchy, such as strictlySubsumedBy , immedi-

.22

atelySubsumedBy , etc., as well as meta-classes such
as INTERESTING-CONCEPTS, DATABASE-ACCESS-ROLES,
and NAMED-DESCRIPTIONS. In this way, if we want to
see the value-restriction on the eats role only if it is
more specific than the generic FOOD concept, we match
against the query [all eats ?C as [fills strictly-
SubsumedBy FOO0D]].

The above mechanism can of course be used to retrieve

aspects of the IsA hierarchy. For example, the “parent

concepts” of class PICKY can be obtained by the query
PICKY :: [fills immediatelySubsumedBy 7X].

Following [7, 17], a different way of enhancing the
query language is to use a richer set of concept and role
constructors. Among others, in those FR-KRSs that
make the open-world assumption, it is possible for the
system to know that Sally has at least three friends,
while only knowing the identity of two of them. For
this reason, we include epistemic constructs [9] in the
language. (A simple way to do this is to include an
epistemic version of each constructor: [at-least-k 7n
p] would query how many fillers are currently known
for p. Our method, discussed in [14], includes known
as a role constructor and then extends the grammar
appropriately.) In addition, as a result of our expe-
riences with crLAssIc, we believe it is imperative to
include some form of extensibility in the language.
For this reason we propose a testMatch construc-
tor, which takes as arguments a function for matching
and a list of variables to bind: [testMatch compute-
and-bind~oldest~age-of-friends ’(7x)].

7 Related Work

We were inspired to use variables 7x in a language
dealing with description logics by work in databases,
as well as LooMm’s FOL assertion/query language, and
by other papers [8, 11] that have explored the combi-
nation of variables and frames in the context of Horn
logic. As mentioned earlier, Lenzerini et al [7, 9] con-
sidered the problem of querying DL KBs using other
concepts as queries, and showed various ways of us-
ing more expressive concept languages for asking ques-
tions. However, in all these cases variables were only
ranging over individuals, with roles and concepts be-
ing used as unary and binary predicates. It was thus
not possible to query parts of the frames themselves,
which was the most significant aspect of our initial
motivation — to reduce the amount of material being
displayed.

In the database area, object-oriented query lan-
guages such as XSQL [12] have notation which
facilitates the querying of path-expressions and
allows variables for attributes as well as val-
ues: PERSON X WHERE X.Residence[Y].City[’New
York’] AND X.R.City[W]. Our work extends this
through the use of subsumption as part of query
matching, and the much more general nature of

frames.

Finally, our earlier work on least common subsumers
for DLs [6] also used the notion of structural sub-
sumption. The present work considerably elaborates
the theory of normal forms presented in that paper.
The alternative theory of normal forms for structural
subsumption introduced in [16] might also have pro-
vided a good foundation for concept matching. Unfor-
tunately, that theory relies on the notion of “clausal
description” — one which has the property that if
A=and(A’,B) then either B is A or B is the universal
concept. This does not work for the one-of construc-
tor of cLASSIC, since [one-of 1 2]= [and [one-of
1 2 3] [one-of 1 2 4]] , thus, there would be no
normal form for one-of.

8 Desiderata Revisited

We have introduced a declarative language for in-
quiring about information in FR-KRSs which support
notions such as roles or slots, inheritance, subsump-
tion, etc. As desired, the query language is derived
from the standard language for telling information to
the KB, mostly by introducing variables for all user-
specified identifiers. This query (or ASK) language can
be used to “decompose” a description or frame into its
various components in a uniform, declarative manner
rather than using a long list of procedures. For ex-
ample, PERSON: : [all friends ?7X] accesses the all-
restriction on the friends role of PERSON, in a way
that was formerly possible only using function calls
such as get-all-restriction(PERSON,friends).

Returning to our initial motivation, query con-
cepts can be used to set up “masks” that work
as filters and provide only the interesting infor-
mation for display. In our implemented system
this is done by attaching a set of query con-
cepts to a frame? so that only portions matched
by some query concept are shown or explained.
Thus, we can avoid obvious information about
what restrictions apply to livingParents by using
the query concepts [all livingParents ?X as [fills
strictlySubsumedBy PERSON]] and [at-most ?n
[as [max 1]] livingParents]; the former suc-
ceeds only if the type constraint on livingParents
is more specialized than PERSON, while the latter suc-
ceeds only if there are fewer than 2 parents.

Similarly, although the query concept describing the
aspects to be printed for FOOD would not have a part
matching the role sugarContent, we can require to
see this for diabetics by associating [all eats [fills
sugarContent ?x]] with the class DIABETIC.

We claim that the approach is applicable in general to

“There is inheritance and combination of such query
concept filters. Also, different query concepts may be used
for explanation than those used for printing objects.

-23-

FR-KRSs. For example, the KRL [1] frame specified
as

PATIENT unit specialization
<self (a PERSON)>

<treatedBy (a DOCTOR with locations= (item NJ))>

can be queried by

< treatedBy (a ?X with 7r = (item 7v))>
Additionally, a KEE [10] frame of the form

PATIENT with slot treatedBy
[ValueClass=DOCTOR,
Cardinality.Min=2,
Values=Kildare]
would be queried by

slot treatedBy [ValueClass=7X].

We have presented the initial exploratory steps con-
cerning the notion of query concepts. Several other sig-
nificant questions need to be addressed, including the
treatment of the same-as construct in structural sub-
sumption, the normalization of query concepts them-
selves, and the process of answering queries in DLs
that do not use structural subsumption. One intrigu-
ing idea is to think of a query concept Q as a meta-
concept with denotation D(Q)={ D | match(D,Q) suc-
ceeds }. This permits us to organize query concepts
in a subsumption hierarchy defined as Q1 = Q2 iff
D(QL) CD(Q2). One reason this is interesting is be-
cause the subsumption hierarchy of ordinary queries
has been found useful in the past (e.g., [5]). More-
over, this notion may be related to matches of queries
against queries, Q1::Q2, which resembles the notion of
unification extended with subsumption reasoning.

In conclusion, in addition to having proposed and suc-
cessfully used a mechanism of clear benefit to FR-
KRSs, we hope that the motivation and subtleties of
query concept semantics and matching presented in
this paper may lead to new directions of research for
DLs; among others, we point out that query concepts
are the natural counterparts of polymorphic types in
programming languages, which have been extensively
studied.

Acknowledgment

We are very grateful to R. Brachman, W. Cohen, H.
Hirsh, H. Levesque, L. Padgham, and P. Patel Schnei-
der for their comments on earlier versions of this paper.
Charles Isbell has provided highly valued implemen-
tation assistance for the procedural version of ”print
masks”. This research was supported in part by NSF
Grant IRI-9119310.

References

[1] D. Bobrow, T. Winograd, “KRL: another perspec-
tive”, Cognitive Science, 3(1), pp.29-42, 1979.

(2]

(3]

[4]

(5]

(6]

(7

[8]

9]

[10]

[11]

(12]

(13]

(14]

(15]

(16]

(17]

A.Borgida, ‘Structural Subsumption: What is it and
why is it important?’,1992 AAAI Fall Symposium:
Issues in Description Logics, pp.14-18.

A. Borgida, R. J. Brachman, D.L. McGuinness, and
L. Alperin Resnick. CLASSIC: A Structural Data
Model for Objects. In Proc. SIGMOD’89, Portland,
Oregon, June 1989, pp. 59-67.

R. Brachman, P.Selfridge,
L.Terveen, B.Altman, A. Borgida, F. Halper, T.Kirk,
A.Lazar, D.McGuinness, L.Resnick, “Knowledge rep-
resentation support for data archaeology”, Int. J.
of Intelligent and Cooperative Information Systems
2(2), June 1993, pp.159-186.

M.Buchheit, M. Jeusfeld, W. Nutt, and M. Staudt,
“Subsumption between queries in object-oriented
databases”, Information Systems 19(1), pp.33-54,
1994.

W. Cohen, A. Borgida, and H. Hirsh, “Computing
least common subsumers in description logics”, Proc.
of AAAI'92, San Jose, CA., May 1992.

M. Lenzerini, A. Schaerf, ‘Concept Languages as
Query Languages’, Proc. AAAI’91, pp 471-476, 1991.

Donini, F., Lenzerini, M., Nardi, D., Schaerf, A. “A
hybrid system integrating Datalog and concept lan-
guages”, AAAI Fall Symp. on Principles of Hybrid
Reasoning, 1991.

Donini, F., Lenzerini, M., Nardi, D., Nutt, W.,
Schaerf, A., ‘Queries, Rules and Definitions as Epis-
temic Sentences in Concept Languages’, Founda-
tions of Knowledge Representation and Reasoning,
Springer LNAI 810, pp 111-132, 1994,

R. Fikes, T. Kehler, “The role of frame-based rep-
resentation in reasoning”, CACM 28(9), September
1985, pp.904-920.

Levy, A., Rousset., M.-C., ‘CARIN: A Representa-
tion Language Combining Horn Rules and Descrip-
tion Logics’, Proceedings of the International Work-
shop on Description Logics - DL-95, pp 44-51, Roma,
Ttaly, 1995

M. Kifer, Won Kim, Y. Sagiv: Querying Object-
Oriented Databases. Proc. SIGMOD’92, pp.393-402.

R. M. MacGregor and R. Bates. The LooM Knowl-
edge Representation Language. Technical Report
ISI/RS-87-188, USC/Information Sciences Institute,
Marina del Ray, CA, 1987.

D. L. McGuinness. Explanation in Description Log-
ics. Rutgers University, PhD thesis, 1996.

D. L. McGuinness, L. Alperin Resnick, and C. Isbell.
Description Logic in Practice: A crassic Applica-
tion. In Proc. IJCAI’95, Montreal, 1995.

G. Teege, “Making the Difference: A Subtraction Op-
eration for Description Logics.” Proc. KR-94, Bonn,
Germany, {May, 1994), pp.540-550.

Patel-Schneider, P. F., Brachman, R. J., and
Levesque, H. J., “ARGON: Knowledge representa-
tion meets information retrieval”, in: Proceedings
First Conference on Artificial Intelligence Applica-
tions, Denver, Colorado (1984) 280-286.

-24 -

[18]

(19]

L. Alperin Resnick, A. Borgida, R.J. Brachman,
D.L. McGuinness, P.F. Patel-Schneider, C. Isbell,
and K.Zalondek. cLASSIC description and reference
mannal for the Common Lisp implementation: Ver-
sion 2.3. Al Principles Research Department, AT&T
Bell Laboratories. 1995.

Wright, J. R., Weixelbaum, E. S., Brown, K., Veson-
der, G. T., Palmer, S. R., Berman, J. 1., Moore, H. H.,
A knowledge-based configurator that supports sales,
engineering, and manufacturing at AT&T Network
Systems. In Proceedings of the Innovative Applica-
tions of Artificial Intelligence Conference, pp.183-
193, 1993. A version of this paper also appears in
Al Magazine, 1993, pp. 69-80.

