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Abstract

The goal of this paper is to describe and
thoroughly test a decision procedure, called
KSAT, checking satisfiability in the termino-
logical logic A£C. KSAT is said to be SAT-
based as it is defined in terms of a deci-
sion procedure for propositional satisfiability
(SAT). The tests are performed comparing
KSAT with, among other procedures, KRIS,
a state-of-the-art tableau-based implementa-
tion of a decision procedure for ALe. KSAT
outperforms KRIS of orders of magnitude.
Furthermore, the empirical results highlight
an intrinsic weakeness that tableau-based de-
cision procedures have with respect to SAT-
based decision procedures.

1 INTRODUCTION

The goal of this paper is to describe and thoroughly
test a new decision procedure, called KSAT, checking
satisfiability in the terminological logic .A~:C, as de-
fined in (Schmidt-Schaut3 & Smolka 1991), comprising
Boolean operations on concepts and value restrictions,
and not restricted to CNF form.1

As it is well known, ~£C is a notational variant of
K(m), that is, K with m modalities (Schild 1991).2

The main idea underlying the definition of KSAT is
that a decision procedure for satisfiability in K(m)

1KSAT, the test code and all the results presented
in this paper are available via anonymous FTP at
ftp.,,rg, dist. unige, it in the cUrectory
pub/mrg-systems/ksat/ksat 1.

2In this paper we always refer to K(m) rather than 
.A£C. In particular, we speak of wits rather than concepts,
modalities rather than roles, and so on. K(m)’s syntax
is simpler than .A£C’s. Notice however that the current
implementation of KSAT works with .A£C’s syntax.
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(K(m)-satisfiability) can be defined in terms of a 
cision procedure for propositional satisfiability (SAT).
As a matter of terminology, we call SAT-based all the
decision procedures whose definition is based on this
idea.3

KSAT outperforms all the decision procedures and sys-
tems for terminological and modal logics we have been
able to acquire. In this paper we compare KSAT with
two of them. The first is a tableau-based procedure --
due to B. Nebel and E. Franconi -- which is essentially
a straightforward implementation of the algorithm de-
scribed in (Hollunder, Nutt & Schmidt-Schaut3 1990).
This procedure is called TABLEAU from now on. 4 The
second is the state-of-the-art system KRIS described
in (Hollunder et al. 1990, Baader, Franconi, Hollun-
der, Nebel & Profitlich 1994). 5 There are many rea-
sons why a system can be more efficient than another.
A crucial one is the "smartness" of the implementa-
tion. The implementation of KSAT we use is naive in
many respects, e.g., it is in Lisp and it does not use
fancy optimized data structures. We still have to push
our work in this direction. KSAT is smarter than its
competitors for a much more interesting reason. Both
TABLEAU and KRIS are tableau-based. As Section 4
describes in detail, tableau-based decision procedures
have an intrinsic weakness which makes it very hard if
not impossible to be as efficient as SAT-based decision
procedures. In our opinion, this is the most interesting
theoretical result of this paper.

3Although this is beyond the goals of this paper, it
is worth noticing that this methodology is general, and
can be extended to the other normal and (we think) non
normal logics, following the methodology and results pre-
sented in (Giunchiglia & Serafini 1994, Giunchiglia, Ser-
afini, Giunchiglia & Fi’ixione 1993) (but see also, e.g.,
(Fitting 1983, Massacci 1994)).

4TABLEAU is available via anonymous FTP at
ftp. mrg. dist. unige, it in pub/mrg-systems/t ableaLL

5KRIS is available via anonymous FTP at
ftp. dfki .uni-sb. de in /pub/tacos/KRIS.

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



The paper is structured as follows. In Section 2 we
present the algorithm implemented by KSAT. In Sec-
tion 3 we briefly survey our test methodology, origi-
nally defined in (Giunchiglia & Sebastiani 1996). This
material is needed for a correct understanding of the
experimental results reported later. In Section 4 we
perform a comparative analysis of a first set of exper-
imental results. This analysis allows us to show why
SAT-based decision procedures are intrinsecally more
efficient than tableau-based decision procedures. Fi-
nally, in Section 5 we perform an exhaustive empirical
analysis of KSAT and KRIS, that is, the fastest SAT-
based and the fastest tableau-based decision procedure
at our disposal. This allows us to confirm the analysis
done in Section 4 and, looking at the KSAT results,
to get a better understanding of where the hardest
cases are. Among other things, this allows us to reveal
what looks like a phase transition (Mitchell, Selman
& Levesque 1992, Williams & Hogg 1994). To our
knowledge this is the first time that this phenomenon
has been found in a modal logic.

The analysis presented in this paper builds on and
takes to its conclusion the work preliminarily de-
scribed in (Giunchiglia & Sebastiani 1996). It im-
proves on the previous material in three important
aspects. Let us call KSAT0 the decision procedure
presented in (Giunchiglia & Sebastiani 1996) (called
KSAT in (Giunchiglia & Sebastiani 1996)). s First, 
algorithm and its heuristics, are extended from dealing
with a single modality to dealing with multiple modal-
ities. Second, the implementation is improved. KSAT
is much faster than KSAT0 (in our tests, up to two or-
ders of magnitude, see Sections 4 and 5). This has been
obtained essentially by adding an initial phase of wff
preprocessing. Other -- relatively minor-- implemen-
rational variations can be understood by comparing
the code of the two systems. Third, and more impor-
tant, the testing in (Giunchiglia & Sebastiani 1996)
was not exhaustive and only compared KS^T0 with
TABLEAU. This made us miss some important points,
and the phenomena described in Sections 4 and 5 went
unnoticed. Furthermore, the increased efficiency of
KSAT0 with respect to TABLEAU in (Giunchiglia 
Sebastiani 1996) was wrongly motivated by the effi-
ciency of the propositional decision procedure. KSAT
and KSAT0 (when applied to a single modality) im-
plement essentially the same algorithm. KSAT is only
a more efficient implementation. The same applies to
KRIS and TABLEAU. As the results in Section 5 show,

8KsAT0, the test code and all the results pre-
sented in (Giunchiglia & Sebastiani 1996) are avail-
able via anonymous FTP at ftp.mrg.dist.unige.it in
pub/mrg-systems/ksat/ksatO.
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the move from KSAT0 to KSAT, or from TABLEAU to
KRIS causes an increase in efficiency, but it does not
change the shape of the efficiency curves, as it happens
in the move from TABLEAU to KSAT0 (or from KRIS
to KSAT).

2 THE ALGORITHM

Let us write or to mean the r-th modality. Let us call
atom any wff which can not be decomposed proposi-
tionally, and modal atom any atom of the form ore.
Let ~ be the modal wff to be proved satisfiable. The al-
gorithm for testing K(m)-satisfiability follows two ba-
sic steps, the first implementing the propositional rea-
soning, the second implementing the modal reasoning:

1. Using a decision procedure for propositional sat-
isfiability, assign a truth value to (a subset of) the
atoms occurring in ~ in a way to make ~ evaluate
to T. Let us call truth assignment (for ~o) the re-
sulting set/~ of truth value assignments. We say
that # propositionally satisfies ~. v Then # is of
the form

ju = {Olall -- T, [21a12 -- T,...,

o1#11 = F, al#12 = F,...,

OrnO#rn1 : T, [:]rnO~rn2 : T, . ..,

Om#m~ = F, n,~Z,~2 = F,...,
AI = T,A~ = T,...,
An+l = F, An+2 = F,...}

Notationally, from now on we write/~ as

/’~ -- Ar-Ilali A A’~DI’~’lJ A
i .#

... (i)

A ^ A ^
i j

s conj unc-where 7 = A~=i A/, A Ah=R+t -~Ah is a
tion of propositional literals. Furthermore we use
the greek letters #, ~} to represent truth assign-
ments.

2. Prove that the input wff ~o is K(m)-satisfiable 
finding (among all the possible truth assignments)
a K(m)-satisflable truth assignment/~ of form 
in (i). # is K(m)-satisfiable iff the restricted 
signment

= A ^ (2)
i j

7Notice that it is not necessary for a truth assignment
to assign all the atoms of ~o. For instance, {al¢l -- T}
propositionally satisfies D1 ¢1 V D2¢2.



function KSAT(Cp)
return KSATw (¢p, T);

function KSATw (¢p, D)
if ~ = T /* base */

then return KSATA(p);
if ~ ---- F /* backtrack */

then return False;
if {a unit clause (l) occurs in ~o} /* unit */

then return KSATw(assign(l, ~o), p A l);
l := choose-literal(~o); /* split */
return KsAww(assign(l, ~o),~ Al) or

KSATw(assign(~l, ~), p A -~l);

function KSATA(Ai Dl~li ^ AS "OlZ,S ^... ̂  A, Om m, ̂ AS .OmZmj ^
for any box index r do

if not KSATRA (AI [::]rari A At "~Dr~rj)
then return False;

return True;

function KSATRA (Ai DrOlri ^ As ~Qr]~rj )

for any conjunct "-~Or~j" do
if not KSAT(Ai O[ri ^ "~rj )

then return False;
return True;

Figure 1: The basic version of KSAT algorithm.

is K(m)-satisfiable, for every r. pr is K(m)-
satisfiable iff the wff

= A ^ (3)
i

is K(m)-satisfiable, for every j. If no truth assign-
ment is found which is K(m)-satisfiable, then ~ 
not K(m)-satisfiable (K(m)-unsatisfiable).

The two steps recurse until we get to a truth assign-
ment with no modal atoms.

The algorithm is implemented by the function KSAT in
Figure 1. KSAT takes in input a modal propositional
wff ~o and returns a truth value asserting whether
~o is K(m)-satisfiable or not. KSAT invokes directly
KSATw (where "w" stands for "Wff"), passing as ar-
guments ~o and the truth value T (i.e., by (1), 
empty truth assignment). KSATw tries to build 
K(m)-satisfiable truth assignment p satisfying ~o. This
is done recursively, according to the following steps:

¯ (base) If ~o = T, then p satisfies ~o. Thus, 
p is K(m)-satisfiable, then ~o is K(m)-satisfiable.
Therefore KSATw invokes KSATA(p) (where 
stands for (truth) Assignment). KSATA 
turns a truth value asserting whether # is K(m)-
satisfiable or not.

¯ (backtrack) ff ~o = F, then # can not be 
truth assignment for ~o. Therefore KSATw returns
False.
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(unit) If a literal l occurs in ~o as a unit clause,
then I must be assigned T. s To obtain this,
KSATw is invoked recursively with arguments the
wff returned by assign(?, ~o) and the assignment
obtained by adding I to #. assign(~, ~o) substitutes
every occurrence of l in ~o with T and evaluates
the result.

(split) If none of the above situations occurs,
then choose-literal(~o) returns an unassigned lit-
eral I according to some heuristic criterion. Then
KSATw is first invoked recursively with argu-
ments assign(l,~o) and p ^ I. If the result is
negative, then KSATw is invoked with arguments
assign(-~l, ~o) and p A -’,l.

KSATA (p) invokes KSATRA (/~r) (where "/~A" stands
for Assignment Restricted to one modality) for any
index r such that Or occurs in #. KSATRA returns a
truth value asserting whether Pr is K(m)-satisfiable 
not.

The correctness and completeness of KSAT can be eas-
ily seen, for instance by noticing the close parallel with
Fitting’s tableau described in (Fitting 1983). It 
important to notice that KSATw is a variant of the

8A notion of unit clause for non-CNF propositional wffs
is given in (Armando & Giunchiglia 1993). More generally,
(Armando & Giunchiglia 1993) and (Sebastiani 1994) 
how decision procedures for CNF formulas can be modified
to work for non-CNF formulas



non-CNF version of the Davis-Putnam-Longemann-
Loveland SAT procedure (Davis & Putnam 1960,
Davis, Longemann ~ Loveland 1962) (DPLL from now
on), as described in (Armando & Giunchiglia 1993).
Unlike DPLL, whenever an assignment /~ has been
found, KSATw, instead of returning True, invokes
KSATA(#). Essentially, DPLL is used to generate
truth assignments, whose K(m)-satisfiability is recur-
sively checked by KSATA. We have implemented the
algorithm described in Figure 1 as a procedure, also
called KSAT, implemented in Common Lisp on top
of the non-CNF DPLL decision procedure described
in (Armando ~ Giunchiglia 1993). DPLL is well
known to be one of the fastest decision procedures
for SAT (see, e.g., (Buro ~ Buning 1992, Uribe 
Stickel 1994)). However the implementation we use,
though relatively fast, is much slower than the state-
of-the-art SAT decision procedures (see, e.g., (Buro 
Buning 1992, Zhang & Stickel 1994)). The basic ver-
sion of the algorithm described in Figure 1 is improved
in the following way. First, all modal atoms are in-
ternally ordered. This avoids assigning different truth
values to permutations of the same sub-wffs. Secondly,
KSATRA is implemented in such a way to "factorize"
the common component Ai ari in searching truth as-
signments for Ai ~ri A’~/~rl, Ai art A-~2, .... Finally,
KSATw is modified in such a way that KSATA is (op-
tionally) invoked on intermediate assignments before
every split. This drastically prunes search whenever
unconsistent intermediate assignments are detected.
These topics are described in detail in (Giunchiglia
& Sebastiani 1996). More recently we have also intro-
duced a form of preprocessing -- essentially, a recur-
sive removal of duplicate and contradictory subwffs --
of the input formulas.

3 THE TEST METHOD

The methodology we use generalizes the fixed-clause-
length model commonly used in propositional SAT
testing (see, e.g., (Mitchell et al. 1992, Buro & Buning
1992)).

Let a 3CNFK(m) wff be a conjunction of 3CNFK(m)
clauses. Let a 3CNFK(rn) clause be a disjunction 
three 3CNFK(rn) literals, i.e., 3CNFK(m) atoms 
their negations. Let a 3CNFK(m) atom be either 
propositional atom or a wit in the form D~C~, C~ be-
ing a 3CNFK(m) clause. Then 3CNFK(m) wffs 
randomly generated according to the following param-
eters:

(i) the modal depth 

(ii) the number of distinct boxes 
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(iii) the number of clauses 
(iv) the number of propositional variables 

(v) the probabilityp with which any randomly gener-
ated 3CNFK(m) atom is propositional. (p estabil-
ishes thus the percentage of propositional atoms
at every level of the wff tree.)

Notice that, if we set d -- 0, we have the standard
3SAT test method (Mitchell et al. 1992).

For fixed N, d, m and p, for increasing values of
L, a certain number (100, 500, 1000...) of random
3CNFK(m) wffs are generated, internally sorted, and
then given in input to the procedure under test. Satis-
fiability percentages and mean/median CPU times are
plotted against the L/N ratio.

Similarly to the propositional 3CNF case, the method-
ology proposed above presents three main features.
First, the method is very general: 3CNFK(m) wits
represent all K(m) wffs, as there there is a K(m)-
satisfiability-preserving way of converting any K(m)
wff into 3CNFK(m). Second, the usage of 3CNFK(m)
form minimizes the number of parameters to handle.
Finally, the parameters L and N allow for a coarse
"tuning" of both the satisfiability probability and the
hardness of random 3CNF modal wffs, so that it is
possible to generate very hard problems with near 0.5
satisfiability probability.

4 TABLEAU-BASED VS.
SAT-BASED PROCEDURES

In the tests described in this section we have tested
and compared TABLEAU, KRIS, KSAT0 and KSAT
on the same group of 4,000 random formulas, with
d = 2, m = 1, N = 3, p = 0.5, L E {N...40N),
100 samples/point. These values have been cho-
sen as in the analysis described in (Giunchiglia 
Sebastiani 1996) they gave the highest execution times
with both TABLEAU and KSAT0. The range N... 40N
for L has been chosen empirically to cover coarsely
the "100% satisfiable - 100% unsatisfiable" transition.
As a general test rule we have introduced a timeout
of 1000s on each sample wff. If the decision proce-
dure under test exceeds the timeout for a given wff,
a failure value is returned and the CPU time value
is conventionally set to 1000s. Furthermore, we have
stopped running the whole test whenever more than
50% samples (e.g., 50 out of 100 samples) have taken
more than 1000s each to execute. These two choices
have caused a relevant reduction of the testing time.
Figure 2 (left) presents the median CPU time plots for
all four systems. (We compare median values rather
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Figure 2: d = 2, m = 1, N = 3, p = 0.5, L = N...40N. Left: TABLEAU, KRIS, KSAT0 and KSAT. Median
CPU time, 100 samples/point. Right: KSAT. Normalized plots of Median CPU time, Median # of DPLL calls,
satisfiability ratio, 1000 samples/point.

than mean values, as the former are much less sensitive
to the noise introduced by outliers.) Notice the loga-
rithmic scale on the vertical axis. In Figure 2 (right)
we plot respectively the median CPU time, the median
number of DPLL calls and the satisfiability percentage
curves obtained by running KSAT on the same prob-
lem above, with 1000 sample wffs/point. In Figure 2
(right) the curves are all normalized to 9

Four observations can be made, given below in increas-
ing order of importance.

First, improving the quality of the implementation,
e.g., from TABLEAU to KRIS or from KSAT0 to KSAT,
may introduce good quantitative performance im-
provements. In fact, KRIS reaches the time bound at
the 10th step, while TABLEAU reaches the time bound
at the 7th step, about two orders of magnitude above
the corresponding KRIs value. Similarly, KSAT0 has a
maximum at the 14th step, more than 2 orders of mag-
nitude above the corresponding KSAT value. However,
and this is the second observation, improving the qual-
ity of the implementation does not seem to affect the
qualitative behaviour of the procedures. In fact, both
the TABLEAU and KRIS curves present a supposedly
exponential growth with the number of clauses, while
both KSAT0 and KSAT curves flatten when the number
of clauses exceeds a certain value.

Third, independently from the quality of implemen-
tation, KSAT and KSAT0 quantitatively outperform

9The tests in Figures 2 (left) and 5 have been com-
piled and run under Allegro CL 4.2 on a SUN SPARCI0
321~ workstation. The test in Figure 2 (right) has been com-
piled and run under AKCL I. 623 on another SUN SPARCI0
32M workstation. The tests in Figure 4 have been com-
piled and run under Allegro CL 4.1 on two identical SUN
SPARC2 32~ workstations.
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TABLEAU and KRIS. For instance, the performance
gap between KSAT and KRIS at the 10th step is about
4 orders of magnitude. Moreover, the extrapolation
of the KRIS curve suggests that its value -- and the
performance gap with KSAT -- would reach several or-
ders of magnitude for problems at the right end side of
the plots. To support this consideration, we ran KRIS
on 100 samples of the same problem, for L - 40N.
No sample wff was solved within the timeout. When
releasing the timeout mechanism, KRIS was not able
to end successfully the computation of the first sample
wff after a run of one month. Fourth, and most impor-
tant, independently of the quality of implementation,
KSAT and KSAT0 qualitatively outperform TABLEAU
and KRIS. In fact, while TABLEAU and KRIS present a
supposedly exponential growth against the number of
clauses, both KSAT0 and KSAT curves present a poly-
nomial growth. In particular, the KSAT CPU time
curve (like that of KSAT0) results from a combina-
tion of (i) a linear component and (ii) an easy-hard-
easy component, centered in the satisfiability transi-
tion zone. Both components above are straightforward
to notice in Figure 2 (right). The former is due to the
preprocessing and to the linear-time function assign,
which is invoked at every DPLL recursive call. The
latter represents the number of recursive DPLL calls,
i.e., the size of the tree effectively searched.

The quantitative and qualitative performance gaps
pointed out by the third and the fourth observation
above are very important and deserve some explana-
tion. Let us consider for instance KSAT and KRIS.
Both procedures work (i) by enumerating truth as-
signments which propositionally satisfy the input wit
and (ii) by recursively checking the K(m)-satisflability
of the assignments found. Both algorithms perform
the latter step in the same way. The key difference is



F

×/%×x
Figure 3: Tableau for the wff F = (a V -1/3) A (tr V fl) A (-~a V -1/3).

in the first step, that is, in the way KSAT and KRIS
handle propositional inference.

In KRIS truth assignments are (implicitly) generated
as branches of an analytic propositional tableau, that
is, by the recursive application of the rules:

~1 A ~2 (A-rule) ~1 Y (Y-rule) (4)

and of the other rules for {-"V, -~A, D, -" D, -"-"}. Ana-
lytic propositional tableaux perform what we call syn-
tactic branching, that is, a branching on the syntactic
structure of ~. As widely discussed in (D’Agostino
1992, D’Agostino & Mondadori 1994), any applica-
tion of the V-rule generates two subtrees which are not
mutually inconsistent, lo that is, two subtrees which
may share propositional models. The set of truth as-
signments enumerated by propositional tableau pro-
cedures is intrinsically redundant, and may contain
many duplicate and/or subsumed assignments. As a
consequence, the number of truth assignments gener-
ated grows exponentially with the number of disjunc-
tions occurring positively in ~ (in our tests, the num-
ber of clauses L), although the actual number of non-
redundant assignments propositionally satisfying ~ is
much smaller. This redundancy is a source of a high
degree of inefficiency when using analytic tableaux for
propositional satisfiability.

Things get much worse in the modal case. Unlike
the propositional case -- where tableaux look for one
assignment satisfying the input formula- in K(m)
propositional tableaux enumerate all the truth assign-
ments, which must be recursively checked for K(m)-
consistency. (The number of assignments may be

1°As pointed out in (D’Agostino 1992, D’Agostino 
Mondadori 1994), in Analytic tableaux rules are unable
to represent bivalence: "every proposition is either true or
false, tertium non datur". This is a consequence of the
elimination of the cut rule in cut-free sequent calculi, from
which analytic tableaux are derived.
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huge: up to ten thousands in our tests.) This re-
quires checking recursively (possibly many) subwffs 
the form Ai ari A flj of depth d- 1, for which a propo-
sitional tableau will enumerate truth assignments, and
so forth. Any redundant truth assignment enumerated
at depth d introduces a redundant modal search tree
of depth d. Even worse, this propositional redundancy
propagates exponentially with the depth d, following
the analysis of the subwffs of decreasing depth.

Example 4.1 Consider the simple wff

r = v A v A v

where a and fl are modal atoms, and let d be the
depth of F. The only possible assignment satisfying
F is # = aA-./3. Look at Figure 3. The V-rule is
applied to the three clauses occurring in F in the or-
der they are listed, and two distinct but identical open
branches are generated, both representing the assign-
ment #. Suppose now that # is not K(m)-consistent.
Then the tableau expands the two open branches in
the same way, until it generates two identical (and
possibly big) closed modal sub-tableaux T of depth
d, each proving the K(m)-inconsistency of/z. This
phenomenon may repeat itself at the lower level in
each sub-tableaux T, and so forth. For instance, if
c~ = D((a’ V -~/3’) A (a’ V/3’)) and /3 --- D(a’ A/3’),
then at the lower level we have a wff Ft of depth d - 1
analogous to F. This propagates exponentially the re-
dundancy with the depth d.

Notice that, if we considered the wff

K

r v A V/3d A V
i=l

the tableau would generate 2K identical truth assign-
ments #K = A~ tr~ A -./3~, and things would get expo-
nentially worse. []

In SAT-based procedures truth assignments are gen-



erated one-shot by a SAT decision procedure. 11 SAT-
based procedures perform a search based on what we
call semantic branching, that is, a branching on the
truth value of proper subwffs of ~o. Every branch-
ing step generates two mutually uncoasistent subtrees.
Because of this, SAT procedures always generate non-
redundant sets of assignments. This avoids any search
duplication and, recursively on d, any exponential
propagation of inefficiency.

Example 4.2 Consider the wff r in Example 4.1. A
SAT-based procedure branches asserting ~ = T or ~ =
F. The first branch generates a h-~13, while the second
gives -~aA-,/3A/3, which immediately closes. Therefore,
only one instance of the assignment # = ~ A -~/3 is
generated. The same applies recursively to #K. []

A propositional wff ~0 can be seen in terms of a set of
constraints for the truth assignments which possibly
satisfy it (see, e.g., (Williams & Hogg 1994)). For 
stance, a clause A1 V A2 constrains every assignment
not to set both A1 and As to F. Unlike tableaux, in
SAT procedures branches are cut as soon as they vio-
late some constraint of the waft. The more constrained
the wff is, the more likely a truth assignment violates
some constraint. (For instance, the bigger is L in 
CNF wff, the more likely an assignment generates an
empty clause.) Therefore, as ~o becomes highly con-
strained (e.g., when L is big enough) the search tree 
very heavily pruned. As a consequence, for L bigger
than a certain value, the size of the search tree de.
creases with L, as it can be easily noticed in Figure 2
(right).

fix d = 2, m - 1, p = 0.5 and plot different curves
for increasing numbers of variables N = 3, 4, 5.12 In
Experiment 2 (center column) we fix d = 2, N = 
p -- 0.5 and plot different curves for increasing num-
ber of distinct modalities m = 1, 2, 5, 10, 20. In Exper-
iment 3 (right column) we fix m = 1, N = 3, p = 0.5
and plot different curves for increasing modal depths
d -- 2, 3, 4, 5. For each experiment, we present three
distinct sets of curves, each corresponding to a distinct
row. In the first (top row) we plot the median CPU
time obtained by running both KSAT and KRIS. This
gives an overall picture of the qualitative behaviour of
KSAT and KRIS and allows for a direct comparison be-
tween them. In the second (middle row) we plot the
KSAT median number of recursive DPLL calls, that is,
the size of the space effectively searched. This allows
us to drop the linear component due to the prepro-
cessing and the function calls to assign. In the third
(bottom row) we plot the percentage of satisfiable wffs
evaluated by KSAT. This gives a coarse indication of
the average level of constraintness of the test wffs.TM

Despite the big noise, due to the small samples/point
rate (100), the results indicated in Figure 4 provide
interesting indications. We report below (Subsection
5.1) a first pass, experiment by experiment, analysis
of the results. This gives us an idea of how efficiency
and satisfiability are affected by each single parame-
ter. In Subsection 5.2 we report a global and, in some
respects, more interesting analysis of the results we
have.

5.1 A TESTWISE ANALYSIS

5 AN EXAUSTIVE EMPIRICAL
ANALYSIS

In the tests described in this section we have tested and
compared KSAT and KRIS, that is, the fastest SAT-
based and the fastest tableau-based decision procedure
at our disposal. We have performed three experiments
on 48,000 randomly generated wffs, run according to
our test methodology, whose results are all described
in Figure 4. All curves represent 100 samples/point.
As above, the range N... 40N for L has been chosen
empirically to cover coarsely the "100% satisfiable -
100% unsatisfiable" transition. In each experiment we
investigate the effects of varying one parameter while
fixing the others. In Experiment 1 (left column) 

11In KSAT we used non-CNF DPLL, but we could use
any other SAT procedures not affected by the problem
highlighted in (D’Agostino 1992, D’Agostino & Mondadori
1994), e.g., OBDDs (Bryant 1992), or an implementation
of KE (D’Agostino & Mondadori 1994).
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The results of the first experiment (left column) show
that increasing N (and L accordingly) causes a rele-
vant increase in complexity -- up to one order of mag-
nitude per variable in the "hard" zone for KSAT, up
to two orders of magnitude per variable, as far as we
can see, for KRIS. This should not be a surprise, as
in K/K(m), adding few variables may cause an ex-

l~If we compare the KSAT and KRIS plots in Figure 2
left) with the L = 3 KSAT and KRIS plots in Figure 
top left), we notice that the plots are different, although

they are computed on sample wffs with the same parameter
values. This is due to the fact that (i) the former ones are
run on a much faster machine; (ii) the starting seeds are
different, causing thus the generation of different sample
sets.

13This percentage is evaluated on the number of samples
which effectively ended computation within the timeout.
Therefore this datum should be considered only as a coarse
indication. To obtain an accurate evaluation, we should
drop the timeout mechanism and evaluate the satisfiability
percentage on at least 1000 samples/point, like in Figure 2
(right).
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Figure 4: The results of the three experiments.
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ponential increase of the search space. Each variable
may in fact assume distinct truth values inside distinct
states/possible worlds, that is, each variable must be
considered with an "implicit multiplicity" equal to the
number of states of a potential Kripke model.

The results of the second experiment (center column)
present two interesting aspects. First, the complex-
ity of the search monotonically decreases with the in-
crease of the number m of modalities, for both KSAT
and KRIS (top and middle box). At a first sight it may
sound like a surprise, but it should not be so. In fact,
each truth assignment # is partitioned into m indepen-
dent sub-assignments ~r’s, each restricted to a single
Qr (see Equations (1) and (2)). This means "dividing
and conquering" the search tree into m non-interfering
search trees. Therefore, the bigger is m, the more
partitioned is the search space, and the easier is the
problem to solve. Second, a careful look reveals that
the satisfiability percentage increases with m. Again,
there is no mutual dependency between the satisfiabil-
ity of the distinct pr’s. Therefore the bigger is m, the
less constrained is ~, and the more likely satisfiable is

The results of the third experiment (right column) pro-
vide evidence of the fact that the complexity increases
with the modal depth d, for both KSAT and KRIS.
This is rather intuitive: the higher is d, the deeper are
the Kripke models to be searched, and the higher is
the complexity of the search.

5.2 A GLOBAL ANALYSIS

The KSAT curves (top and middle rows) highlight the
existence a linear and an easy-hard-easy component.
In fact, if we increase N from 3 to 5 and L accordingly
(left column), the size of the search space has a relevant
increase. Therefore, while for N -- 3 the linear com-
ponent prevails, for N = 5 the easy-hard-easy compo-
nent dominates. Moreover, when varying the number
of modalities (center column), the wff sizes are kept the
same for all curves. Therefore, when the effect of the
easy-hard-easy component vanishes (L/N > 20), the
curves collapse together, as the time for preprocessing
and assign does not depend on the number of modali-
ties m. Notice that the locations of the easy-hard-easy
zones do not seem to vary significantly, neither with
the number of variables N (left column), nor with the
number of modalities m (center column), nor with the
depth d (right column).

Let us now consider the satisfiability plots in Figure 4
(bottom row). Despite the noise and the approxima-
tions due to timeouts, it is easy to notice that the 50%
satisfiability point is centered around L - 15N ,,, 20N
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Figure 5: CPU times for the class of ~K formulas.

in all the experiments. Moreover, in the first experi-
ment a careful look reveals that the satisfiability tran-
sition becomes steeper when increasing N (e.g., com-
pare the N = 3 and N - 5 plots). Finally, in all ex-
periments, the curves representing the median number
of DPLL calls (middle row) generally locate the peaks
around the satisfiability transition, although they seem
to anticipate a little the 50% crossover point. From
these facts we may conjecture (to be verified!) the
existence for K(m)/.AL:C of a phase transition phe-
nomenon, similar to that already known for SAT and
other NP-hard problems (see, e.g, (Cheeseman, Kanef-
ski & Taylor 1991, Mitchell et hi. 1992, Kirkpatrick &
Selman 1994)).

The final observation comes from the three sets of me-
dian CPU times curves (top row): KSAT outperforms
KRIS in all the testbeds, independently on the num-
ber of variables N, the number of modalities m or the
depth d considered. This confirms the analysis done
in Section 4. Again, this is not only a quantitative
performance gap (up to 3-4 orders of magnitude) but
also a qualitative one, as all KRIS curves grow (sup-
posedly) exponentially with L, while all KSAT curves
grow polinomially. To provide further evidence, we
have performed another, quite different, test, based on
the class of wits {~}d=z,2,... presented in (Halpern

Moses 1992). This is a class of K(1)-satisfiable
wits, with depth d and 2d ÷ 1 propositional variables.
These wits are paradigmatic for modal K, as every
Kripke structure satisfying ~ has at least 2d+z - 1
distinct states, while ]~l is O(d2). From the results
in (Halpern ~ Moses 1992) we can reasonably assume
a minimum exponential growth factor of 2d for any or-
dinary algorithm based on Kripke semantics. We run
TABLEAU, KRIS, KSAT and a "basic" version of KSAT
(i.e., with no factorization of A~ ar~’s and no check-
ing of intermediate assignments), called below BASIC
KSAT, on these formulas, for increasing values of d.



The results are plotted in Figure 5. The TABLEAU,

KRIS, KSAT and BASIC KSAT curves grow exponen-
tially, approximatively as (16.0)d, (12.7)d, (2.6)a and
(2.4)d respectively, exceeding 1000s for d - 6, d -- 7,
d = 11 and d - 12 respectively. The slight difference
between KSAT and BASIC KSAT is due to the over-
head introduced by the/~ a,~ factorization, which is
useless with these formulas. It is worth observing that
the result of tracing the global number of truth assign-
ments fz, recursively found by both KSAT and BAsic
KSAT, gave exactly 2d+l -- 1 for every d, that is the
minimum number of Kripke states. KSAT and BASIC
KSAT found no redundant truth assignments.

6 CONCLUSIONS

This paper presents what we think are three very im-
portant results:

1. it provides a new implemented algorithm, KSAT,
for deciding satisfiability in .A£C (K(m)) which
outperforms of orders of magnitude the previous
state-of-the-art decision procedures;

2. it shows that the results provided are not by
chance, and that all SAT-based modal decision
procedures (that is, all the modal decision pro-
cedures based on SAT decision procedures) are
intrinsically bound to be more efficient than
tableau-based decision procedures; and

3. it provides evidence, though very partial, of an
easy-hard-easy pattern independent of all the pa-
rameters of evaluation considered. If the current
partial evidence is confirmed, this is the frst time
that this phenomenon, well known for SAT and
other NP-hard problems, is found in modal log-
ics.
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