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1 Introduction

Several advanced applications of database systems re-
quire the modeling, maintenance, and usage of large
collections of views. Prime examples include media-
tor systems that provide access to multiple information
sources, data mining and archeology, mobile databases,
data warehouses, and decision support systems. Further-
more, some database vendors are considering the main-
tenance of materialized views also as a means for query
optimization. As a result, problems concerning materi-
alized views have recently received a lot of attention in
the database community.

A view is essentially a query. If the answers to the
query are physically maintained, the view is said to be
materialized. Naturally, when there are many views (ei-
ther materialized or not) there are complex relationships
between the answers to different views. For example, one
view may be guaranteed to be a superset of another, or
two views may be guaranteed to be mutually disjoint.
In order to perform tasks involving large collections of
views, a system needs the capability to reason about the
relationships between views, and about the relationship
between a view and a query.

An important problem concerning materialized views
is that of rewriting queries using views. Informally,
the problem is the following. We are given a query
over a set of database relations, but we do not have
access to the actual database relations. Instead, we
have access to views over the database relations, and
we must find a way of answering the query using the
views. Rewriting queries using views is a crucial prob-
lem for information integration [Levy et al., 1996a;
Ullman, 1997], where the information sources are mod-
eled as views, and the mediator needs to find a way to an-
swer queries using the information sources. The problem
has been considered recently in several works [Yang and
Larson, 1987; Chaudhuri et al., 1995; Levy et al., 1995;
1996b; Srivastava et al., 1996].

Several authors have noted that description logics are
a very natural formalism for modeling and reasoning
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about views, because they provide a tool for modeling
complex relationships between sets of objects. While
there is great promise in using description logics for prob-
lems involving views, there are several issues that need
to be addressed in order to close the gap between the
current capabilities of description logics and the needs of
applications using views in relational and object oriented
systems. In previous work [Levy and Rousset, 1996a;
1996b] we have developed a query language over descrip-
tion logics, CARIN, which provides constructs that are
common to traditional database query languages (e.g.,
joins, arbitrary conjunctive queries, recursion). In this
paper we consider the problem of rewriting queries using
views, when the queries are concepts, and the views are
conjunctive queries over a description logic, i.e., con-
junctions that allow both concept and role atoms and
existential variables. In particular, we show that when
the queries and views denote concepts, it is possible to
find a rewriting of the query using the views whenever
the description logic is decidable and has the conjunc-
tion operator. When the views are conjunctive queries,
we show that the rewriting of the query using the views
may result in a recursive set of rules.

We observe that the general case of query rewriting
indicates that it involves the use of inference procedures
that do not rely on the unique names assumption. Most
of the procedures in the literature use this assumption.

Finally, it should be noted that the problem of answer-
ing queries using views is also interesting from another
perspective. We can think of the views as represent-
ing one terminology, while a set of queries represents a
second terminology. The problem of rewriting the query
using the views provides a mapping between the two ter-
minologies. Constructing such mappings is important
for applications in which we need to deal with multiple
ontologies (and therefore, multiple terminologies).

2 Preliminaries and Examples
In this paper we consider the description logic, denoted
~1, that includes the constructors N, (V//.C), (< n 
(> n R), and negation on primitive concepts. We as-
sume that our terminology contains only acyclic concept
definitions (and not arbitrary inclusions), and they are
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assumed to be unfolded. Note that/~i is a subset of the
language used in CLASSIC, and therefore subsumption in
the language is decidable in polynomial time.i

2.1 Queries and Views

We consider queries and views that are datalog pro-
grams [Ullman, 1989] over description logic concepts and
roles (i.e., CARIN programs [Levy and Rousset, 1996a]).
Datalog programs are collections of horn-rules of the
form:

Q : q(~) : -p(~l) ~ ... ~ p(2.).
The head of the rule is q(~:), and variables in the tuple

3f are called the distinguished variables. We require that
the rules be safe, i.e., every variable that appears in the
head of the rule should appear also in the body (that is,
)f C )(i U ... U ~:n). Variables that appear in the 
and not in the head are called existential variables.

We distinguish between two sets of predicates in a
given datalog program: the extensional predicates (EDB
predicates), that appear only in bodies of rules, and the
intensional predicates (IDB predicates), which are the
predicates appearing in heads of rules, and may also ap-
pear in the bodies. The EDB predicates refer to the
given relations while the IDB predicates are defined by
the program. In our context, we assume that the EDB
predicates are concept names, descriptions or roles that
appear in a terminology 7" in /:l, and the IDB pred-
icates have arbitrary arities. A query that contains a
single rule, and all the predicates in the body are EDB’s
is called a conjunctive query.

We assume one of the IDB predicates of the program is
the query predicate. Given a terminology 7", a set of rules
~, a set of ground atomic facts ,4 for the concept and
role predicates, and a query predicate p of arity m, the
answer to a query p(X) are the set of m-tuples a, formed
by constants appearing in A, such that 7"UT~UA ~ p(~).
In ordinary datalog programs, (i.e., when the EDBs are
ordinary relations), the answer to a query can be com-
puted in a bottom-up fashion in time that is polynomial
in the number of ground facts ,4. A bottom-up evalua-
tion starts with the ground EDB facts and applies the
rules to derive facts for the IDB predicates. We con-
tinue applying the rules until no new facts are gener-
ated. However, when the EDB predicates are defined
in a terminology, a simple evaluation of the query from
the database may not suffice, because the database may
contain incomplete information that affects the result.

Example 2.1: Suppose we have the simple terminol-
ogy

parent := person [7 (> 1 child).

and suppose our query is

i Negation on primitive concepts is not explicitly allowed
in CLASSIC, but can be added without affecting the complex-
ity of subsumption.

q(X):-person(X) ~ child(X, Y).

If our database contains the facts (parent(a), person(b),
child(b,c) } then a simple evaluation of the query will
yield only the result {(b)). However, the answer should
be {(a),(b)). 

Sound and complete algorithms for evaluating datalog
queries over our language are described in [Levy and
Rousset, 1996a; 1996b].

The notion of containment plays a key role in obtain-
ing query rewritings:

Definition 2.1: (Containment) A datalog query 79i con-
tains a datalog query 792, written 792 C_ 79i, if for any set
of ground atoms .A for the concepts and roles, the an-
swer of 79i is a superset of the tuples of the answer of
792. The two queries are said to be equivalent if 791 C 792
and 799. C_ 79i. []

A materialized view is a query whose result has been
physically stored. The problem we consider in this paper
is that we are given a query over the concepts and roles
in a terminology 7", but the extensions of the relations in
7- are not given. Instead, we are given the definitions of
a set of views over 7- that are materialized, and our goal
is to find a rewriting of the query using the materialized
views. A rewriting is a datalog query whose EDB pred-
icates are the materialized views. There are two kinds
of rewritings that we consider, equivalent rewritings and
maximal rewritings.

Definition 2.2: (rewriting) Let Q be a query over the
terminology 7", and let Q’ be another query, whose EDB
predicates are the predicates Vi,..., Vm and the predicate
5, and whose IDB predicates are disjoint from those of
Q.
(i) Q’ is an equivalent rewriting of Q using the views
Vi,..., Vm if Q’ and Q are equivalent queries.
(ii} Q’ is a maximal rewriting of Q using the views
Vi,...,Vmiy

¯ Q’ C_ Q, and

* there does not exist a query Q" satisfying the first
condition, such that Q’ c Q" c_ Q and Q’ ~ Q". []

It should be noted that in general, obtaining a com-
plete answer to a datalog query over the language ~gi
is undecidable [Levy and Rousset, 1996b]. However,
in this paper we will be concerned with case in which
the views are conjunctive queries (i.e., datalog programs
that contain only one Horn rule). A sound and com-
plete algorithm for evaluating conjunctive queries follows
from [Levy and Rousset, 1996a]. The rewritings of the
queries using the views may be recursive; however, in
that case, since we assume the views are complete (and
can therefore be treated as ordinary EDB predicates),
a bottom-up evaluation of the rewriting is sound and
complete.

Example 2.2: Consider a terminology that includes
the primitive concepts person and smart, and the role
child. The concept happy-parent is defined by:
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happy-parent := person rl (V child.smart).

Suppose we have the following views:

vl(X) :-person(X) & (_< lchild)(X)
v2(X) :-person(X) & child(X, Y) & smart(Y)
va(X) :-happy- parent(X) & (~ 2 child)(X)
v4(X) :-(>_ 3child)(X).

Suppose our query is

q(X): -happy - parent(X).

We have the following rewritings of the query using the
views:

ql(X) :-vs(X)
q2(X) : -vl(x) v=(x)
The first rewriting gives us the happy parents that also
have at least 2 children. The second rewriting is more
subtle. The view vl provides parents with at most one
child, while the view v2 provides persons with a least
one smart child. Therefore, persons found in both of the
views have exactly one child who is smart, and are there-
fore happy parents. Note that neither of the rewritings
is equivalent to the query, since an equivalent rewriting
does not exist from these views. Consider the query

p(X):-happy- parent(X) & (>_ 3 child)(X).

For this query it is possible to find an equivalent rewrit-
ing using the views:

p’(X) :-vs(x)
Several papers consider the rewriting problem for the

case of conjunctive queries and unions of such queries,
but without terminologies. In [Levy et al., 1995] it is
shown that for conjunctive queries and views, if there
exists a rewriting of the query using the views then there
exists one whose length is at most the length of the query.
As a result, we get a nondeterministic polynomial time
procedure for finding rewritings, if they exist. As shown
in [Levy et al., 1995; Rajaraman et ai., 1995] the bound
on the size of the rewriting changes when we make slight
modifications to the query language. Finding a bound
on the size of the rewriting, together with the existential
entailment algorithm [Levy and Rousset, 1996a] (which
is a generalization of containment algorithms for CARIN
queries) would also yield a procedure for finding rewrit-
ings. However, as the following example shows, even if
the queries and views are conjunctive queries, there may
not always be a bound on the size of the rewriting, and
we may have to resort to recursive rewritings.

Ex-mple 2.3: Consider the following two views:

vl ( X, Y): -child(X, Y) & child(X, Z) & (<_ 1 child)( 
v=(x) :-(> 3child)(X).
Suppose our query is to find all individuals who have at
least 2 children:

q(X):-(_> 2child)(X).

For any n, the rewriting of the form

q’(X) : -vi(X, Y1) & Vl(Yi, Y2) & ...vi(Y,, U) 

is contained in the query, and each may yield answers
that are not obtained by other rewritings. To see why,
consider the variable Yn. The view vi entails that it has
one successor that has less than one child (the variable
Z in the definition of vi) while the view v2 says that its
child U has at least 3 children. Therefore, Y, has at least
2 children. The same line of reasoning can be used to
see that Y,-i has at least 2 children, and continuing in
the same way, we get that X has at least two children.

Therefore, we cannot find a bound on the size of the
rewritings of the query. On the other hand, the following
is a recursive rewriting that is maximal:

q(X):-v2(x)
q(X):-vi(X,Y) & q(Y).

This recursive program essentially simulates the line of
reasoning we outlined above to any depth. []

In the following sections we consider the rewriting
problem in increasing levels of difficulty. We begin with
the case in which both queries and views are descrip-
tions in /:i. We then consider the case in which the
views are conjunctive queries, but without existential
variables. Finally, we consider the case in which the
views have existential variables. Proofs are omitted due
to lack of space.

3 Concept Queries and Views

We begin with the simple but common case in which
both the queries and the views are concepts in 1:i. In
this case, we can show the following result:

Theorem 3.1: Let Q be a query of the form q(X) 
-c(X) and ]2 -- Vi,..., Vm be views of the form Vi(X) 
-@(X) where c, i, , cmaredescriptions in f -i. The
maximal rewriting of Q using 1) is the union of conjunc-
tive queries of the form:

Q’(X) :-vi(X) & ... & 

where l <_ m, vi , . . . , vI E ]) and i [] . . . R cIE_ c. []

The main observation underlying this theorem is that
there is no need to consider rewritings that contain exis-
tential variables in the rules. Therefore, the only atoms
that need to be considered in the bodies are of the form
c(X) where c E 1), and X is the head variable.

Theorem 3.1 shows that the rewriting problem is de-
cidable for queries and views that are concepts. However,
it still requires that we consider all possible subsets of
views, which will be expensive if we have many views
(this is the case when the views represent information
sources on the network). The following theorem allows
us to considerably prune the search for rewritings, by
showing that the size of the rewriting can be bounded
by the size of the query and depth of the terminology.
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Theorem 3.2: Let Q be a query of the form q(X) 
-c(x) and v = v~, . . ., vra be views o/the/otto ~(X) 
-ee( X) where c, el,..., cm are descriptions in £-.1. Let dq
be the number of constructors in c, and let d be the max-
imum number of constructors that appear in the concept
descriptions cl,..., era. Ire does not contain occurrences
of the description (< OR), then Theorem 3.1 holds even
if we restrict I to be dq. If c has b occurrences of(< 0 R),
then we can restrict I to be dq + rib. []

To prove Theorem 3.2 we note that every description
C in £1 can be rewritten equivalently (by pushing the
r3 constructor inside)_as a eonjun_etion ~ of d escriptions
each of the form V R.~’, where R is a role-chain, or of
the form r, where r is of the form (< n R), (> n 
A, or -~A, and A is a primitive concept. The number of
eonjunets in C’ is at most the number of constructors
in C. In order for a conjunction of view atoms to entail
C’, it has to entail all the eonjunets of C’. However, we
show that if a conjunction of views entails a conjunct of
C’ in which r is not (< 0 R1), then it is entailed by 
single view atom. Finally, we show that a conjunct that
contains (< 0 R1) may be entailed by a combination 
d + 1 view atoms.

Note that these observations may be used to directly
construct the maximal rewriting. Although the worst
case time complexity of the resulting procedure is the
same as the one derived from the space bounds, in cases
where many views can be expected not to be relevant to
a given query it is much smaller.

4 Conjunctive Queries as Views
The next ease we consider is one in which the views in
l) can be arbitrary conjunctive queries, but without ex-
istential variables (i.e., any variable that appears in the
body appears also in the head). Such queries allow con-
junets that are role atoms, and therefore enable to ex-
press arbitrary chains of variables (of bounded length).
The restriction that all body variables appear in the
head has the following advantage:_ To each conjunction
of views, with a set of variables X, we can add a con-
junction of inequalities xi ~ zj, for all pairs in X, thus
ensuring that in every instantiation of the the rewrit-
ing, different variables are mapped to distinct constants.
Thus, we can rely on the unique names assumption. If
we want also to consider the ease where xi = zj, for
some i, j, we simply consider the conjunction in which
all occurrences of xj are replaced by zi. The following
theorem establishes a bound on the size of the rewriting
of the query using the views, and hence, together with
an algorithm for checking satisfiability of an .A£CA/’7~
KBs [Buchheit et al., 1993], yields the decidability of
the rewriting problem.

We use the following notation in the theorem. We as-
sume N is the maximal number appearing in the number
restrictions in the query or in l), and d denotes the max-
imal number of constructors in a concept that appears
in the body of a view in ~. We denote the maximum

of N and (d + 1)2 by M. Given a concept c we denote
by l(c) the maximal depth of nested V R.C constructors
in e (i.e., the maximal length of a role-chain after the 17
constructor has been pushed all the way).

Theorem 4.1: Let Q be a query of the form q(X) 
-c(z) where c is a description in £1, and let 12 be a set
of conjunctive views such that in every view, all the body
variables appear also in the head. Let S be the number
of constructors in c. Let N’ = 21(c)!SM9. The maximal
rewriting of Q using 1~ is the union of all conjunctive
queries Q’ over 1) such that:

¯ Q~ is contained in Q, and

¯ the body of Q’ contains at most N’ atoms. []

Given a rewriting, we cheek whether it entails the
query by first expanding the definitions of the view atoms
to obtain a set of ground facts in the language £1, and
then check whether this set of ground facts entails c(X).
The proof of the theorem is based on considering how
the atom c(X) can be inferred from such a set of ground
facts. We show by induction on the structure of c that
at most N’ ground atoms are needed in order to infer
c(X). Therefore, since each ground atom can originate
from a different view atom, the length of the rewriting
is bound by N’.

5 Allowing Existential Variables in the
Views

When the views contain existential variables, the set of
ground facts resulting from expanding the view defini-
tions does not necessarily obey the unique names as-
sumption. This is because the existential variables do
not necessarily represent distinct individuals. As a re-
suit, we cannot apply exactly the same inference pro-
cedure that allowed us to establish the bound of Theo-
rem 4.1. In fact the following theorem shows that when
we remove the unique names assumption, inference in
~1 becomes intractable, whereas it is a polynomial time
decision problem with the unique name assumption.

Theorem 5.1: Let A be a description logic knowledge
base in £1. Checking whether A is satisfiable is NP-
complete in the number of ground facts in A. []

Fortunately, the knowledge bases resulting from ex-
panding query rewritings are not arbitrary. In the ex-
tended version of the paper we show that in some eases
it is possible to find a recursive datalog program that is
the maximal rewriting of the query. Below we describe
an algorithm that provides the maximal rewriting in the
case where:

¯ if/~(X, Y) is an atom in one of the views, then 
is a distinguished variable,

¯ every existential variable appears in at most one
atom role in the body of the view.
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Given the query Q of the form q(X) : -c(X), we de-
note by C the set of concepts that can be formed using
the primitive concepts and roles mentioned in c, the in-
tegers [0..j], where j is the largest integer mentioned in
number restrictions in c or in the views, and have at
most the number of constructors in c or in one of the
views. We denote by M the product of the number of
views and the maximum arity of the views.

The datalog rewriting of the query Q using the views
]1 includes an IDB predicate for every concept in C. The
program includes all the rules of the following form:

p(X) : -vl(.~l) ~ ... vM(.f(M) ~p l(Y1)... ~Pl(Yl)

where

1. M <_ Max(N,j+ 1) and vl,...,v M E l;,

2. {Y1,...,I~} _C X1U...XM, and

3. Pl,..., Pl, P are IDB predicates corresponding to the
concepts cl, ¯ ̄ ., el, co in C, and

4. ~)l(x~l) ~ ... ~ vM(.f(M) cl (Y1)... ~ cl ()~) ::

co(X) holds.

Note that in the rules there may be several predicates
Pi predicates for the same variable Y. The intuition
underlying the construction of the rewriting is that the
rules of the program simulate a set of inference rules
that are sound and complete on the KB resulting from
expanding the definitions of the views.
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