From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Reasoning with Black Boxes:
Handling Test Concepts in CLASSIC

Alex Borgida*
Dept. of Computer Science
Rutgers University

Charles L. Isbell
Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Deborah L. McGuinness
Artificial Intelligence Principles Research

AT&T Labs

1 Motivation

Description Logics (DLs) are distinguished by a num-
ber of characteristics, including decidable reasoning al-
gorithms for tasks such as subsumption and consistency
checking. The desire for terminating, even efficient, rea-
soning procedures has led to two alternative approaches
to DL system design: complete reasoning for expressively
limited languages, and incomplete reasoning for richer
languages. The obvious problem with the first approach
((8]) is that in many applications one would want to ex-
press concepts that cannot be captured. The problem
with the second approach is that the language imple-
menter chooses the subset of inferences to be performed
once and for all, and must then characterize this to sys-
tem users. It seems unlikely that the designer’s choices
will be appropriate for all applications.

There are forces driving extensions of DLs. For
example, many application designers are not content
with simple individuals related by roles; they need
to reason with complicated objects related in complex
ways. There have been proposals for extending DLs
with plans (whose instances are sequences of action in-
dividuals) [7], temporal values [13], mathematical ob-
jects (real numbers with inequality, tuples, etc.) [2;
9] and other data types. Furthermore, because of user
demand, many practical DL systems (e.g., LOOM, CLAS-
SIC, BACK) have introduced concept constructors for de-
scribing ranges of integers. We observe however that
these languages do not have concept constructors for
dealing with strings, dates, and other kinds of objects.
And any decision on which of these to support will also
be quite arbitrary.

For these reasons, it seems useful to provide a facility
to add arbitrary new concept constructors to a language,
and to be able to extend the reasoning of the system to
cover these new constructors. This is especially true for
CcLASSIC, which takes a relatively extreme position on
limiting the set of concept constructors provided, disal-
lowing disjunction and existential quantifiers, for exam-
ple.

*Supported in part by NSF grant IR191-19310.

2 Test concepts

There are two aspects of reasoning to consider for con-
cepts: ertensional aspects, dealing with how individuals
are related to a concept, and intensional aspects, dealing
with how concepts relate to each other.

2.1 Individual Reasoning

Concerning extensional aspects, CLASSIC originally took
inspiration from the work of Abrial [1], and allowed con-
cepts to be specified by a user-defined procedure that
tests for the membership of an individual in the concept.
For example, the concept (test someTallFriend) rec-
ognizes those individuals b for which the following Lisp
function someTallFriend returns true':

(defun someTallFriend (ind)
(for-each-filler afriend (ind friend)
(for-each-filler ht (afriend height)
(when (> ht 6) (return t)))
(return nil)))

Like all test functions, someTallFriend takes an indi-
vidual as its first argument.

In an application where the notion of having some tall
friend is useful, it would likely be the case that other test
concepts such as someShortFriend or someOldEnemy
would also be useful. It therefore makes sense to gen-
eralize test functions to take additional arguments that
are specified as part of the concept definition. In the
above example, we would therefore make the role name
and class also be parameters of the test function, defining
the function some as (defun some (ind role concept) ...);
the above concept would then be specified as (test some
friend Tall). This is very close syntactically to the
way one would specify this in a DL (like BACK) that has
a built-in constructor for this kind of concept: (some
friend Tall).

1For simplicity, we ignore several complexities having to
do with individual processing, such as the need for a 3-valued,
rather than a 2-valued response, and the need for setting
dependency links.

-87 -

2.2 Concept Reasoning

Unfortunately, because one cannot reason about the ac-
tions of Lisp functions, CLASSIC cannot deduce that
to check whether (test some friend Tall) subsumes
(test some friend VeryTall), it is sufficient to per-
form a subsumption test between the concept argu-
ments Tall and VeryTall. Similarly, cLASSIC cannot
infer that (and (test some friend Tall) (test some
friend Short)) is incoherent, if Tall and Short can be
deduced to be mutually exclusive. The best that cLAS-
sic can do for subsumption reasoning is check for the
special cases of textual identity.

Moreover, functions with additional arguments like
some must usually include a check on the correctness
of their arguments. For example, (test some age 12)
should generate an error if age is not a declared role
or 12 is not the name of a class. Unfortunately, CLAS-
sic has no knowledge about the types of the arguments
expected by the Lisp procedure some, so this error check-
ing must be performed by the some function itself each
time it is invoked on some individual. It would be much
more efficient if this type-check could be performed just
at “concept compile time”, whenever a test-defined con-
cept using the function some is encountered.

38 Adding Subsumption for Test
Concepts

Based on our previous research [3; 5] on the ProtoDL ex-
tensible DL system, we have introduced a mechanism in
cLASSIC to allow it to reason about test concepts. Our
approach (in contrast to [2]) is intended to work with
so-called normalize-compare implementations, where the
aim is to find a normal form for concepts which explicates
implicit facts, detects inconsistencies and eliminates re-
dundancies. As a result, comparing two concepts for sub-
sumption is a simple matter of comparing “structurally
similar” elements. Based on our earlier analysis, it ap-
pears that this can be accomplished through the use of
a small set of functions:

o NormalizeTerm[K](syntacticArgument) takes a con-
cept built with concept constructor K, and com-
putes its normal form. In the process, it will
check syntactic and semantic restrictions on the
valid arguments to the constructor, as well as build-
ing any necessary data structures. For example,
from "some friend Tall", the function would re-
turn a data structure corresponding to the term
some(Q@friend,@Tall). (Here, the concept constructor
is used as a functor for the term, and the arguments
are themselves normalized CLASSIC objects, denoted
by a leading @.)

e StructuralSubsumes?[K](Kterm1,Kterm2) compares
two normalized terms built with the same concept

constructor K, and determines whether one is more
general than the other.

e Subsumes?[K](Kterm,normalizedConcept) is a gen-
eral subsumption test, for the cases where structural

subsumption is not enough. It determines whether
a normalized term built with concept constructor K
is implied by the general normalized concept (which
represents a conjunction of terms built with other
constructors).

¢ Conjoin[K](Kterm, normalizedConcept) takes a nor-
malized term built with constructor K, and conjoins
it to an already normalized concept, which is essen-
tially the conjunction of built-in CLASSIC concepts
and other test-defined concepts previously encoun-
tered.

We have found that Conjoin[K] can often be composed
from a group of more specialized subroutines: Con-
joinToSame[K], which computes the conjunction of two
terms built with constructor K; ConjoinToM[K], which
computes the conjunction of a K-term and an M-term;
Coherent[K], which detects when a K-term denotes the
empty set; InconsistentWith[K], which detects when
a K-term conjoined with other parts of the a concept
denotes the empty set; and Implies[K], which returns
non-test terms that are implied by the conjunction of a
K-term and a concept.

Empirically, this decomposition serves two purposes.
First, it is often easier to gather the consequences of
conjunction in this piecewise manner. Second, this
allows the designer to make explicit decisions about
the tradeoff between expressivity and efficiency. For
a more complete discussion of these issues see [3; 5;
4], while for details of function definitions see [12].

3.1 String reasoning: an example

To illustrate the use of the extension mechanisms, in
particular the normalization and subsumption reasoning
of test concepts, we sketch three extensions to CLASSIC,
intended to support reasoning about strings.

Ranges of string values

We wish to denote ranges of strings, similar in
spirit to Pascal integer ranges like 1..40. To
this end, we introduce the test-concept constructor
stringRange. The syntax is stringRange attribute?
stringl string2, as in (test stringRange name
"Alice" "Beth").

Normalization guarantees that the syntax is re-
spected: there must be exactly three arguments, the
first being a valid attribute name, the second and
third being strings. In addition, normalization veri-
fies that the value restriction is coherent (using Co-
herent[stringRange]), by checking whether the first
string argument is lexicographically before the sec-
ond. The normalized structure stored therefore cor-
responds to stringRange(roleld,stringl,string2),
where stringl <string2.

Subsumption is easy: stringRange(attribi, si,
82) is subsumed by stringRange(attrib2, z1, z2) if

2 An attribute is a role with exactly one filler, and is chosen
here to simplify the details.

.88 -

and only if attribl=attrib2, and z1 < sl < 82 < z2. (This
assumes that there are no attribute hierarchies.)

ConjoinToSame[stringRange] has no effects on argu-
ments stringRange(attribl, si,
s2) and stringRange(attrib2, z1, z2)) if attribl#
attrib2; however, if attribl=attrib2, it returns
stringRange(attribl, max(si,z1), min(s2,22)) as
the normal form of conjunction. The result is also
checked for coherence.

Finally, Implies[stringRange] needs to recognize that
(test stringRange r s z) implies (all r STRING),
and in the special case when s=z, it is equivalent to (all
r (one-of s8)).

Substrings
Suppose we also wish to have concepts denote ob-
jects that have some attribute that contains a spe-
cific substring. For this we will use the test concept
constructor substring, as in (test substring sender
"mit.edu").
Structural subsumption is sufficient in this case,
too, with (test substring p s) subsumed by (test
substring q z) iff p=q and z is itself a substring of
8.
Normalization verifies the syntax and the type of the
arguments, and constructs a term with the attribute and
the string as arguments.
In the case of conjunctions, such as

(and (test substring header "edu")
test substring header "eecs")),

we could think of combining them in some way, but
there seems to be no advantage to this. Therefore
ConjoinToSame[substring] does nothing, and the term
stored for substring is a list of pairs. Conjunction with
stringRange also yields no inferences.

As before, the presence of a substring test-concept
involving a role r implies (all r STRING), and in fact
(test substring r "") adds no additional informa-
tion, so it can be eliminated.

Regular Expressions as string classes

Regular expressions are natural descriptions for sets
of strings, so we can consider adding a test-concept
constructor allStringsIn, as in (test allStringsIn
mailAddr "*,edu"). Without describing a precise syn-
tax for regular expressions (we can assume one like that
used by UNIX’s grep), we outline a high-level view of
what it would take to implement this new constructor in
the presence of the previous ones.

In general, reasoning with regular expressions (REs)
is known to be impractical, so one converts each RE to
a finite automaton (FA), which acts as the normal form;
however, we keep the RE around for printing purposes.
The normalized form of an al1StringsIn test concept is
stored as a triple (attribute, representation of FA, string
of RE).

Structural subsumption is just automaton contain-
ment, while ConjoinToSame[allStringsIn] is automa-
ton conjunction. Both of these operations are well docu-

mented in the computer science literature. Note that, in
addition, ConjoinToSame[allStringsIn] needs to com-
bine the regular expressions of the conjuncts, obtaining
from "RE;" and "RE>" the result "(RE;) A(RE2)", in
order to support appropriate printing of concepts.

On the other hand, allStringsIn also interacts
with the other concept constructors involving strings.
For example, (test substring r s) is equivalent to
(test allStringsIn r "*s*"), so we could replace
substring by the corresponding allStringsIn con-
struct. However, finite automaton reasoning in general
is much less efficient than the special case of substrings.
Instead, Subsume[allStringsIn]((attrib,fal,rel),c) will
check in ¢ for a substring(attrib,s) construct on the
same attribute, and then build an FA for "*s*" on the
fly.
Also, in order to reason about interactions with
stringRange we need to derive from the finite automa-
ton associated with an allStringsIn the lexicograph-
ically smallest and greatest string accepted by it, if
it exists3; the corresponding stringRange expression
needs to be conjoined to the original concept.

4 Explanation

Part of the crAssic philosophy is that the system should
be able to explain the deductions that it performs [11].
In this case, we need to explain any normalization or
subsumption deductions.

The general approach suggested in [10; 11] considers
the inferences performed by the system as applications
of declarative proof rules. For example, the conjunction
and incoherence of stringRange are captured by the fol-
lowing rules:

C = stringRange(r, sl, 32)
C = stringRange(r, 21, 22) vl = maz(sl, z1),
C = stringRange(r, v1, v2) v2 = min(s2, 22)

C = stringRange(r, s1, s2)
C —> NOTHING {s1>s2}

These rules can be paraphrased as: If a description C
is subsumed by a description whose fillers of attribute
r must be in the range between sl and s2, and C is
also subsumed by a description whose fillers of the same
attribute r must be in the range between z1 and z2, then
C must have r fillers in the intersection of the sl - s2
range and the z1 - z2 range. The second rule says that
if description C is subsumed by a description whose r-
fillers must be between sl and s2, given than sl is greater
than s2 (thus it is impossible to be in that range), then
C is inconsistent (it is subsumed by the special bottom
concept called NOTHING); this is because the attribute
can have no value in the appropriate range, yet it is
required to have one.

3This can be read off a deterministic FA, if one eliminates
“dead” states. '

-89 -

When running in explanation mode, data structures
are supposed to keep track of the inference being per-
formed. For test concepts, this means that we must iden-
tify the inference rules being applied and record them
appropriately.

For example, consider conjoining the normalized
terms stringRange(name, "Alex", "Charles") and
stringRange(name, "Debbie", "Louise"). Conjoin-
ToSame[stringRange] should detect the incoherence of
the resulting conjunction, and signal it. The program-
mer of ConjoinToSame[stringRange] can choose to pro-
vide as much detail about the source of the incoher-
ence as deemed necessary. For example, the proce-
dure could record that stringRange(name, "Debbie",
"Charles") is incoherent because "Debbie" comes after
"Charles", and name, as an attribute, is required to have
a filler. Note that in this case, in the interest of shorter
explanations, the inference being explained corresponds
to the rule

C = stringRange(r, s1, s2)
C = stringRange(r, z1, 22)

2 <zl or 22 < sl
C — NOTHING {s2<#1or 22 <s1}

For simple examples, a result such as this may seem ob-
vious. On the other hand, results that are obtained from
the conjunction of many test restrictions with complex
interactions may be much more difficult to understand.

If explanations are not provided by the programmer,
crassIc will generate a default explanation. Often these
default explanations are sufficiently informative for a
particular result. In this particular example, CLASSIC
would be able to report that the two restrictions pro-
duced an inconsistency, but not why.

Below we outline how the test extensions communicate
with the explanation facility.

o NormalizeTerm[K] is expected to return an explana-
tion (i.e. an inference rule and arguments) that indi-
cates the source of an error whenever one is signaled.
For example, (test stringRange name "one" 2)
might generate the inference (not-a-string 2).
If no explanation is provided with the error sig-
nal, cLASSIC simply notes that some syntax error
occurred within the expression, e.g., (syntax-error
(stringRange name “one” 2)).

o StructuralSubsumes?[K] and Subsumes?[K] return
two values. The first is a boolean value indicating
whether a concept subsumes another. The second
is an explanation of why the result occurred.

o Conjoin[K] (within its subroutines) is expected to
return an explanation along with every inference.
This includes not only explanations for inconsisten-
cies or errors, but also explanations for any new
inferences. When explanations are not provided,
CLASSIC notes the expressions that are involved
whenever possible.

There are additional issues that arise when using ex-
planation and test extensions that are beyond the scope

of this paper. In particular, the process of conjoining sev-
eral test expressions requires maintaining a great deal of

information about intermediate values. For more details
see [12].

5 Discussion

There is a trend in the DL literature and a need in many
applications to extend expressively limited description
logics.

A general approach, investigated by Baader and Han-
schke [2], considers the modular addition of theories in
a system implemented using a tableau-like calculus. Al-
though elegant, this approach does not allow new con-
cept constructors for ordinary objects with roles, like a
some constructor.

CLASSIC chose to provide procedural definitions of con-
cepts, called test-concepts, but these were meant for in-
dividual reasoning, and were treated as “black boxes”
otherwise. In this paper, we described a structured way
to allow cLASSIC to reason with these black boxes, en-
abling it to determine relationships such as subsumption
between test concepts. We have implemented our ap-
proach and have integrated it into cLAssIC. We have
described here implementations for various useful string
constructors, but we have also extended CLASSIC to sup-
port reasoning about dates as well. Finally, because we
extended the reasoning that cLASSIC is performing and
because cLASSIC explains all of its inferences, we also
provided for a way to explain the additional reasoning
that is being performed.

Acknowledgments

We are indebted to Peter Patel-Schneider, who was the
source of key ideas for individual reasoning with test con-
cepts, as well as Lori Alperin Resnick and Loren Terveen,
for their help.

References

[1] Abrail, J.R., “Data Semantics”, in Data manage-
ment Systems, J.W.Klimbie and K.L.Koffeman eds,
North Holland, 1974.

[2] Baader, F., Hanschke, P., ‘A Scheme for Integrat-
ing Concrete Domains into Concept Languages’,
IJCAI-91, pp 452-457, 1991.

[3] A. Borgida, “Towards the Systematic Develop-
ment of Terminological Reasoners: CLASP Recon-
structed”, Principles of Knowledge Representation
and Reasoning: Proceedings of the Third Inter-
national Conference (KR’92), Boston, MA, 1992,
pp-259-269

[4] A. Borgida, “Extensible Knowledge Base Manage-
ment for Description Logics”, draft of journal sub-
mission, Dept. of Computer Science, Rutgers Uni-
versity, August 1996.

[6] A. Borgida, R. Brachman, “Customizable Clas-
sification Inference in the ProtoDL Description

.90 -

[6]

[7]

(8]

E]

[10]

Management System”, Proc. International Confer-
ence on Information and Knowledge Management
(CIKM’92), Baltimore, MD, 1992, pp.482-490.

A. Borgida, R. J. Brachman, D.L. McGuinness, and
L. Alperin Resnick. CLASSIC: A Structural Data
Model for Objects. In Proceedings of the 1989
ACM SIGMOD International Conference on Man-
agement of Data, Portland, Oregon, June 1989, pp.
59-67.

Devanbu, P., and D. Litman, “Plan-based Termi-
nological Reasoning,” Proc. KR’91, Boston, MA,
1991.

Doyle, J, and R. Patil, “Two theses of knowl-
edge representation: language restrictions, taxo-
nomic classification, and the utility of representa-
tion services”, Artificial Intelligence 48(3), April
1991, pp.261-298.

Kortum, G., “How to compute 1+17 Integrating
external functions and computed roles into BACK”,
KIT Report 103, TU Berlin, January 1993.

McGuinness, D.L., Ezplaining Reasoning in De-
scription Logics, PhD Dissertation, Rutgers Uni-
versity, October 1996.

[11] McGuinness, D.L., Borgida, A. “Explaining Sub-

sumption in Description Logics”, Proc. IJCAI’95,
Montreal, August 1995, pp. 816-821.

[12] L. Alperin Resnick, A. Borgida, R.J. Brachman,

D.L. McGuinness, P.F. Patel-Schneider, C. Isbell,
and K.Zalondek. cLAsSIC description and refer-
ence manual for the Common Lisp implementation:
Version 2.3. Al Principles Research Department,
AT&T Bell Laboratories. 1995.

[13] Schmiedel, A., “A Temporal Terminologic Rea-

soner”, in Proceedings AAAI-90, Boston, MA, Au-
gust 1990, 641-645.

-91 -

