From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Class Algebra as a Description Logic

Daniel J. Buehrer and Yi-Huang Liu and Ting-Yue Hong and Jeng-Jong Jou
Institute of Computer Science and Information Engr.
National Chung Cheng University
Chia Yi, Taiwan, R.O.C.

Abstract

A class algebra has been used to model the
query and data manipulation language for
a prototype object-oriented database system
which is being implemented for the World-
Wide Web [?]. The Prolog prototype (i.e.
operational semantics, if you will) is lo-
cated at hitp : [/www.cs.ccu.edutw/ ~
dan/prologProgs/modeloo.tzt. The class alge-
bra includes a Boolean algebra for class union,
intersection, and complement (i.e. difference
with any). This Boolean algebra is extended
with dot (partof), cross product, projection,
and selection to make it subsume relational al-
gebra. All classes which are defined with these
class expressions have an eztent which is the set
of all objects that are described by the class ex-
pression. As such, this class algebra is a kind
of description logic. Moreover, subclass defini-
tion, variable and function declaration, data as-
signment, function and relation definition, and
other side-effect operators such as insert/delete
are defined for this class algebra. A compar-
ison is made between this class algebra and
ODMG-93’s OQL [?], SQL, Prolog, and first-
order predicate logic.

1 Introduction

A description is an expression in a formal language that
defines a collection. A description logic [?] is a language
for constructing such descriptions, as well as the seman-
tics that define the collection which corresponds to each
description. As such, the class algebra of [?] is a de-
scription logic, since it defines the eztent, or set of in-
stances, of any class expression which is formed out of
union, intersection, difference, cross product, project, se-
lect, dot [?], property declaration, assignment, and func-
tion definition operators. This class algebra satisfies all
of the properties listed by [?] for evaluating algebraic
object-oriented query models. That is, the class alge-
bra has ID’s and ID manipulation, encapsulation, inher-
itance, extends relational algebra, includes behavior con-
structors, invokes behaviors, has dynamic type creation,

can query transitive closures, has formal semantics, is
a closed algebra, has strong typing, and has optimiza-
tion strategies. Since the algebra includes invocation of
behaviors which may have side-effects, such as assign-
ments and declarations, the algebra should technically
be called an evolving algebra [?] or a calculus. But since
at any given time, the database is an algebra with spe-
cific constants and functions, we still simply call it a class
algebra.
The main feature of this database model is that the al-
ebra involving the classes and typed collections is closed
F?] under standard database operations such as union, in-
tersection, difference, select, project, dot, append, and
assignment. Collections are homogeneous; i.e. the el-
ements of the collection must all satisfy the invariant
of the collection’s class. However, unlike other models
[?], such as the relational model, in class algebra the
collections being unioned, intersected, or differenced do
not need to have the same class. (As in the ODMG-
93 standard [?], the database collections include bags,
sets, arrays, lists, and their subclasses.) The resulting
collection’s class is calculated using a sorted disjunctive
normal form of class names. This model derives the most
specific class for the resulting collection, permitting the
user to know what attributes and methods are available
for each of its elements. For instance, unioning a list of
people and a set of students will produce a set of people.
Each of class algebra’s class descriptions involve a set
of superclasses, optional keys, a list of attribute defini-
tions, a list of binary relationship definitions, a proto-
type, and a class invariant. The ODMG-93 standard
ODL language [?] is the same, except that it does not
include a prototype or a class invariant.

All attributes in the database are formed by using
a declaration qualified_name inClass class_expr. All
relations are binary, and are formed by using a dec-
laration qualified_name inverse id inClass class_expr.
This declaration provides necessary conditions, but not
sufficient conditions, for values which can be dynami-
cally assigned to the attribute or binary relation. The
class_expr in assignment statements, on the other hand,
provide both necessary and sufficient conditions for the
current membership. There are two kinds of assign-
ments in this class algebra. The static assignment

-92.



qualified_name := class_expr is used to change the ex-
isting value of the collection gualified_name to the value
of class_expr. The view assignment (also called delayed
assignment) qualified_-name = @ class.expr is used to
define an implicit function or relation. This function or
relation’s value may change as assignments change the
values of attributes and relations in the database. The
class_ezpr in these view assignments cannot contain data
assignments or calls to any functions that might have
side-effects.

The declaration and assignment statements return
the new object referred to by qualified_name. Nested
environments can be created by using the expression
qualified_name#(ezprs_separated_by_semicolons),
where the # symbol is used as the dot operator. Assign-
ments’ left-hand sides are relative to a current environ-
ment which can be changed either by using the nested
environments or by using a Unix-like cd (i.e. change-
directory) command. parent is a reserved word pointing
to the .. object containing this object, and world is a
reserved word pointing to the / root object. If an ob-
ject is deleted, all of its subobjects and pointers to those
subobjects are also deleted.

Each class has the attributes extent, invariant, keys,
prototype, and the relations superclasses and subclasses.
New keys can be assigned to the class by assign-
ing or inserting into world#classes[className].keys.
The relations world#classes[className).superclasses
and world#classes[className)].subclasses are calcu-
lated from the class_expr. Their calculation involves
the use of a sorted-disjunctive normal form which per-
mits the algebra to closed under the above opera-
tions. This is described below. Finally, the attribute
world#classes[classN ame].prototype can be assigned a
value which is used for default values of the correspond-
ing attributes.

A subclass declaration subclass < @ superclass has
the effect of inserting world#classes[subclass]. All as-
signments to new objects (i.e. attributes or relations of
other objects) which have been declared to be in the ex-
tent of such a class are first checked to make sure that
they satisfy the class invariant. Unlike some other de-
scription logics, we do not automatically reclassify ob-
jects to their lowest subclass, although such automatic
reclassification by using class invariants is theoretically
possible if the invariants are considered to be both nec-
essary and sufficient conditions for membership in the
class’s extent.

In Section 2 we provide a more formal definition of the
class algebra. In Section 3 we describe how the sorted
digjunctive normal form permits the algebra to be closed
under its operations. A short comparison is also made
with the traditional subsumption of description logics.
In Section 4, we compare class expressions to OQL and
SQL. In Section 5, we consider some problems of using
class expressions for general first-order queries such as
those found in np-complete or np-hard queries. We show
how the general-purpose optimization strategies of Pro-
log and first-order logic theorem proving systems can be

included into class algebra. Finally, we summarize the
advantages of using such a class algebra in Section 6.

2 An Object-Oriented Class Algebra

In this section, we present a Boolean algebra of classes
and their corresponding extents (i.e. the list of all in-
stances of the class). We are mainly concerned with
finding the datatype of unions, intersections, and com-
plements of classes, and we show that the resulting
classes form a closed, finite ISA hierarchy [?]. Then,
this Boolean algebra is extended to include the types of
collections such as bags, sets, lists, and arrays. For in-
stance, using this model, the concatenation of a bag of
flowers and a set of trees produces a bag of plants. This
library’s closure under its collection operations makes it
both user-friendly and easy to optimize.

As much as possible, we try to follow the ODMG-93
standard [?], which includes multiple inheritance. As
in the ODMG standard, an atiribute has a literal value
which has no object identifiers, a relation is always a bi-
nary relation between objects which have object iden-
tifiers (so that all references to an object are readily
available), and methods may involve either operations
or functions that may generate exceptions. When we
use the word class, we are referring to an ODMG type
where the extent and invariant are required rather than
optional.

In our model, a class is mainly defined by its invariant,
or its membership test condition. This invariant includes
a formal description of the signatures of the required at-
tributes, relations, methods, and exception handlers for
elements of this clags. The invariant may also describe
the input-output behavior of each method or function
which the class implements. The invariant can also be
used as a membership function. When applied to any
object (i.e. an attribute or relation of another object),
the invariant will evaluate to either true or false, telling
whether or not that object can be added into the extent
(i.e. the set of all members) of the class. It states the
conditions which must be satisfied by each object which
can be considered in this class. That is, each object has
both a declared class (from the signature) and an active
class which is a subclass of the declared class. The active
class is the union of the classes of the values which are
currently assigned to this object.

Such an invariant is a conditional expression which
involves one free variable that is assigned to the object
which is to be tested for membership. That is, the invari-
ant has the form {z | ¥(z)} for some first-order formula
¥ which may itself involve such expressions. In gen-
eral, when performing theorem-proving with such formu-
las, the function symbols may become nested arbitrarily
deeply, and an arbitrary number of new variables may be
introduced. However, in our case, the only rules which
are used have the form such as

newclassname(z) — superclassname(z)&¥(z) (1)

We will ignore the proofs which involve the invariants
¥(z), and will simplify the rules to include only ground

-93.



cases for which ¥(z) is true, so there will not be problems
with infinite nesting of functions. The theorem-proving
involving these rules then remains finite, and there is an
algorithm for simplifying the Boolean combinations of
such invariants. The above rules basically form the ISA
hierarchy which our model uses for describing both the
inheritance of attributes and methods, and for describ-
ing union/intersection/dif ference relationships among
the extents of the classes.

38 The Sorted Disjunctive-Normal Form

First, let us consider class expressions involving union,
intersection and difference operators. Then we will ex-
tend this algebra to include other operators.

Assume that every class invariant is written as a
Boolean expression involving class names. Such a
Boolean expression has a digjunctive normal form, and
some theorem-proving techniques can be used to sim-
plify this normal form. For example, subsumption can
be used to eliminate any conjuncts which contain more
classes than another conjunct. For example, in the dis-
junction

students&cpeoplediteachers V people (2)

the students&peopledsteachers conjunct is subsumed by
the people conjunct (i.e. the union of student-teachers
and all people is all people). Another simplification is
that superclasses may be eliminated from conjuncts. So,
for example, studentsé&people simplifies to students. A
theorem-proving technique such as resolution can gener-
ate all of the consequents of the digjunctive normal form,
and then subsumption can be used to eliminate unneeded
disjuncts and literals. The result is a set of prime impli-
cants. Each conjunct’s classes are sorted, and then the
disjunction of these conjuncts is also sorted to come up
with a unique normal form. For example, although the
disjunctive normal forms

zde ~yVyl ~2 V& ~z (3)

and
gl ~zVylh ~z V& ~y (4)

both represent the same Boolean value, they have dif-
ferent forms. But, when starting with either expression
and deriving all of the unsubsumed consequents, and
then sorting, you will arrive at the unique normal form

& ~yVaek~z2Vyble~azVyk ~ 2V izl ~ :cVz&,a(ag;
5

The above normal forms are the labels of nodes in a
network structure which is the ISA class hierarchy of the
class expressions. Our model uses this ISA hierarchy for
both the type hierarchy and the subset hierarchy. The
sorted disjunctive normal form is used in a generalization
of the subsumption operation which is usually used in de-
scription logics (e.g. F”]) That subsumption is only used
for conjunctions, which are the datatypes of objects. De-
scription logics do not usually extend the subsumption
to include union and complement operators.

A class union operation unions the extents of its sub-
classes, its invariant is the disjunction of the invariants
of its superclasses, and its required properties (i.e. at-
tributes, relations, operators, functions, and exception
handlers) are the intersection of the superclasses’ re-
quired properties. When unioning collections, the signa-
tures of the required attributes and relations are inter-
sected if they have similar names. Similarly, a class inter-
section operation intersects the extents of its subclasses,
its invariant is the conjunction of the superclasses’ in-
variants, and its required properties are the union of the
superclasses’ required properties. The signatures of at-
tributes or relations with the same name are also unioned
in the new class, and the original individual attributes or
relations are still available by using C++ like notation
Class::attr or Class::reln.

For each class expression involving union, intersection,
complement, and difference operators, we can therefore
derive a unique node in the ISA hierarchy which de-
scribes that class expression. The class expression’s ex-
tent is the union of the extents of itself and all nodes
underneath it in this ISA hierarchy. Its set of required
attributes, explicit relations, and methods (i.e. opera-
tors, implicit relations, and exception handlers) are the
union of its own plus those of the classes above it in the
ISA hierarchy.

We now want to extend this definition to arrays, lists,
bags, and sets. We follow ODMG’s Object Definition
Language (ODL) standard [?] for object declarations.
The union operation is used to compute the class of
the elements in the concatenation of arrays, lists, bags,
and sets. For instance, an array of people concatenated
with an array of buildings will produce an array of phys-
ical_objects, if that is the least upper bound of buildings
and people in the ISA hierarchy. Inserting a single ele-
ment into an array, list, or bag, will also use the union
operation to calculate the datatype of the resulting ar-
ray, list, or bag. Deletion of elements from collections
will leave the collection’s type unaffected.

Every collection of objects with oids is stored as a bi-
nary relation, so each object has inverse relations point-
ing to all collections in which it is contained. Extents
are implemented as lists. Lists have an iterator which
can take values from 0 up to the number of elements in
the list, and an insert and remove operator which change
the locations of elements in the list. A bag is a list whose
key can be used to identify a set of elements of the ex-
tent. A set is a bag where the key identifies a unique
element rather than a set of elements. If the keys are
integers, then the set is called an array. Since arrays are
a kind of set, a set is a kind of a bag, and a bag is a
kind of a list, append or insert operations which are per-
formed on combinations of collections will result in the
more general type. For instance, inserting a list < A>
into an array < B > will result in a list < AU B >.
Appending an array < A > to a set < B > will result
in a set < AU B>. Notice that all attributes of AU B,
including the key, also union their types, so the resulting
set has both character keys and integer keys intermixed.

-94 -



Union operations may cause key conflicts, which require
the user to use C++ double colon notation to indicate
which superclass to use. A groupby(propertynames...)
method turns a bag into a set with the given proper-
tynames as keys, where each value is itself a set. The
ungroup() function turns such a set of member relations
back into a bag with repeated entries for the keys.

4 A Comparison to OQL and SQL

The ODMG standard framework includes an Object
Query Language (OQL) which has some similarities
to SQL, but which is based on the object-oriented
paradigm. OQL contains a SELECT statement for
asking queries. In our model, the class_expr where
Boolean_expr statement can select from any class ex-
pression according to the where clause, and it will re-
turn either a collection or a single value (e.g. when
class_expr is an aggregate function or first() or next()
function). The statement subclass < @ class.expr
where Boolean_expr is used to define a new subclass
whose invariant is the given Boolean_ezpr conjoined
with the superclasses’ invariants.

The SELECT statement of SQL and OQL also takes
the cross product of the FROM relations. In our model,
the cross product operation produces a collection of ob-
jects whose class is the intersection of the classes being
crossed. For example, the cross product of name, ad-
dress, telephone number, and age objects is a set of ob-
jects whose type is name&zaddress&telephoneNumézage.
This set is formed in the normal way, by finding the set
of all tuples whose i-th element is contained in the i-th
input set. Of course, such a set is very large, so alge-
braic simplification should be used to move the selection
operation into the cross-product generation, so that an
intelligent method can be used to generate only the de-
sired objects. Our cross product operator is associative,
as in [7].

Finally, the SELECT statement of SQL and OQL
hides all attributes except those listed after the SELECT
keyword. In our model, this projection operation is mod-
eled by overriding the assignment or getval operations
for the hidden attributes or relations. Similarly, other
operators such as update, append, open, delete, etc. can
also be made to return errors if the user does not have
the appropriate access privileges. That is, both projec-
tion and security are handled by overriding correspond-
ing operators’ definitions. However, care must be taken
to also override the :: operator to first make sure that
unqualified users cannot access the old definitions. Since
it is understood that all objects may either satisfy the
conditions of the invariant or have an error value, such
overriding does not invalidate the superclasses’ invari-
ants.

The expressions of OQL, the object-oriented query
language of the ODMG-93 standard, are very similar to
the expressions of the class algebra. OQL contains op-
erators for union, intersection, and complement of sets.
OQL does not extend this to the other kinds of collec-

tions (i.e. bags, lists, and arrays). Moreover, the result
of these operatlons are simply a set rather than a class.
This set’s type is not explicitly defined in the ODMG-
93 manual, so it could be defined using the sorted dis-
junctive normal form described in Section 3 above, thus
leading to a query language which is closed under these
operations. Also, the method of resolving name con-
flicts, especially among keys, is undefined in the ODMG-
93 manual. We use the C++ notation to disambiguate
names which occur in more than one class. That is, all
property values are accessible for each object, even if
several inherited properties have the same name. The
properties can be referred to by using a C+-+ double
colon notation class::property_name.

OQL does not define assignments and control. This is
left for the binding to a particular language such as C++,
Java, or Smalltalk. Our class algebra already includes
assignment, function, and relation definition, and simple
control structures such as if and while statements.

5 General First-Order Queries using
Class Expressions

First-order logic and Prolog also can serve as a conve-
nient query and database manipulation language. Many
current versions of Prolog contain an ODBC interface
to relational databases. Predicates can be declared to
be database relations. Thereafter, assertions and retrac-
tions of these predicates will send the appropriate SQL
commands over the network to make the corresponding
changes in the database. Prolog queries look the same
regardless of whether data is retrieved from the database
or from memory.

There has also been a large amount of research on
how to optimize Prolog-like queries. For example, pred-
icates may be rearranged and intelligent backtracking
can skip over useless backtrackings. The magic-sets algo-
rithm can rewrite a Prolog program into a more efficient
program by knowing which arguments are bound in the
query. Relaxation algorithms can successively find larger
tuples of variables by making use of partial constraints.
There is also an algorithm to find all answers of Datalog
programs (i.e. Prolog without function symbols) in time
O(n*), where k is the depth of nesting in the constant
propagation graph.

The nested views of our class algebra correspond to
Prolog programs which have no loops in their constant
propagation graph, where variables occurring in the same
predicate or in unifiable predicates are connected by an
edge. That is, the constant propagation graphs form a
lattice structure. This is the source of the class algebra’s
efficiency (as is true for other description logics), but is
also a source of limitations. The class algebra expres-
sions can also be optimized (i.e. simplified), but state-
ments with side-effects are not easy to simplify. The
functional set and class operations are generally insuf-
ficient for programming complicated control such as is
found in the magic-sets algorithm. When the class al-
gebra is extended with other control mechanisms, any

-95.-



algorithm can be expressed, but it is difficult to make
use of general-purpose optimization strategies.

Class algebra’s where operator takes a Prolog-like goal
as the second argument, and we can use traditional the-
orem proving optimization techniques to generate the
instances of the first argument which satisfy the goal.
This retains the advantages of the declarative nature of
the functional operators of the class algebra, permitting
use of sophisticated simplification and optimization tech-
niques to find more efficient programs for simply stated
problems.

For example, the maximum clique problem and the
coloring problem can make use of such Prolog and
theorem- proving optimizations combined with algebraic
simplification techniques:

max_clique(Graph) =@ max(size(X where (X in

powerset(Graph.nodes), subset(X, X # otherEnd)))).

min_color(Graph) =@

min(size([A,B,C,D,...] $ asSet)

where next(A,B), next(B,C), next(C,D), ...,

(next(X,Y):- color(X), color(Y), X=/=Y),

color(red), color(blue), color(green), color(orange).

6 Advantages of Class Expressions

The class algebra which is described here is an easy to use
object-oriented database query and manipulation lan-
guage. It can be extended to fit into most languages by
using a binding such as that used by ODMG. However,
it also can have a very nice menu-based window inter-
face. A language is usually more convenient for defining
where conditions and function definitions, but the menu-
based interface is still more convenient for programmers
who might not know what attributes and functions are
available in the database.

The class algebra has its own simplification strategies
which can be used in combination with other optimiza-
tion strategies for Prolog and automatic theorem prov-
ing.

More work still needs to be done on using this class
algebra in a distributed environment. There seems to
be no essential problem since typing is static, garbage
collection is well-defined, and transactions and error-
recovery are well- defined. The parent attribute will per-
mit the retrieval of a unique name for each object, simi-
lar to a ur! of the World- Wide Web (WWW). This can
be used for communicating with a CORBA-compliant
server. There is also essentially no problem to integrate
the WWW interface to this system (still under devel-
opment) into hypertext and spreadsheets. However, we
have not yet investigated the problems concerned with
multiple caches and multiple versions. So far, such copies
of objects and collections must be assigned to new ob-
jects. Perhaps a simple solution would be to define a
class of historied objects whose assignment operators
would be overridden to maintain a list of the object’s k
previous or cached versions. However, configurations of
consistent versions would also be needed. The binary re-
lations may point to different objects, depending on the

current configuration.

It seems that the class algebra presented in this paper
provides a good theoretical basis for investigating these
practical distributed object-oriented database problems.

- 96 -





