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Abstract
This paper investigates the possibility of ex-
ploiting formal analysis tools developed in the
database field for the purpose of studying
the expressive power of description logics aug-
mented with rule-based query languages. We
report a preliminary analysis on the expres-
sive power of such hybrid languages. Two spe-
cific languages coupling a terminological com-
ponent with Horn rules are considered. It is
shown that: (1) the former language defines
all database collections expressed by skolem-
ized universally quantified second order formu-
lae where quantified predicates are monadic,
and (2) the latter language defines all database
collections expressed by skolemized universally
quantified second order formulae where quanti-
fied predicates are dyadic or monadic.

1 Introduction
Recently there was some attention on integration of de-
scription logics of the J4£-family with rule-based lan-
guages for querying relational data bases such as Dat-
alog ([Donini et al., 1991; Levy and Rousset, 1996b;
1996aj).

Computational analysis carried out in such papers is
limited to complexity: i.e., how much time/space it is
needed to answer to a specific query, the input being the
relational data base, and/or the ABox, and/or the TBox,
and/or the rules? The goal of this paper is to perform
some considerations and give some preliminary results
on the expressiveness of such hybrid languages. The im-
portance of formal analysis of expressive power of query

languages is acknowledged in the data base community
[Kanellakis, 1990].

Intuitively, the expressive power of a query language
tells us what "properties" it is possible to extract from a
knowledge base. In the context of databases, expressive
power of query languages has been measured in at least
three different ways:

1. With respect to a specific property, such as tran-
sitive closure. For example, it is well-known that
there is no fixed query in relational calculus that,
for any graph G encoded as a relation edge~2 in the
obvious way, determines whether the transitive clo-
sure of G contains a specific edge or not. Vice-versa,
such a query does exist in Datalog.

2. With respect to a set of logical formulae, such
as first- or second-order logic. As an example,
relational calculus can express exactly the set of
first-order properties over finite structures. "While
queries" [Abiteboul and Vianu, 1992] can express
exactly the set of second-order properties over finite
structures.

3. With respect to a complexity class, such as P, NP,
coNP, PSPACE, etc. As an example, Datalog with
stable negation can express all NP properties of fi-
nite structures [Schlipf, 1990], e.g., whether a graph
is 3-colorable or not.

One of the major results in this field, known as "Fa-
gin’s theorem" [Fagin, 1974], provides the basis for uni-
fying the second and the third modalities. It says that
the set of NP properties coincides with the set of prop-
erties expressed by existentially quantified second-order
formulae. Such a result has been generalized to other
complexity classes and sets of logical formulae.

Formal studies of expressive power of description log-
ics have been recently pursued. In particular, [Borgida,
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1996] shows some expressiveness results with respect to
the second measure, by showing that description lan-
guages built using constructors usually considered in
the description logic literature are characterized by sub-
sets of first-order logic allowing only three variable sym-
bols. [Baader, 1996] gives a methodological contribution,
pointing out that expressiveness must be defined within
a precise formal framework, and proposes the model-
theoretic approach for the characterization of expressive
power. Interestingly, he shows that the complexity of
inference of two equally expressive languages may be dif-
ferent.

The major goals of our research are: 1) to investi-
gate the possibility of exploiting the formal analysis tools
developed in the database field within the context of
description logics augmented with rules, and 2) to give
some preliminary results about the expressive power of
such hybrid systems.

The first difficulty that we encounter in such a project
is the different notion of extensional knowledge that
databases and description logics assume. In the first
case, an extensional database denotes a single finite
structure with a fixed domain of interpretation, whereas
this is obviously not true for an ABox expressed in a de-
scription logic with existential and/or disjunctions. This
aspect disallows direct exploitation of formal tools such
as Fagin’s theorem. Such a problem is also evident if we
translate a relational database D into a first-order for-
mula ¢(D): in fact Reiter [Reiter, 1984] showed that, 
order to preserve the intended meaning of D, ¢(D) must
be completed with sentences such as the domain-closure
axiom, the unique-name axiom and the closed-world as-
sumption, which constrain the set of allowed interpreta-
tions.

In the present work we assume that the ABox is empty.
The intensional part is made out of a TBox and a set of
Horn rules. As usual, we assume that predicates ap-
pearing either in the heads of rules or in the relational
part (also called ordinary predicates) do not occur in
the TBox. Therefore, in the following we shall refer to
hybrid knowledge bases A consisting of three compo-
nents: the TBox, denoted AT, a finite set of Horn rules,
denoted An and, finally, a finite set of facts (i.e., a re-
lational database), denoted Ae. Ae is the extensional
component of A, whereas An U AT forms the inten-
sional component of A. The intensional component of a
knowledge base defines a query that is evaluated over its
extensional component.

It is easy to see that Datalog, when augmented with
inclusion axioms typical of description logics, is able to
capture some coNP-complete queries. As an example, to
check 3-colorability of a graph G = (V, A> encoded as 
set of facts Ae = {edge(a, b)l(a, b) E A}, we can write 
2-components query:

TBox (AT):

T E redUgreenUblue

red E -~green

E -~bluegreen _

blue E "~red

Datalog rules (An):

non_3_col ~ edge(X, Y), red(X), red(Y).

non_3_col ~-- edge( X, Y), blue( X), blue(Y).

non_3_col ~ edge( X, Y), green( X), green(Y 

The inclusion axioms in the TBox impose that the three
colors actually partition the active domain, and indeed
AT U An U A~ ~ non_3_col iff G is not 3-colorable
(where ~ denotes the usual logical consequence oper-
ator, i.e., validity in all models). In the terminology of
[Levy and Rousset, 1996b], AT is "acyclic", and An
is "non-recursive". Moreover A7 belongs to the class
CARIN-MARC of "maximal (decidable) A£CA/7~ Recur-
sive CARIN", which includes the constructors U, [7, (_>
n R),3R.C, and negation on primitive concepts. An
is "role-safe", i.e., each of its rules is such that for every
atom of the form R(x, y) in the antecedent, where R is
a role, then either x or y appear in an ordinary atom of
the antecedent. In fact, the TBox is a set of inclusion
axioms [Buchheit et al., 1993], and concept constructors
used in the TBox are just boolean. Actually, this is an
A£:-log program [Donini et al., 1991].

The above example just proves that the data complex-
ity (i.e., complexity considering the extensional compo-
nent as the input and the intensional component (query)
AT U An not part of the input) of,A~-log is coNP-hard,
but it does not imply that either .A£:-log or CARIN is
able to express all queries in coNP. Such a distinction
is important since the expressive power of a language
is not necessarily the same as its complexity (it is al-
ways less than or equal to1. Several languages with this
property are known, cf. [Abiteboul and Vianu, 1992;
Eiter et al., 1994]. As an example, a language which
does not capture NP -even if it has an underlying NP-
complete problem- has been shown by Stewart in [Stew-
art, 1991].

We remark that imposing an empty ABox does not im-
ply that there is a fixed domain of interpretation. Nev-
ertheless, in the above example, this is harmless, since
non-3-colorability is a property which is preserved for
superstructures (i.e., if a graph G is not 3-colorable then
any supergraph of G is not 3-colorable as well).

Very often, the TBoxes are assumed to contain pred-
icates (concepts, roles) with fixed arity. In the present
paper we restrict our attention to such languages. As
a consequence, we use some results on the expressive
power of fragments of universal second-order logic with
fixed arity [Fagin, 1975]. This is in the spirit of the sec-
ond modality to measure expressiveness, since those frag-
ments do not naturally correspond to complexity classes,
but form a hierarchy within coNP [Fagin, 1990], which
is orthogonal to the complexity of definable collections:
indeed even the smallest class in the hierarchy (coNP1)
contains coNP complete collections.
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2 The expressive power of CARIN

knowledge bases

In [Levy and Rousset, 1996b] it is proved that the data
complexity (the input being the ABox and/or the rela-
tional database) of logical inference in both CARIN-MARC
and ROLE-SAFE CARIN is coNP-complete, and we showed
in Section 1 that coNP-complete problems are indeed
expressed by very simple CARIN knowledge bases, where
the Horn component is non-recursive. In this section we
prove two results:

1. That ROLE-SAFE CARIN-MARC =’# with a non-
recursive Horn component expresses all queries
that are defined by formulae of the kind
--3SVX3Y¢(X, Y), where S is a list of monadic
predicates, ¢ is a quantifier-free first-order for-
mula, and X, Y are lists of variables, provided
that the input finite structure is given in suitable
form, as specified below. The exponent =,# denotes
availability of pre-interpreted symbols for equality
and inequality. Formulae -,3SVX3Y¢(X, Y) de-
fine queries that form a subset of monadic coNP
queries (hereafter, called coNPi cf. [Fagin, 1975;
1990; Cosmadakis, 1993]), which contains several
coNP complete queries (e.g., the complement of 3-
colorability of a graph). At the moment, we do not
know whether this result can be generalized to the
entire set of monadic coNP queries.

2. That CARIN-MARC-- with a non-recursive Horn com-
ponent enriched with boolean inclusion axioms on
primitive roles expresses all queries that are defined
by formulae of the kind -,3SIVX3Y¢’(X, Y), where
S~ is a list of predicates with arity at most 2 and
¢~ is a quantifier-free first order formula, provided
that the input finite structure is given in suitable
form, as specified below. Analogously to the pre-
vious case, such formulae define queries that form
a subset of dyadic coNP (coNP2), and we do not
know whether this result can be generalized to the
entire set of dyadic coNP queries.

The coNP-completeness of querying the CARIN-MARC
and ROLE-SAFE CARIN knowledge bases established in
[Levy and Rousset, 1996b] serves also as an upper bound
to the expressiveness when the ABox is empty. In
other words we know that no CARIN-MARC or ROLE-SAFE
CARIN knowledge base can express queries which are not
in coNP.

In the following, ~ denotes a fixed set of relational
symbols not including equality "-" and S denotes a list
of variables ranging over monadic relational symbols dis-
tinct from those in ~. By Fagin’s theorem [Fagin, 1974],
any NP-recognizable collection D of finite structures over

is defined by a second-order existentially quantified
formula. In particular, NP-recognizable collections D of
finite structures, defined by formulas where all existen-
tially quantified relational symbols are 1-ary, form the
set of NPi collections. As already noted, NP1 indeed
includes NP-complete collections (e.g., the collection of

3-colorable graphs). Nevertheless there are polynomial
collections of databases (e.g., the collection of dyadic re-
lations with even number of tuples) that are not in NP1
[Fagin, 1990]. The class NPi has interesting properties:
as an example, in [Cosmadakis, 1993] it is proven that
monadic NP differs from monadic coNP, while this is
a long-standing open question for unbounded NP and
coNP.

In the following, we deal with skolemized second-order
formulae of the following kind:

¢ = (3S)(VX)(3Y)(0i(X, Y) V... V 0k(X, 
where gi, ¯ ¯., ek are conjunctions of literals involving re-
lational symbols in ~ and S, plus relational symbol "=",
and all relational symbols in S are constrained to be
monadic. Each conjunction 0i contains occurrence of
some variables among X, Y. As usual, "=" is always
interpreted as "equality". The set of uninterpreted re-
lational symbols occurring in formula (1) -i.e., ~ U 
will be denoted either by £: or by (ai,..., al}. In the
following art(a) denotes the arity of a predicate 

We illustrate a method that transforms a formula ¢
of the kind (1) and a finite structure D into a ROLE-
SAFE CARIN-MARC knowledge base A(¢, D) and a query
7. Both A(¢, D) and 7 use an enlarged set of relational
symbols £:’ which is built as follows: (1) each relational
symbol a E 13 is in £7; (2) for each relational symbol
a E L: there is one relational symbol ~ with the same
arity as a in L:’; (3) there is a relational symbol t with
the same arity as X in £:’; (4) there is a 0-ary relational
symbol e in £7. The ROLE-SAFE CARIN-MARC knowledge
base A(¢, D) is built as follows:

1. for each relational symbol s E S, the following ax-
ioms are in AT(C):

2. for each conjunct

ei(x,Y) = wl(x,Y) ̂ ... ^
Y) ̂ ... Y)

(1 < i < k) in ¢, the rule

v.+l(x, Y),..., v.+m(x, 
is in AT~(¢), where:

¯ v--/(1 < i < n) is:
- e-C, if wi is = (this is just used here to make

the syntax used for equality uniform to that
used for predicates in $),

- w--7, otherwise;
¯ v,,+~ (1 < i < m) is:

- eq, if w,+i is =,
- w,+i, otherwise.

3. for each relational symbol a
art(a) rules are in An(C);

u(x)

u(x)

Etr, the following

a(X, Y1,..., Yart(a)- 

a(Yi,..., Yart(a)-1, 
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4. A~(¢) contains the two rules

t(x) ,-- u(x), e ,-- eq(X, r), Y)
Furthermore, the query 7 is simply equal to e.

We remark that AT(C)I,.J An(C) is a ROLE-SAFE
CARIN-MARC knowledge base.

Now, given a finite structure D, we define the com-
plementary structure D as follows. For each relational
symbol r E D there is a relational symbol ~ in D with
the same arity as r. Then, for each relational symbol F in

and for each tuple t ¯ U~rt(r), D ~ F(t) iff D ~: r(t).
Thus, finally, let AZ(¢, D) = D U D. We are now ready
for the first main result about expressive power of ROLE-
SAFE CARIN-MARC.

Theorem 2.1 For any skolemized NP1 collection D of
finite structures over ~ -characterized by a formula ¢
of the kind (1)- the ROLE-SAFE CARIN-MARC knowledge
base A(¢, D) built according to the above rules is such
that a structure D is in D if and only/fAT-(¢)UAR(f)U
Ae(¢,D) ~ 

In other words, the theorem says that each collection
of finite structures in skolemized coNP1 is definable by
a ROLE-SAFE CARIN-MARC knowledge base A(¢, D) and
query 7.

To allow role axioms to occur in AT(C) enhances the
expressive power of the language. Indeed, consider for-
mulae of the form:

0’ = (3s’)(vx)(3Y)(01(x, Y) v... v 0k(x, 
where 01,..., 0k are conjunctions of literals involving re-
lational symbols in ~ and S~, plus relational symbol "=’,
and all relational symbols in St are constrained to be ei-
ther monadic or dyadic. Such formulae define a subset of
NP2 that contains NP-complete problems. We remind
that there are collections of polynomial-time recogniz-
able databases (e.g., the collection of ternary relations
with even number of tuples) that are not in NP2 [Fagin,
1990], and that NP2 strictly contains NP1 (e.g., the col-
lection of dyadic relations with even number of tuples is
in NP2).

To illustrate the transformation of a formula ¢ of the
kind (2) into CARIN-MARC= knowledge base At(¢t, D)
with axioms on roles and a query 7t, we modify the trans-
lation provided for the monadic case by adding to the
TBox A~r, for each dyadic relational symbol st ¯ St, the
following role axioms:

Y E_ st U s"7 st U .~7 eq E =

= E eq T x T E eq U "~q eq U -~’~q

We are now ready for our second result about expressive
power of CARIN languages.

Theorem 2.2 For any skolemized NPz collection D
of finite structures over ¢r -characterized by a formula
Ct of the kind (P)- the CARIN-MARC= knowledge base
A~(¢t, D) built according to the above rules is such that
a structure D is in D if and only ifA~r(¢’) U A~(¢’) 
A~(¢t, D) ~ 7’.

3 Conclusions
In the present paper we showed the possibility of exploit-
ing the formal analysis tools developed in the database
field within the context of description logics augmented
with rules. In particular we obtained lower bounds for
the expressive power of two hybrid languages (Theo-
rems 2.1 and 2.2). Upper bound for the expressiveness
of the former language follows from the results of [Levy
and Rousset, 1996b]. We still have to investigate the
upper bound of expressiveness of the latter language.

In this work we assumed empty ABoxes. Neverthe-
less the results we presented are valid also if the ABox
contains positive atomic assertions such as red(nodel).
Furthermore, it is important to stress that by allowing
predicates with any arity to appear in the description
logic component of knowledge bases, we obtain languages
capturing all coNP properties.

Several questions are still open. Regarding the two
languages we have analyzed in this paper, (1) determine
whether there are queries in coNP2 which cannot be ex-
pressed by former language, and (2) determine whether
the languages express all (even non-skolemized) queries
in coNP1, resp. coNP2. In general, how to define the
expressive power over finite formulae possibly denoting
infinitely many models?
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