
Subsumption-Based Matching:

Yolanda Gil
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi, edu

Bringing Semantics to Goals

Pedro A. Gonz~lez
Departamento de Inform£tica y Automhtica

Universidad Complutense de Madrid
Ciudad Universitaria
28040 Madrid, Spain
pagoncal@dia, ucm. es

Abstract
Matching a posted goal against a library of
rules is a task common in many AI systems.
There are matching algorithms that can per-
form this process with reasonable efficiency.
However, they are based on the syntactic fea-
tures of goals instead of their semantic mean-
ing. Representing the semantic meaning of
goals can support additional features in match-
ing algorithms and further reasoning about
goals. This paper presents a matching algo-
rithm that uses a semantic goal representation
based on description logic. Each goal is trans-
lated into a description, and matching relies
on the reasoning performed by a classifier to
determine which rules unify with the posted
goal. An extension of the matcher relaxes the
posted goal to retrieve rules that almost match
the goal based on the subsumption hierarchies
of the domain ontology and the goals. The
matching algorithm has been implemented us-
ing LOOM as the underlying description logic,
and is used routinely as a component of the
EXPECT problem-solving architecture. We
show how it classifies and retrieves the meth-
ods in EXPECT’s domains, and how the re-
laxed matching mode can be used to support
knowledge acquisition.

1 Introduction
Matching a posted goal against a library of rules is a
task common in many AI systems, including problem
solvers, planners, and production systems. Two pred-
icates match if their names are the same and if each
argument matches in turn, where two constants match
only if they are equal and a variable matches another
variable or a constant. This approach to matching is
based on syntactic features and treats the predicates and
their arguments solely as tokens. These are impover-
ished representations compared to the knowledge repre-
sentation systems that are currently available, such as
description logics. Another shortcoming of these match-
ing algorithms is their "all-or-nothing" nature, i.e., the

complete expression of the posted goal must be matched
exactly when they return a result. When an exact match
cannot be found, they do not return anything.

This abstract presents a matching algorithm that
uses a semantic goal representation based on description
logic. Each goal is translated into a description, and
matching relies on the reasoning performed by a classi-
fier to determine which rules unify with the posted goal.
Our work stems from the EXPECT project [Swartout
and Gil, 1995; Gil, 1994; Gil and Melz, 1996] (and
its predecessor system EES [Swartout et al., 1991]),
an architecture for developing knowledge-based systems
that is tightly coupled with LOOM [MacGregor, 1988;
1991], a description logic system. EXPECT represents
domain objects and classes in LOOM, as well as the goals
of the methods to manipulate those objects. We have
also extended the EXPECT matcher to work in a relaxed
mode and retrieve rules that almost match a posted goal
based on the subsumption hierarchies of the domain on-
tology and the goals. This relaxed matching mode can
be used to support knowledge acquisition.

The EXPECT matching algorithm is used routinely as
a component of the EXPECT problem-solving architec-
ture, which we have used to implement transportation
planning and air campaign planning decision aids. The
EXPECT matcher classifies and retrieves the methods
in these and other domains.

2 Bringing Semantics to Goals
In EXPECT, goals are expressed as verb clauses with an
action name and several roles (as in a case grammar).
The arguments of the goal are typed. The simplest type
is an instance of a concept defined in the domain model.
For example, the goal of transporting a package to a lo-
cation can be expressed as a verb with two roles, i.e.,
the verb transport with a direct object role obj filled
by an instance of a package, and a second role to filled
by an instance of a location. We express this goal in
EXPECT as (transport (obj (inst-of package)) 
(inst-of location))). Previous versions of EXPECT
represented it with the LOOM concept (defconcept
transport-package-to-location :is (:and transport
(:the obj package) (:the to location))), where re-
strictions on the types of the arguments are represented

- 116 -

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



with restrictions on fillers of the roles, resembling other
approaches such as [Yen et al., 1991].

However, this kind of definition is not enough to rep-
resent EXPECT goal arguments. Besides instances, the
types of goal arguments in EXPECT include concepts,
extensional sets, and intensional sets. Using concepts as
parameter types is useful to make goal expressions more
explicit. For example, the goal of computing the factorial
of a number can be expressed as (compute (obj (spec-of
factorial)) (of (lust-of number))) 1 with goal in-
stances such as (compute (obj (spec-of factorial))
(of 3)). Notice that the goal could also be stated
as (compute-factorial-of 3), which computationally
would yield the same result but its representation is
not very explicit. Goal parameters can also be ex-
tensional or intensional sets. Sets are used to express
goals such as transporting a set of objects to a location,
as in (transport (obj (set-of (lust-of package))) 
(inet-of location))) and in (transport (obj 
p3)) (to (inst-of location))),

Goals can also contain descriptions of objects. Any
legal LOOM expression for class definitions can be
used to specify the type of an argument. For ex-
ample, the goal to transport a package whose con-
tents include some fragile object to a location can
be expressed as (transport (obj (lust-of (and package
(some contents fragile-object))
(to (inst-of location))), where contents is a role 
the concept package.

EXPECT translates goal expressions to LOOM def-
initions, following an algorithm described in [Gil
and Gonz~lez, 1996]. For example, the EXPECT
goal (compute (obj (spec-of factorial)) (of (5 
is translated into:

(defconcept compute-factorial-of-numbers
:is (:and compute

(:the obj (:and concept-description factorial))
(:the of (:and number extensional-instance-set

:filled-by instance-name 5
:filled-by instance-name 71))))

Notice that this translation is done automatically
while in other approaches, such as COMET [Mark et
al., 1992] and LASSIE [Devanbu et al., 1991], it is done
manually.

3 Subsumption-Based Matching
Given a library of methods, we express the goals that
they can achieve as a LOOM concept as we explained in
the previous section. When a goal is posted, the matcher
expresses it as a LOOM expression, and uses the clas-
sifter to determine which methods have goals that sub-
sume it. In [Gil and Gonzglez, 1996], we summarize the
algorithm for matching a posted goal against a library of
goals achieved by methods available to the system. The
algorithm returns a list of methods that match the goal
and the bindings for the variables of each method, or-
dered according to the specificity of their corresponding

lspec-of is short for specialization-of, and inst-of is short for
instance-of.

descriptions. EXPECT’s problem solver tries the most
specific one first. For example, suppose that we have the
following method (expressed in EXPECT’s grammar) 
double a number by multiplying the number by 2:

(defmethod double-number
:goal (double (obj (?n is (inst-of number))))
:result-type (inst-of number))
:method-body (rnultiply (obj ?n) (by 

When a goal such as (double (obj 100)) is posted,
the matcher (i) retrieves double-number and (2) specifies
that the binding of?n is I00. EXPECT then expands the
method body by substituting the binding as (multiply
(obj I00) (by 2)) and posting it as a 

The concept definitions for goals use a subset of
LOOM’s representation language. Although reasoning
with LOOM’s full representation language is not com-
plete, EXPECT’s marcher uses a subset that is complete.

4 Relaxed Goal Matching
Our relaxed goal matchcr is an extension to our approach
that finds methods that almost match the posted goal.
Since a goal expression can be relaxed in many ways
(e.g., a different action name, different parameter names,
alternative parameter types,...), any method available in
the library would almost match the posted goal in the
extreme. The relaxed matcher works in an interactive
mode where the user specifies which parts of the posted
goal expression can be relaxed. An alternative would be
to use a similarity metric that exploits proximity within
the subsumption hierarchy (extended with heuristics as
in MRL [Koehler, 1994]). We use the interactive mode
because we built the relaxed matcher to support users in
extending a knowledge base with a knowledge acquisition
tool [Gil, 1994]. To define a new method, a user can try
to find an existing one that the user considers similar
to the new method that he or she wants to define, and
use the commands provided by EXPECT’s knowledge
acquisition interface to modify the retrieved method.

In order to support the search for similar methods the
relaxed marcher defines some additional concepts called
action patterns. Action patterns are LOOM concepts
that represent goals with the same action and parame-
ter names and do not specify the types of the param-
eters. For example, if the method library contains a
method to achieve the goal (find (obj (set-of (inst-of
seaport))) (of (lust of location))), the matcher will
define the pattern (find (obj) (of)) and the pattern
(find). These patterns are turned into concepts that
effectively impose additional structure on the goal hi-
erarchy which will be used by the relaxed matcher to
guide the search of related methods. The patterns sup-
port navigation from a pattern to other patterns that
are close in the subsumption hierarchy.

The relaxed marcher works essentially as follows.
Given a posted goal that cannot be matched, the user
can expand its pattern to obtain the patterns accessible
from it. When the user accepts one of these accessible
patterns, the process iterates with the patterns accessi-
ble from them. At any point, if a pattern accepted by

- 117-



the user has a method associated with it, the method is
presented to the user. The user can also ask the relaxed
marcher to compare the posted goal with a retrieved
goal. The matcher compares two goals by showing how
the action names, parameter names and parameter types
relate to one another. To show the relationship between
two concepts the relaxed marcher first finds their most
specific subsumer c. It then presents the specialization
chain of each concept with respect to c, which is the or-
dered set of concepts that must be traversed through the
is-a links to reach c from the concept. The user can also
browse the goal hierarchy through a graphical interface.

5 Conclusion
We have presented a system that represents goals ex-
plicitly in a description logic and uses these representa-
tions to match goals to problem-solving methods. The
main advantages of our approach to subsumption-based
matching are:
¯ Goals can be matched with methods to achieve them

based on their semantic meaning, instead of their syn-
tactic structure. This is particularly useful when there
are several alternatives are available to achieve a goal,
because it provides an understanding how each alter-
native relates exactly to the goal.

¯ When a goal cannot be matched with any of the meth-
ods available, it is possible to try to re-express the goal
by reformulating it into a semantically equivalent set
of subgoals that can be matched [Swartout and Gil,
1995]. In other systems, this kind of subgoal expan-
sion has to be explicitly stated.

¯ When no method matches a posted goal (or its equiv-
alent goal expressions,) it is possible to try an ap-
proximate match based on the meaning of the goal
expression to retrieve methods that "almost match"
the posted goal.

¯ Goals can be expressed in a more flexible manner. The
arguments of goals can be definitions of classes and
objects. In other systems only the name of a type can
be given. Also, the arguments can be given in any
order since they can be identified by their case role.
In other representations the order of the arguments is
fixed.
The explicit representation of goals can support addi-

tional types of reasoning besides matching. In EXPECT,
we use the goal representations to do static analysis
of problem-solving knowledge [Swartout and Gil, 1995;
Gil, 1994], natural language generation [Swartout et al.,
1991], and knowledge acquisition [Gil, 1994; Gil and
Melz, 1996].

Acknowledgements
We are indebted to current and past members of the EX-
PECT project for many useful discussions and for the de-
sign and implementation of previous versions of the EX-
PECT matcher that inspired this work, in particular to Bill
Swartout, Ramesh Patti, C~ctie Paris, Vibhu Mittal, Bing
Leng, and Marcelo Tallis. We would also like to thank the

members of the LOOM project for their continuing support.
We also thank Kevin Knight, Craig Knoblock, Bob McGre-
gor, Eric Melz, Tom Russ, and Millnd Tambe for their sug-
gestions to improve the clarity of this paper. We gratefully
acknowledge the support of the Defense Advanced Research
Projects Agency under contract number DABT63-91-G-0025.
Pedro A. Gonz£1ez also received support from the Spanish
Committee of Science and Technology (CICYT) under con-
tract number TIC92-0058.

References
[Devanbu et al., 1991] P. Devanbu, R. J. Brachman, P. G.

Selfridge, and B. W. BaUard. LASSIE: A knowledge-
based software information system. Communications of
the ACM, 34:35-49, 1991.

[Devanbu and Litman, 1991] P. T. Devanbu and D. J. Lit-
man. Plan-based terminological reasoning. In Proceedings
of the Second International Conference on Principles of
Knowledge Representation and Reasoning, 1991.

[Gil, 1994] Y. Gti. Knowledge refinement in a reflective archi-
tecture. In Proceedings of the Twelfth National Conference
on Artificial Intelligence, Seattle, WA, 1994.

[Gil and Melz, 1996] Y. Gil and E. Melz. Explicit represen-
tations of problem-solving strategies to support knowledge
acquisition. To appear in Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, Portland, OR,
August 1996.

[Gfl and Gonz£1ez, 1996] Y. Gil and P. A. Gonz£1ez.
Subsumption-Based Matching: Bringing Semantics to
Goals. Unpublished manuscript.

[Koelder, 1994] J. Koehler. An application of terminologi-
cal logics to case-based reasoning. In Proceedings of the
Fourth International Conference on Principles of Knowl-
edge Representation and Reasoning, Bonn, Germany, May
1994.

[MacGregor, 1988] It. MacGregor. A deductive pattern
marcher. In Proceedings of the 1988 National Conference
on Artificial Intelligence, St Paul, MN, August 1988.

[MacGregor, 1991] 1~. MacGregor. The evolving technology
of classification-based knowledge representation systems.
In J. Sowa, editor, Principles of Semantic Networks: Ex-
plorations in the Representation of Knowledge. Morgan
Kaufmann, San Mateo, CA, 1991.

[Mark et aL, 1992] W. Mark, S. Tyler, J. McGuire, and
J. Schiossberg. Commitment-based software development.
IEEE Transactions on Software Engineering 18(10):870-
885, 1992.

[Swartout et al., 1991] W. R. Swartout, C. L. Paris, and
J. D. Moore. Design for explainable expert systems. IEEE
Expert 6(3):58-64, 1991.

[Swartout and Gti, 1995] W. R. Swartout and Y. Gfl. EX-
PECT: Explicit representations for flexible acquisition.
In Proceedings of the Ninth Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Alberta,
Canada, 1995.

[Yen et al., 1991] J. Yen, R. Neches, and R. MacGregor.
CLASP: Integrating term subsumption systems and pro-
duction systems. IEEE Transactions on Knowledge and
Data Engineering, 3(1):25-32, 1991.

- 118 -




