
Using Description Logics for Consistency-based Diagnosis

Gerd Kamp
Universit~t Hamburg

Vogt-KSlln-Str.30
22527 Hamburg

kamp@informatik.uni-hamburg.de

Holger Wache
Universit~t Bremen
P.O. Box 330 440

28334 Bremen
wache@ informatik.uni-bremen.de

Abstract

Using quantitative models of simple mechanisms as
an example domain, we show how the basic prin-
ciples of consistency-based diagnosis can be im-
plemented using description logics with expressive
concrete domains. In addition, description logics
provide the inference services necessary to orga-
nize and validate model libraries, an aspect that is
neglected in consistency-based diagnosis until now.

1 Description Logics for Diagnosis
Consistency-based diagnosis 1 [7; 10] is a method for the diag-
nosis of technical devices based on descriptions of the correct
and faulty behavior of components. Therefore, for represent-
ing, simulating and diagnosing the simple bike drive train in
Fig. 1 at least the following knowledge must be represented
within such a system:

1. The different types of components, e.g. wheels, gear-
wheels, chains, along with their attributes like force F,
radius r and torque M.2

2. The structure of assemblies, e.g the kinematic structure
of the mechanisms using kinematic pairs.

3. Physical laws like M = r x F and constraints imposed
on the attributes like F > 0 and r > 0.

4. The normal and faulty behaviors (often called models in
consistency-based diagnosis) of components and assem-
blies, e.g. the propagation of torques from one wheel to
another (M1 = M2) in a rotational pair.

Based on this representation diagnosis is mainly the task of
identifying the models of behavior that are consistent with a
set of observed parameter values. This is most often done by
simulating hypothetized behaviors and comparing the results
with the observed values.

tAlso called model-based diagnosis
2In this paper we are modeling these attributes using scalar nu-

meric values resulting in quantitative models of behavior. Alterna-
tively a qualitative modeling using symbolic values as it is used in
qualitative physics is possible.

In this paper we argue that description logics (DL) are well
suited for consistency-based diagnosis. They provide a rich
and expressive representation language, that is able to fulfill
the representation needs. The TBox contains the descriptions
of the different component types and the models of correct
and faulty behavior. Concrete devices are modeled as a set
of assertions within the ABox. Furthermore the powerful T-
and ABox inference services such as consistency, object clas-
sification3 and classification can be used for simulation and
diagnosis. Moreover, for certain languages (e.g..ALCY(1)))
sound and complete algorithms for these inferences could be
given (see e.g. [3]).

--- \\ ,---

Figure 1: A simple bike drive train

Despite these facts there are no consistency-based diagnos-
tic systems that use description logics, at least to our knowl-
edge. The main reason for this is the lack of expressive con-
crete domains in current DL systems. Since we have to deal
with numeric parameter values, we need a description logic
that is able to handle concrete domains. In order to describe
physical laws and behavioral models we need at least a con-
crete domain that is able to reason with linear systems of in-
equalities between polynomials4, in the TBox as well as in
the ABox.

2 Concrete Domains - State of the Art
Baader and Hanschke [1; 3] have shown that it is theoret-
ically possible to integrate systems of nonlinear polynomi-

3Also known as realization.
4M = r x F is a quadratic polynomial but becomes linear when

one of the variables is known.

- 136-

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



ais into the 1"- and ABox reasoning services. They devel-
oped a scheme for integrating concrete domains into descrip-
tion languages and showed that the decidability of the result-
ing description language ,Age Jr(2)) is preserved for concrete
domains that fulfill certain restrictions (so called admissible
concrete domains).

By using the decidability of the theory of the elementary al-
gebra over the reals [11], it can easily be shown that systems
of inequations between arbitrary polynomials and systems of
inequalities between linear polynomials are admissible con-
crete domains [6]. But what is the status of concrete domains
in implemented systems?

KRSS provides a concrete part of the domain, specified as
the rationals and strings over some alphabet of size at least 2.
We restrict our analysis to the numeric domain.

Terms

aft

I:++;/
(o. ~)

rmulae
(a < #)

(~ _< #)
(,~ > #)
Operator
-9~o
(~ v ¢)

^~
~e~°n~er
IVan®)

¯ explicitly
@

o

O ® ® O

@ @ O ®

ontained C) implicitly expressible
via the abstract domain

e

e

®
®
®

®
®

Table 1: Expressiveness: Linear Sentences

Table 1 summarizes the systems’ capabilities to handle sys-
tems of (in)equations between polynomials.

The first and foremost observation is the complete lack of
any function symbols. Therefore, current terminological sys-
tems can at best handle arbitrary comparisons between at-
tributes or attributes and numbers. Only LOOM defines a
relation +, but it cannot be used within concept definitions.
Therefore it is impossible to define even the simplest equa-
tions between univariate linear polynomials like z = y + 1 or
d = 2. r. Not to mention linear multivariate polynomials like
u = 2. (l + w) or nonlinear polynomials like M = F. 

KRSS and CLASSIC show another notable limitation. Un-
like the other systems they provide only > and < as compari-
son operators, and one term of the equation is restricted to be
a constant. This makes it even impossible to define a square
as a speeiai rectangle with I = w. One has to use the abstract
equality predicate equal in order to describe this. Further-
more, no system implements logical operators or quantifiers

within the concrete domain. Instead, they all rely on the re-
spective operators of the abstract domain, resulting in obvi-
ous performance hits. Since KRSS and CLASSIC only pro-
vide and in the abstract domain, it is impossible to define the
missing comparison operator < in these systems.

The only way to circumvent the above limitations in some
way is via constructs (satisfies, test-h/c) that allow to include
arbitrary Lisp functions into concept descriptions5. Obvi-
ously this constructs cannot be used at all within the TBox
reasoning services. Thus, the handling of concrete domain
expressions as a black box may result in incomplete or wrong
classifications. In Section 7 we will see that classification
based on concrete domain expressions is indeed an interest-
ing TBox inference. W.r.t. the ABox reasoning they have
the major disadvantage of being lisp functions and not con-
straints.

All this shows that current implementations of description
logics do not provide the mechanisms we need in order to
fulfill the representation needs described in Section 1.

3 Expressive concrete domains

There are two possibilities for implementing the concrete
domain extension of a terminological system: providing a
generic interface to algorithms realizing a concrete domain6
or hardwiring the integration of specific algorithms7. A
generic interface makes it easy to provide multiple concrete
domains, resulting in a modular system architecture. Thus
one can select the proper algorithms needed to fulfill the re-
quirements of the specific application, and couple them with
the description logic through the generic concrete domain in-
terface.

For example, a large number of algorithms for solving sys-
tems of algebraic (in)equations are and have been developed.
Furthermore, a couple of this algorithms have been incor-
porated into CLP(R)-systems (e.g. [5]). Using a CLP(R)-
system as the concrete domain solver, we participate from
the progress made in this area through simply exchanging the
CLP(7~)-system at the interface.

3.1 Concrete predicates
Thus, we implemented CTL [6], a system based on TAXON
and the description logic A£g~(7)) which realizes a generic
concrete domain interface. CTL implements the KRSS syn-
tax, which we had to be extended in the following way
(for details see [6]): Predicate terms P describe concrete
predicates. They are either a predicate name PN or a list
((namer) (x~ x,~)(exprv)) consisting of a domain identi-
fier (namer) and a list of variables zl... zn. The expres-
sion (exprv) actually defines the concrete predicate. (define-

5 KRSS, LOOM, and CLASSIC provide such constructs.

~This is mainly the task of deciding ff a finite conjunction of
concrete domain expressions is satisfiable.

7The built-in concrete domains in CLASSIC, LOOM and KRIS
are more or less examples for this hard wired integration.

- 137-



constraint PN P) assigns a name PN to a predicate term
P. Further (constrain RI ... R,P) is an additional con-
cept term operator with the following semantics: (constrain
nt ... R,,P)z -- {a 13bl,...,bn((a, bl) E n~ A... 
(a, bn) E Rzn A (bl,..., bn) e pZ)}.

Since CTL is based on the plain tableaux calculus using
the rules described in [3] only the respective concrete domain
roles had be implemented appropriately in order to realize the
generic concrete domain interface.

3.2 Generating models and computing parameter
restrictions

Description logic systems based on a tableaux method ex-
plicitly generate a model in the course of the consistency test.
Normally only the result of the consistency test is presented
to the user and the constructed model is more or less thrown
away. In technical domains and especially in our applica-
tion (but also e.g. in configuration) the calculated model 
the main object of interest. Therefore we realized a function
(show-model) within CTL that returns the model M for a con-
sistent ABox.

This schema can be extended to concrete domains by using
quantifier elimination techniques from computer algebras. A
subtask of the consistency test for an ABox, is testing whether
a conjunction of concrete predicates is satisfiable, i.e. check-
ing whether the sentence S = 3xl ...qxk(pl A ... A Pn) is
true. Tarskis basic idea for deciding the theory of the ele-
mentary algebra was to transform an arbitrary sentence into
an equivalent quantifier free one S [11]. The validity of this
sentence is then easy to check. Over the years quantifier
elimination techniques have been vasty improved, more effi-
cient general algorithms have been devised (e.g. Cylindrical
Algebraic Decomposition (CAD) [2]) and further improved
(e.g. PCAD [4]) and specialized algorithms for subsets 
the theory have been found and realized. Most CLP(7~)-
systems make use of the Fourier-Motzkin algorithm for quan-
rifler elimination over linear systems of inequalities (see e.g.
[8]).

Besides checking the validity of a sentence, quantifier
elimination as a generic method can be used to compute the
restrictions imposed on the parameters of the model M:

1. Let X = z~,..., z,~ a list of parameters in M.

2. Forzi EX

(a) Eliminate all quantiflers but z~ from S. I.e. trans-
form S into a sentence Si = 3xiRi, Ri quantifier
free.

(b) Transform S~ in disjunctive normal form, i.e. trans-
form Si into S~ = dnf(S~).

(c) Collect the matrix R~ of g~.

3. Return the list R = R1,... Rn of collected matrices R~.

Sthi$ is called variable elimination or projection in the field of
CLP(~)

Since/~ is a list of the admissible values for each param-
eter, the computed restrictions can then be delivered together
with the generated model.

4 Representation

As we have seen in Section I, we must be able to describe
the different component types of a mechanism as well the
kinematic structure. In kinematics this is normally done with
links and kinematic pairs [9]. In order to describe the drive
train of Fig.l, it is sufficient to define rotational links and
tension links as specializations of general links. The termi-
nology in Fig.2a defines a link as something that carries a
force: llnk.foree. Rotational links (rotational-link) are links
that in addition have attributes for a radius (rot.radius) and 
torque (rot.torque). link.force and rot.torque are not negative,
rot.radius is strictly positive, and the torque is the product of
radius and applied force. Finally we define a number of addi-
tional links such as wheel, vhaln etc. without further specify-
ing them.

In order to describe the structure of a mechanism, kine-
matic pairs are used. A klnematle-palr describes the connec-
rionbetween two links palr.llnkl and palr.llnk2. Depending on
the degrees of freedom of the relative motion of the links and
the type of connection different types of pairs can be iden-
tified. In the terminology shown in Fig.2b we restrict us to
the description of pairs between two rotational-links (rot-pair)
and pairs between one rotatlonal-link and one tenslon-llnk (rot-
tension-pair). Note that we are able to describe rot-tension-
pair via an or construct. In addition to the component types
and the structure of the device, descriptions of the correct as
well as the different faulty behavior models are needed for the
consistency-based diagnosis as well as the simulation of the
device. The terminology in Fig.2c describes the correct be-
havior of rotational-palm and rot-tension-palm. Whereas the
torque is propagated in ok-rot-pair, ok-rot-tension-pair propa-
gates the force.

The terminology in Fig.2d shows some exemplary faulty
behaviors of a rotational pair. A pair is slipping (slipping-
rot-pair) if both torques are strictly positive and different. 
pair is broken (broken-rot-pair) if one torque is strictly pos-
itive, the other zero. A second developer might distinguish
between strong and weak slipping pairs (strong-slipping-rot-
pair resp. weak-slipping-rot-pair) as it is depicted in Fig.2e.
Note that in our language it is possible to describe the weak
slipping pair as the negation of a strong one. This allows for
a simple description of a weak slipping pair, and reduces the
sources of possible faults. It further eases the modification of
the knowledge base, e.g. a change of the limit between strong
and weak slipping.

5 Simulation

Simulation is based on the following procedure:

- 138-



Figure 2: The Krss code

1. Description of the device: Instantiating, relating the in-
stances to primitive concepts and building up the device
structure by relating the instances.

2. Determination of the models of behavior for the different
device parts.

3. Assertion of some parameter restrictions.
4. Checking the consistency of the ABox. The values and

restrictions of additional parameters are calculated dur-
ing the model-generating process. Furthermore, addi-
tional instances may be generated.

5. Presentation of the generated model and parameter re-
strictions. Eventually backtracking in order to calculate
another model.

It is clear that the assertion of behavior models and pa-
rameter restrictions can be freely intermixed. In addition, the
consistency test and therefore the model generation can be
triggered after every step. In the following we will give a
brief overview how simulation works, using the drive train
depicted in Fig.1. First the structure of the drive train has
to be described: Instances have to be instantiated, primitive
concepts for this instances must be given and the links and
the kinematic pairs must be related (Fig.2f).

In a second step (Fig.2g) we give the values of the radii 
the crankarm-1, chainrlng-1, sprocket-1 and rear-wheel-1 and
the force that is applied to the crankarm as starting values9.

We then state that all components expose their normal behav-
ior. Finally, we give a value for the force applied to orankarm-
1. Now the values for nearly all missing parameter values
can be calculated (see Figure 3). W.r.t. the bottom-bracket-
spindle-1 and the roar-axle-1 0 could be excluded from the
admissible ranges of the respective forces (since the force ap-
plied to the erankarm is strictly positive). It is not surprising

9The values are given in Meter and Newton

that no further restriction is possible, given the fact that no
radius is given for these links. Nevertheless the propagation
of the respective torques to their adjoining links is possible
due to the law of torque that holds for intact rotation-pairs.

Figure 3: The generated model and parameter restrictions

Arbitrary other parameter restrictions as well as an arbi-
trary selection of behaviors are possible, but due to the lack
of space we can give no further examples.

6 Diagnosis

Diagnosis is supported in the following way:

1.

2.

.

Description of the structure of the device.

Assertion of the observed parameter values and
(re)realization of the affected components. This gives
an upper bound for the behaviors that are consistent with
the observed values.

Weak realization in addition gives a lower bound for the
possible models of behavior and therefore hints which
parameter values should be determined next. This values
are than asserted, the components (re)realized etc.

- 139 -



We illustrate this method, using a single rotational-pair as
an example. First Fig.2h shows how to describe a rotational
pair within the ABox. Fig.2i then shows how different sets
of parameter values lead to different diagnoses. While in the
first variant identic torque values lead to ok-rot-pair, giving
a zero value for the torque of one link and a non-zero value
for the for force of the other link suffice to recognize it as
a broken-rot-pair. This is possible because the radius is re-
stricted to be strictly positive. Using the physical law it can
be concluded that the torque of the second link is strictly posi-
tive which leads to the recognition as a broken-rot-pair. In the
third variant the pair is realized as a weak-slipping-rot-pair,
due to the calculated ratio of the torques.

7 Model Libraries

Fig.4 shows the concept hierarchy after classification of the
above terminologies. In this section we will show how clas-
sification can be used for the organization and maintenance
of model libraries. The following observations are important
w.r.t this aspect:

Figure 4: The classified TBox

All concept definitions are different from bottom. There-
fore all definitions are satisfiable. This guarantees that no
model of behavior is mistakenly defined in a way that there
exists no parameter combination that leads to this behavior.

All concept definitions are distinct from each other. This
means that there are no two models of behavior that are equiv-
alent, something that could easily happen when two model
libraries are merged.

The strong and weak slipping pairs in Fig.2e are modeled
as specializations of rot-pair and not of slipping-rot-pair. Sit-
uations like this are very likely if different people are simul-
taneously developing models of behavior, or when the model
librat’ies are complex. The classification service detected the
missing subsumption relation between slipping-rot-pair and
strong-sUpping-rot-pair. In other situations it may be the case
that a computed subsumption relation is not missing but ac-
cidental in a sense that it is caused by some error or laxness
in the description of the models of behavior. Such Errors are
very likely in large and complex model libraries. Therefore
the detection of these errors is crucial for the development of
such libraries. Since all inferences are sound and complete1°

1°at least for linear systems of inequalities in our current imple-
rnentation

in CTL, we can guarantee that all missing and accidental sub-
sumption relations in the model library are detected.

8 Summary and outlook
Description logics with expressive concrete domains are well
suited for consistency-based diagnosis and simulation of
technical devices. Additionally they provide the inferences
that are needed in order to organize and maintain large model
libraries. Actual work focuses on interfacing to a computer
algebra system for quantifier elimination over quadratic sen-
tences [12]. Further work concentrates on concrete domains
over other base types, e.g. using CLP(FD) systems for de-
scribing qualitative models. Finally, we explore other ap-
plication areas such as configuration and intelligent retrieval
from parts catalogs etc.

References

[1] F. Baader and E Hanschke. A Scheme for Integrating
Concrete Domains into Concept Languages. Research
Report, DFKI, Kaiserslautern, Germany, 1991.

[2] G.E. Collins. Quantifier Elimination for Real Closed
Fields by Cylindrical Algebraic Decomposition. In
Proc. of the Second GI Conference on Automata The-
pry and Formal Languages, Springer, 1975.

[3] P. Hanschke. A Declarative Integration of Terminolog-
ical, Constraint-Based, Data-driven, and Goal-directed
Reasoning. Dissertation, Kaiserslautern, 1993.

[4] H. Hong. RISC-CLP(Real): Constraint Logic Program-
ming over the real numbers. In Constraint Logic Pro-
gramming: Selected Research. MIT Press, 1993.

[5] Joxan Jaffar, Spire Michaylov, Peter J. Stuckey, and
Roland H. C. Yap. The CLP(R) Language and System.
Technical report, 1987.

[6] Gerd Kamp and Holger Wache. CTL - a description
logic with expressive concrete domains. Technical re-
port, LKI, 1996.

[7] J. de Kleer and B. Williams. Diagnosing Multiple
Faults. Artificial Intelligence, 32, 1987.

[8] Jean-Louis Lassez. Parametric queries, linear con-
straints and variable elimination. In Prec. DISCO-90
1990.

[9] F. Reuleaux. The Kinematics of machinery - outlines of
a theory of machines. Macmillan & Co,, 1876.

[10] P. Struss and O. Dressier. Physical Negation - Integrat-
ing Fault Models into the General Diagnostic Engine. In
Prec. IJCAI-89, 1989.

[11] A. Tarski. A Decision Method for Elementary Algebra
and Geometry. In Collected Works of A. Tarski.

[12] Volker Weispfenning. Applying Quantifier Elimination
to Problems in Simulation and optimization. Technical
Report, Universitat Passau, 1996.

- 140-




