
Representing Sequences in Description Logics Using Suffix Trees*

Daniel Kudenko and Haym Hirsh
lastname@cs.rut gers. ed u

Department of Computer Science
Rutgers University, Piscataway, NJ 08855

Abstract

This paper describes an approach for repre-
senting and manipulating sequences in descrip-
tion logics (DLs). The key idea is to repre-
sent sequences using suffix trees, then represent
the resulting trees in a DL using traditional
(tractable) concept and role operators. This
approach supports the representation of a range
of types of information about a sequence, such
as the locations and numbers of occurrences of
all subsequences of the sequence. Moreover,
subsequence testing and pattern matching re-
duces to subsumption checking in this represen-
tation, and computing the least common sub-
sumer of two terms supports the application
of inductive learning to sequences. Finally, we
describe a simple addition to our approach, us-
ing the same set of DL operators, that extends
our representation to handle additional types of
information, such as sequence lengths and the
existence and number of occurrences of palin-
dromes in a sequence.

1 Introduction

The representation and manipulation of sequences has
proven important across a wide range of tasks (such as
sequences of characters in text processing, sequences of
molecular compounds in biological sequences, and se-
quences of operators in a plan), and they have there-
fore received substantial attention in computer science
for many years. In particular, how a sequence is rep-
resented has been found to have a significant impact on
many aspects of the quality and tractability of sequence-
manipulation tasks. However, although researchers in
knowledge representation have accorded much study to
how to conceptualize domains using description logics
(DLs) -- developing a weU-defined semantics, thoroughly
analyzed reasoning algorithms [Nebel, 1990], and many
real applications ([Devanbu, 1993] and many more)

*We thank William Cohen and Martin Farach for many
helpful discussions concerning this work.

little attention has been given to representing and ma-
nipulating sequences in DLs. That is the problem ad-
dressed in this paper.

DLs support a range of reasoning tasks. The tasks
that are central to this paper are s~bsump~ion and com-
putation of leas~ common subs~mer (LCS) [Cohen et al.,
1992].1 Our goal in this work is to provide a way to rep-
resent sequences in DLs that maintains a wide range of
information about a sequence and supports various rea-
soning tasks over sequences while still preserving well-
understood DL semantics and algorithms. Further, tra-
ditional DL reasoning tasks should have common-sense
meanings for the represented sequences. Approaches
such as Isbell’s [Isbell, 1993] for representing sequences
in the Classic DL [Borgida et al., 1989] therefore do not
meet our goals, in that such an approach requires the
addition of new sequence-specific operators to a DL, re-
suiting in an extended language without most DLs’ well-
defined semantics and tractable algorithms.

This paper describes a different approach to represent-
ing sequences in DLs that requires no new operators, and
instead uses a traditional and tractable set of DL oper-
ators. Our basic idea is to represent strings using suffix
trees [McCreight, 1976], and then represent the suffix
trees in the DL, with the resulting DL expressions built
only out of concept conjunction (AND) and roles with
value and number restrictions (ALL, ATLEAST, and
ATMOST). The resulting representation makes it pos-
sible to represent properties of sequences such as the lo-
cations and frequencies of all subsequences of a sequence.
Further, a simple extension to this suffix-tree approach,
using the same basic set of DL operators, allows the rep-
resentation of additional sequence information such as
sequence length and subsequence palindrome counts.

Note that, without loss of generality, for the remainder
of this paper we will use the term "string" instead of
"sequence", as well as other vocabulary arising in the
string-matching literature, to maintain consistency with
the terminology commonly used with suffix trees (whose

1A concept expression C is a least common subsumer
(LCS) of two concept expressions (71 and (72 iff C subsumes
both C1 and C2 and there is no other C’ ~ C that also
subsumes C1 and C2 and is subsumed by C.

- 141-

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

B
,,O

Figure 1: Suffix tree for the string "ACCB"

origins come from the theory of string matching).

2 Representing Strings in DLs Using
Suffix Trees

Our approach to representing strings in DLs uses a data
structure developed in the string matching literature
known as "suffix trees". This section first describes suf-
fix trees, then shows how they can be represented and
manipulated in DLs.

2.1 Suffix Trees

Given a string S over an alphabet ~, a suffix tree for S is
the unique tree with the following properties:2 (1) each
edge is labeled with a single character from ~ (and a path
is labeled with the sequence of the characters labeling the
edges along the path); (2) no two outgoing edges from
a single node are labeled with the same character; (3)
each path from the root to a leaf is labeled with a suffix
of S; and (4) for each suffix of S there is a corresponding
path from the root to a leaf.

For example, the suffix tree for the string "ACCB"
(over the three-letter alphabet {A, B, C), which for ex-
position reasons serves as the alphabet for all examples
in this paper) is given in Figure 1. Every suffix of the
string corresponds to a path from the root of the tree
to some leaf, and each path from the root to some leaf
corresponds to a sufiLx of the string.

The suffix tree for a string S of length ISI can be com-
puted rather simply, in time fl(ISi~).

2.2 Representing Suffix Trees in DLs
Representing a suffix tree in a DL is fairly straight-
forward, given that the "topology" of a concept expres-
sion using roles is already often depicted in tree form.
The task is simply to generate the appropriate expres-
sion whose tree is identical to the given suffix tree. The
leaves of the tree are represented by a primitive concept,
NODE, that is introduced solely for this purpose.

To do so, we create a role for every element of the
string’s alphabet ~. The algorithm computes an expres-
sion arising from each successor of the root of the tree

2Note that our definition of suffix trees differs from that
used in many string matching algorithms, in that rather than
collapsing into a single edge each path all of whose nodes have
single successors, we leave such paths intact to permit encod-
ing a wider range of information than is typically represented
with suiBx trees. This will be clear once the representation
extensions axe presented.

Figure 2: Example of a tree that corresponds to no string

and conjoins them together. Thus, for example, the DL
definition corresponding to the suffix tree from Figure 1
is the following.

(and (all A (all C (all C (all B NODE))))
(all C (and (all C (all B NODE))

(all B NODE)))
(all B NODE))

Importantly, the DL subsumption relation has a prac-
tical use for reasoning about strings. If ST(S) is the
suffix tree for string S, and DL(T) is the DL expression
for a suffix tree T, the following is true:

Lemma 1 If $1 and $2 are strings, ~hen S1 is a sub-
s~ring of $2 iff DI(ST(S2)) E_ D£(ST(S1)).

In other words, subsumption checking of the DL ex-
pressions generated from two strings is equivalent to sub-
string testing. The proof of this lemma follows from
the fact that DL(ST(S1)) subsumes DL(ST(S2))
paths in the first appear in the second. Since every path
from the root to an internal node of a suffix tree ST(S)
corresponds to a substring of S, the set of all paths in
DL(ST(S1)) is a subset of those in DL(ST(S2)) if[
a substring of $2.

3 Pattern Matching Using Suffix Trees

The previous section showed that suffix trees can be used
to represent strings. But what about trees that are la-
beled with characters yet do not correspond to strings,
such as the tree in Figure 2? In this section we present a
semantics for such trees that lets us go beyond substring
checking to handle a range of forms of pattern matching.

3.1 Simple Pattern Matching

A suffix tree can be thought of as a data structure that
maintains all substrings of a string -- each path from
the root to some node corresponds to a substring of the
string. To enable pattern matching with suffix trees we
associate an interpretation to any tree whose edges are
labeled with characters (we call these trees pa~ern ~rees):
a pattern tree denotes the set of all strings that contain
all substrings that correspond to paths from the root to a
node. More formally, each pattern tree T for an alphabet

is interpreted as a set of strings in the following way:

where L(v) is the label of the path from the root to the
node v (L(roat) is by definition the empty string) and

- 142-

A 6 C
¯ "O "O ,’O

B
PO -

C
.O

Figure 3: A pattern tree and its normalized version

N(T) is the set of nodes in T. Thus, for example, the
tree shown in Figure 2 is interpreted as the set of strings
containing the substrings "CB’, "AC", and "B’. Note
that the suffix tree for a string is a special case of a
pattern tree, where the interpretation of a suffix tree for
a string S is the set of strings ~]*SI]*, i.e., all strings
that contain S as a substring.

Pattern trees make it possible to test whether a string
contains some desired collection of strings. Given some
set of strings, it is straight-forward to create a pattern
tree that contains all the desired strings, with the DL
suffi-tree creation algorithm still applying to such gen-
erated trees. Thus, for example, the pattern tree in Fig-
ure 2 is represented by the DL expression

(and (all C (all B NODE))
(all A (ali C NODE))
Call S NODE))

As with Lemma 1, it is possible to state formally
the relationship between the strings matched by a pat-
tern and the subsumption relation applied to their cor-
responding DL representations. In order to do this, pat-
tern trees have to be normalized in the following way.
Make sure that for each path from a node to a leaf there
is a path with the same labels from the root to a leaf.
The resulting normalized pattern tree denotes the same
set of strings as the original tree. Figure 3 contains an
example for this normalization.

Let Norm(T) be the normalized version of the pattern
tree T. Then the following lemma holds:

Lemma 2 If T1 and T2 are pattern trees, then T~ C T~
i~ DI,(Norm(T1)) C_ DL((Norm(T2)).

In other words, the lemma states that subset relation-
ships amongst sets of strings denoted by pattern trees
are equivalent to subsumption relationships among the
corresponding DL expressions.

The previous section showed how the suffix-tree string
representation reduces substring testing to subsumption
checking. Note that despite the semantics of a suffix tree
now denoting a set of strings, this property still holds:

Corollary 1 If $1 and $2 are strings, then
DL(ST(SI)) C_ DL(ST(S2)) iff substr in g o/ $i.

The proof of this corollary follows from the fact that
~,*S1F,* C_ F,*S2~,* iff $I is a substring of $2.

Our final corollary shows the usefulness of pattern
trees for pattern matching, namely that if a pattern tree

¯ C ,,,O

S’

Figure 4: A pattern tree with substring frequencies

T matches some string S then the proper relationship
holds between their DL representations:

Corollary 2 If S is a string and T is a pattern tree,
then DL(ST(S)) E_ DL(T) iff paths in Yarelabeled
by substrings of S.

Finally, we note that these semantics for pattern trees
also makes the LCS operator have intuitively appeal-
ing meaning. If T1 and T2 are pattern trees, then the
pattern tree corresponding to the LCS of DL(T1) and
DL(T2) subsumes the DL expressions for exactly those
strings that contain all the strings corresponding to the
paths contained in both T1 and T2. For example, the
pattern tree in Figure 2 corresponds to the LCS of the
DL expressions for the suffix trees of the strings "ACBC"
and "CBAC’. Because of this, LCS can be used to per-
form inductive learning over strings. Indeed, our original
motivation for this work was to find a way to represent
strings in DLs so that existing DL learning approaches
can be applied [Cohen and Hirsh, 1994].

3.2 Pattern Matching with Substring
Counts

A simple pattern tree as presented in the previous section
contains only information about the existence of patterns
(i.e., substrings), but not on how often they can occur
in a string. The representation of a pattern tree can be
extended to encode such information by labeling edges
with the minimum number of times a certain pattern
may occur in a string. To be more precise, each edge e
in the tree now carries a number that restricts the num-
ber of minimum occurrences of L(target(e)), the string
that labels the path from root to target(e). The pattern
tree in Figure 4, for example, matches all strings with at
least two "A", and at least one "C", one "B’, one "CB",
and one "AC" -- number restrictions are displayed be-
low the respective edge. It is straight-forward to extend
the suffix-tree creation algorithm to handle such string-
frequency counts, with the time and space complexity
remaining quadratic in the length of the string.

The denotational semantics for pattern trees have to
be modified for this extended pattern-matching language.
The interpretation of a tree T is now the set of strings

r,-:_- N
~eJV(T)

where Fmi,(v) is the minimum number restriction on the
incoming edge of node v. Intuitively the interpretation

- 143 -

(and (all A (and (all C (and (all A (and (all C (atleas~ I min-occ~s))
(atleast I mln-occurs)))

(atleast 2 min-occurs)))
(atleast 2 min-occurs)))

(all C (and (all A (and (all C (atleast I min-occurs))
(a%least 1 min-occurs)))

(atleas% 2 min-occurs))))

Figure 5: DL expression for the suffix tree for "ACAC"

defines the set of all strings that contain I(v) at least
F,,i, (,~) times.

Representing such extended pattern trees in DLs is
straightforward by using a new role rain-occurs. To
represent the F,,i, value of some pattern-tree edge e we
add an ~(atleast Fmi,(e) rain-occurs)" restriction
the node in the DL expression that corresponds to the
destination of e. Figure 5 gives the DL definition that
results for the string "ACAC’. It contains, for example,
the information that "AC" occurs at least 2 times.

We conclude this section by noting that Lemma 2 and
its corollaries still hold, i.e., subsumption still computes
pattern matching and does substring testing. Further,
the LCS of the DL definitions for two pattern trees keeps
its meaning, representing the intersection of the two sets
of strings described by the pattern trees.

3.3 Pattern Matching with Substring
Locations

In cases when the position of these substrings is of im-
portance, suffix trees can be extended with positional
information. This can be done in a fashion analogous
to that of the previous section, with each edge e having
two new integer labels, one for the ending location of
the first occurrence of L(target(e)) and a second for
last occurrence. Figure 6 shows the pattern tree that is
generated for the string "ACBAC’. This tree contains,
for example, the information that the first occurrence of
"AC" ends at position 2 and the last ends at position
5 in the string "ACBAC’. It is again straight-forward
to modify the pattern-tree creation algorithm so that
it creates pattern trees with positional information and
maintains its quadratic computational complexity.

The semantics of suffix trees with positional informa-

C .e
(5,@

Figure 6: Suffix tree with positional information for
"ACBAC"

tion can be defined as follows:

TIP :--

where P,.i.(v) and Pmax(v) are the first and last posi-
tions in a string where L(v) may begin.

Pattern trees can be represented in DLs using a simi-
lar approach to the one used with substring counts. We
use one additional role, position. Each P,,i, value on
an edge e adds an "(atleast Pmin(e) position)" re-
striction to the node in the DL expression that corre-
sponds to the destination of e, and each Pmax value
adds an "(atmost Pmax(e) position)" restriction.
nally, note that although Lemma 2 and Corollary 2 still
hold for pattern trees with positional information, Corol-
lary 1 does not. In other words, subsumption still im-
plements pattern matching, but no longer supports sub-
string checking. The LCS of two DL pattern trees, on
the other hand, still computes the intersection of the sub-
strings in the two pattern trees, unioning the interval of
locations for each resulting string.

3.4 Combining Frequency and Positional
Information

We end this section by noting that the two extended
forms of pattern matching based on suffix trees presented
in this section are not mutually exclusive. The conjunc-
tion of the DL definitions generated from a string by
each approach would give the suffix tree that carries
both positional and pattern frequency information. In
the resulting tree an edge has three numbers attached
to it. Note that each extension can be independently
used or ignored, depending on the application domain.
The semantics for pattern trees with such combined po-
sitionai and frequency information can be easily derived
from the semantics of the individual constructs, by form-
ing the intersection of the two sets of strings defined
by the trees for positional and frequency information:
TIc°~b := TIF n TIP.

4 Representing Other String Properties
In addition to representing information about the de-
sired substrings that should appear in a string and vari-
ous properties of these substrings, it is often desirable to
associate properties with an overall string. For example,
one might want to reason about the length of a string,

- 144-

the number of palindromes that it contains, or "extrin-
sic" information about the string (the author of some
text, the functional role of a DNA sequence, etc.).

Such information can be easily added to the pattern-
tree representation of the previous section. Each such
property adds a new edge to the root of the tree labeled
with the name of that property (length, palindrome-
count, author, functional-role, etc.). When the value of
the property is an integer the information can be stored
as a number restriction in a manner analogous to how
string counts or locations were handled in the previous
section. To handle other, non-numeric-valued proper-
ties, each possible value must be defined as a concept
and the information can be attached to the DL pattern
tree by labeling the target node of the edge leaving the
root with that property name. For example, the follow-
ing is the DL expression for a tree with a hypothetical
DNA label:

(and (all C (and (all C (all A (all A NODE)))
(all A (all A NODE))))

(all A (all A NODE))
(all Contex~ PRONOTER-XY))

5 Final Remarks

This paper has proposed a representation formalism,
based on the suffix-tree data structure, to represent and
reason about sequences in description logics. Strings and
patterns on strings are represented as a form of suffix
trees, with the trees in turn represented as DL expres-
sions. Using this representation subsumptlon supports
substring checking as well as a (modular) range of forms
of pattern matching. We also described a simple ex-
tension to this representation that allows representing
global properties of a string.

A number of interesting issues still remain. The first
is the question of broadening the class of patterns than
can be represented in this suffix-tree-based formalism by,
for example, introducing meta-characters such as the "*"
character to denote a "don’t care" position in a string.
One obvious candidate for doing so is through the use
of role hierarchies, although this can result in exponen-
tially large normalized DL representations [Hollunder
and Nutt, 1990]. A second issue is the question of us-
ing this representation to learn from sequences. Indeed,
this work was originally motivated by our attempt to ap-
ply DL learning algorithms based on the LCS operation
[Cohen and Hirsh, 1994] to sequences, and developing
noise-tolerant methods suited to such tasks is a topic for
future research.

References

[Borgida e~ al., 1989] A. Borgida, R.J. Brachman, D.L.
McGuinness, and L.Resnick. Classic: A structural
data model for objects. In Proceedings of SIGMOD-
89, 1989.

[Cohen andHirsh, 1994] W. Cohen and H. Hirsh.
Learning the classic description logic: Theoretical and

experimental results. In Principles of knowledge rep.
resenta~ion and reasoning : proceedings of ~he ~hird
international conference (KR ’gY~), 1994.

[Cohen e~ al., 1992] W. Cohen, A. Borgida,
and H. Hirsh. Computing least common subsumers
in description logics. In Proceedings of ~he Tenth Na-
tional Conference on Ar~iJ~eial Intelligence, 1992.

[Devanbu, 1993] Prem Devanbu. Translating descrip-
tion logics into information server queries. In Second
International Conference on Information and Knowl-
edge Management, 1993.

[Hollunder and Nutt, 1990] B. Hollunder and W. Nutt.
Subsumption algorithms for concept languages. Tech-
nical Report RR-90-04, DFKI, 1990.

[Isbell, 1993] C.L. Isbell. Sequenced classic. Research
Note, AT&T Bell Laboratories, 1993.

[McCreight, 1976] E.M. McCreight. A space economical
suffix tree construction algorithm. J. Assoc. Comput
Mach, 23:262-272, 1976.

[Nebel, 1990] Bernhard Nebel. Reasoning and ,’evision
in h~/brid represen~aZion s~/s~ems. Springer-Verlag,
Berlin, 1990.

- 145-

