
A Description Logic for Composite Objects for Domain Modeling in
an Agent-Oriented Application

Patrick Lambrix
Department of Computer and

Information Science
LinkSping University

S-581 83, LinkSping, Sweden

patla@ida.liu.se

Lin Padgham
Department of Computer Science

Royal Melbourne Institute of Technology
Melbourne, VIC 3000, Australia

linpa@cs.rmit.edu, au

1 Introduction
In this paper we present a description logic for composite
objects and show its use for domain modeling in a partic-
ular application. The description logic extends standard
description logics by providing support for representa-
tion of and reasoning about part-of. We have extended
the standard reasoning tasks of subsumption, classifica-
tion and recognition to include knowledge about part-of.
Further, we maintain a part-of hierarchy for individuals
that can be used for querying the system about com-
posite objects. We provide the system with new user
functions to allow for traversing the part-of hierarchy as
well. Our extended description logic system retains the
well-known advantages of description logic systems while
extending their representational and inferential capabil-
ities.

The application involves automating the monitoring
of the Reaction Control System (RCS) of NASA’s space
shuttle. The application has been modeled before and
an implementation exists using the agent-oriented sys-
tem dMARS (distributed Multi Agent Reasoning Sys-
tem) from the Australian Artificial Intelligence Institute.
Although it was recognized that part-of played an impor-
tant role in the application, the existing implementation
did not provide any support in representing and infer-
encing with part-of. The use of our description logic for
composite objects has provided a number of advantages.

In the following section we briefly describe dMARS
and the Reaction Control System application (section 2).
We propose our description logic for composite objects
and describe the advantages that the use of this descrip-
tion logic gave us for the RCS application in section 3.
The paper concludes in section 4.

2 dMARS and RCS
dMARS is a situated reasoning system that was built
for real-time applications. Each dMARS agent consists
of the following components: a database of current be-
liefs or facts about the world, a set of current goals to
be realized, a set of plans describing how a sequence of
actions may achieve a given goal or forming a reaction
to a particular situation, and an intention structure con-
taining a set of plans that have been chosen for eventual

execution. An inference mechanism selects appropriate
plans on the basis of the agent’s beliefs and goals, and
places these selected plans in the intention structure and
executes them. The system interacts with its environ-
ment through its database by acquiring new beliefs and
through the actions it performs.

The database typically contains both static and dy-
namic information. The static information describes the
structural model of the domain, such as what (types of)
objects there are, and how they are related. The dy-
namic information consists of variables which are modi-
fied as the world changes or is believed to have changed.
An agent typically believes the world has changed (and
updates its database), when it takes some action de-
signed to produce change in the world, or when it is
notified (by some other agent) that something has hap-
pened.

Plans consist of a body, which describes the different
steps in the procedure, and an invocation consisting of a
triggering part and a context condition part. The trig-
gering part describes the events that must occur for the
plan to be executed. They can be the acquisition of a
new goal or some change in the database. The context
condition describes conditions which must be satisfied
in the database. The set of plans in an application not
only contains specific knowledge about the application
domain, but also meta-level plans containing informa-
tion about how the beliefs, goals and intentions are to
be manipulated. An example of such a meta-level plan
is a plan that chooses a plan from a set of plans. The
dMARS decides which plans are applicable by matching
beliefs and goals with invocation conditions by unifica-
tion.

The problem domain which we have worked on is the
Reaction Control System of NASA’s space shuttle. A
space shuttle has three RCSs, two aft and one forward.
An RCS provides propulsive forces from a collection of
jet thrusters to control the attitude of the space shuttle.
The RCS modules contain a collection of jets, a fuel tank,
an oxidizer tank, two helium tanks, feedlines, manifolds
and other supporting equipment. Each RCS module re-
ceives all commands via the space shuttle flight software.
The various valves in an RCS module are controlled from
a panel of switches and talkbacks. The talkbacks pro-

- 146-

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

< concept-descr> ::=
T I .L I <concept-name>
(and < concept-descr>+)

(one-of < individual-name>+)
(all < role-name> < concept-descr>)
(atleast <positive-integer> <role-name>)
(atmost <non-negative-integer> <role-name>)
(fills < role-name> < individual-name> +)
(allp <part-name-name> < concept-descr>)
(atleastp <positive-integer> <part-name-name>)
(atmostp <non-negative-integer>

<part-name-name>)
(part-fills <part-name-name>

<individual-name>+)
(module-fills < individual-name>+

<part-name-change>*)
(pp-eonstraint <role-name>
<part-name-name> <part-name-name>)

<concept-name> ::= <symbol>
<individual-name> ::= <symbol>
<role-name> ::= <symbol>
<part-name-name> ::= <symbol>
<part-name-change> ::=
<part-name-name> ~ <part-name-name>

Figure 1: Syntax

vide feedback on the position of their associated valves.
The aim of the RCS application is to automate the mal-
function procedures for the RCS.

Each RCS is managed by two dMARS agents. The
Interface agent handles all information concerning trans-
ducer readings, valve switches and valve talkbacks. The
database for this agent contains the domain model in-
cluding the knowledge about transducer readings and
switch and talkback positions. It has no knowledge
about pressures as these have to be deduced from the
transducer readings. The plans are typically about
calculating pressures, switch movements and malfunc-
tion detection. The Controller agent takes a high-level
view of the application. The database is similar to the
database of the Interface agent, but contains informa-
tion about pressures rather than about specific trans-
ducer readings. This information is obtained by asking
the Interface agent. The plans contain the high-level
malfunction procedures as they appear in the shuttle’s
malfunction handling manuals.

For more information about how the RCS application
is modeled in the existing dMARS application we refer
to [GI89; GI90].

3 Domain Model Using a Description
Logic for Composite Objects

As a framework for the modeling of this application
we used a description logic with syntax and semantics
as described in figures 1 and 2. The non-standard con-
structs allp, atleastp, atmostp and part-fills are part
name analogues of well-known standard constructs for

6IT] = P
4±] = 0
el(and A B)] = e[A] n e[B]
e[(one-ofil ... im)] = {e[il] e[im]}
e[(allr A)]= { x E 791
v y c 79: <x,y> e 4r] -* y e 4A]}
e[(atleast m r)] = { x E 791
{ y e D I <x,y> E ~[r]) > m }

e[(atmost m r)] = { x E 791
{ y e 791 <x,y> e ~[r]} < m }

4(mls r il ... ira)] = { ¯ e 79
<~,4il]> E 4r] ̂ ... ^ <x,4im]> ~ 4r] }
e[(allp n A)] = { x E 7)[
V y E 79: y <ln x ---+ y E e[A]}
e[(atleastp mn)] = { x E 7)

e[(atmostp m n)] ---- { x E 79

el(part-fills n il ... im)] = { x E 791
e[id ~ x ̂ ... ^ ~[i~] ~ x }
el(module-fills il ... im

e[il] <lmod (~11--12 kl--nk2} X ̂ ...
^ e[im] <lmod {7/,11__~,~.12 kl--~k2} X }
e[(pp-eonstraint r nl n2)] = { x E 79
V Yl,Y2 E 79: (yl "~,u x A Y2 <1n2 x) --~

Figure 2: Semantics

roles. The pp-constraint construct allows for defining
constraints between parts. The module-fills construct
allows for defining modules. An individual i~ is a module
of another individual i2 if all the parts ofi~ are also parts
of i~, but i 2 has more parts. The part name changes al-
low for changing the names of parts from the module to
the more composite individual. For a discussion on the
underlying part-of model and more discussion and ex-
amples with respect to the language we refer to [Lam96].
We also maintain a part-of hierarchy for individuals and
have implemented a number of user functions that al-
low easy traversal of this hierarchy. The system is im-
plemented as an extension to CLASSIC. For details we
refer to [Lam96].

In modeling the RCS system we have used both the
model as it is in the existing dMARS implementation,
and the NASA manual [Bus87] describing the RCS of
the space shuttle and its operation, which was the origi-
nal source document for the application. We have mod-
eled concepts such as jets, tanks, valves, switches and
the necessary instances of these concepts. The resulting
knowledge base contains 44 concepts and 153 individ-
uals with 38 different part-whole relations and 23 other
relations. There are between one and sixteen individuals
for each concept. This model closely follows the original
source document.

The well-known advantages of using a description logic
system for maintaining a knowledge base such as auto-
matic classification, logical inferencing and consistency
checking were observed in this application as well. These

- 147-

advantages were extended with representation of and
reasoning about part-of. Further, we found a number
of other advantages, specific for part-of, in this applica-
tion as well. We briefly describe these advantages.

In a natural model of the RCS application the part-
of relation plays an important role in the description of
the system. The original model contained much infor-
mation about part-of and the queries in many of the
plans of the application relied on the composite nature
of objects. In our system there is support for part-of by
allowing the distinction between part-of and other rela-
tions, and among different kinds of part-whole relations,
by allowing domain restrictions and number restrictions,
and by allowing for constraints between parts. The pre-
vious implementation contained significant information
about part-whole relations, but this could not be repre-
sented in a standard manner. For instance, the relation
between a system and its oxidizer sub-system was rep-
resented by ’part-of’ and ’oxidizer-subsystem’. The first
relation was used in plans when any sub-system could be
used in the unification process, while the other relation
required the sub-system to be the oxidizer sub-system.
In our model we used the part name ’oxidizer-subsystem’
which by definition then has the part-of intuition. In a
situation where different sub-systems could be used, we
can use the description logic system functions to find all
possible sub-systems.

In the previous model several new relations existed
that did not occur in the original description of the appli-
cation. These were mainly added for efficiency reasons,
in order to skip some unification steps. They usually in-
volve individuals in different sub-systems that have sim-
ilar functions or individuals where one individual oper-
ates the other. An example of the latter is the case of
valves, switches and talkbacks that are connected. In the
previous model new relations (such as associated-switch)
were introduced between these individuals. In our sys-
tem these extra relations are not needed. We can simply
traverse the part-of hierarchy for the composite object to
find the relevant individual(s). For instance, in the pre-
vious model a valve was always connected to its corre-
sponding switch, by a relation associated-switch. We can
find the correct switch without the introduced relation
associated-switch, simply by accessing the switch that is
part of the same composite individual as the valve.

In the case where additional relations may be desirable
for extra efficiency we have used the pp-constraint con-
struct to automatically introduce these relations between
the different individuals. In the case of valves, switches
and talkbacks, for instance, we introduced the concept
of valve-switch-talkback-system. The definition of this
concept contains the pp-constraint that the valves and
the talkback must be in the associated-switch relation
with the switch. Each collection of connected valves,
switches and talkbacks make up one such valve-switch-
talkback-system. When a valve-switch-talkback-system
is instantiated with the specific individuals, the descrip-
tion logic system makes sure that the associated-switch
relations are also maintained.

When adding the various individual components of the
system we found that the notion of modules allowed for
a convenient "bottom-up" building of objects. We were
able to first instantiate the "smallest" composite individ-
uals, such as a connection, and then use the module-
fills construct to include these in more complex compos-
ite individuals, such as an assembly, whereupon the con-
straints are checked automatically and values are prop-
agated.

The use of modules was shown to be a natural choice
as well. Some levels in the part-of hierarchy which ex-
isted in the NASA manual did not exist in the previous
model of the application. These levels were usually levels
representing modules in our part-of hierarchy.

In addition to modeling the world within the descrip-
tion logic system, it was necessary for us to rewrite the
system plans, in order to query the description logic
knowledge-base regarding the state of the world rather
than performing unification on the dMARS representa-
tion of the world state. This was relatively straightfor-
ward and in some cases resulted in a conceptual sim-
plification of the plans produced. A significant number
of the queries needed relied on the representation of in-
dividuals as composite entities made up of parts, thus
justifying our choice of the extended description logic
rather than the simpler unmodified CLASSIC system.
The following types of queries appeared in the plans and
were all frequently used. Is individual i I part of individ-
ual i? Is individual i’ part of an individual belonging to
C?. Is there an individual belonging to C that is part of
individual i? Get all individuals that are part of indi-
vidual i. Get all individuals of which individual i’ is a
part. Get all individuals that belong to concept C and
are part of individual i. Get all individuals that belong
to concept C and of which individual i t is a part.

It is also worth noting that we often require only one
query, whereas the previous dMARS model typically had
to perform the query in several unification steps intro-
ducing intermediary variables. One reason for this is the
fact that our system allows us to state complex queries
regarding part-of.

We found that the checking of the context condition
in the dMARS plans can often be split into two con-
ceptually separate phases. In the first phase the actual
context condition is checked, i.e. the requirements that
have to hold for this plan to be instantiated. The second
part of the context conditions then instantiates different
variables that are not part of the plan instantiation re-
quirements but for which a plan has to be instantiated
for each possible binding.

An example of this is a plan for updating the reading
of the quantity in a tank with bad pvt-status by using its
associated helium tank. Instead of having nine clauses,
binding five different variables, some of which are only
intermediate variables for passing between clauses, we
were able to simply form two queries - the first ascer-
taining whether the invocation condition for the plan was
met (the given tank is a propellant tank with bad pvt-
status and is included in a propellant system for which

- 148-

the other-propellant-system also has a tank with bad
pvt-status) and the second to ascertain which individual
helium tank is included in the same propellant system as
the original tank. It was also possible to define the body
of this plan without the use of additional variables.

In the process of building the knowledge base, some
mistakes were found in the original database on which
we were working.1 A number of these errors would have
been automatically detected, or more easily noticed, us-
ing a description logic for composite objects. Examples
of types of errors detected include the following: infor-
mation appearing twice - a description logic system de-
tects the fact that the information already exists, and
does not add the redundant fact; typing mistakes in some
relation names, resulting in the relations being unde-
fined - a description logic system issues a warning when
it creates the new (mistyped) entity; mismatch between
concepts in plans and concepts in the database - a de-
scription logic system detects an error; some connection
relations were missing - the description logic system can
check this by using a system function to check whether
all (part-of) relations are closed, i.e. whether all neces-
sary relations are completely instantiated; some of the
extra relations were missing - the way that we modeled
this, these are automatically created by the description
logic system, because they are defined as being necessary
for all individuals of the given type.

Although the errors were either corrected in a later
version, or were unimportant for the correct functioning
of the system, it is clearly beneficial to have support
which minimizes such problems.

4 Conclusion
We have presented a description logic for composite ob-
jects and described the advantages for a particular ap-
plication. We saw that a natural model of the appli-
cation needed part-of. This is obvious when we notice
that the model actually contains 38 different part-whole
relations. The fact that the model is closer to the orig-
inal source document than the existing dMARS model
comes mainly from the fact that we used part-of. For in-
stance, we did not need to introduce different part-whole
relations between the same two individuals. /,From a
logical point of view we did not either need to intro-
duce extra relations that were introduced in the exist-
ing dMARS model as traversing the part-of hierarchy
would give us the same information. When these extra
relations were desirable for efficiency reasons, we used
the pp-constraint construct to automatically maintain
these relations. Using this approach we were able to cor-
rect some mistakes found in the existing database. The
module-fills construct allowed for a bottom-up instan-
tiation of composite individuals, where more complex
individuals were instantiated using less complex individ-
uals. We saw that the notion of module was also present
in the original source document, but had disappeared in

1Here we used the database as in [GI90]. Newer versions
of the database exist.

the existing dMARS model. Many of the queries used in
the plans involved the part-of relation. Therefore it was
natural to use a system where knowledge about part-of
can be expressed in a natural way. The user functions of
our description logic system also enabled an easy way of
traversing the part-of hierarchy.

A cknowledgement s
The authors would like to thank David Kinny, Ralph

R6nnquist and Mike Georgeff from the Australian Artificial
Intelligence Institute for useful discussions on the RCS ap-
plication. This work was done while the first author was
visiting the Computer Science Department of the Royal Mel-
bourne Institute of Technology. The first author is supported
by grant 95-176 from the Swedish Research Council for En-
gineering Sciences (TFR).

References
[Bus87] Bush, R., Reaction Control System Training Man-

ual RCS P102, Flight Training Branch, Missions Opera-
tions Directorate, NASA, Johnson Space Center, Hous-
ton, TX, April 1987.

[GI89] Georgeff, M., Ingrand, F., ’Decision-Making in an
Embedded Reasoning System’, Proceedings of IJCAI 89,
pp. 972-978, 1989.

[GI90] Georgeff, M., Ingrand, F., ’Research on Procedural
Reasoning Systems - Final Report - Phase 2!, SRI Inter-
national, 1990.

[Lam96] Lambrix, P., Part- Whole Reasoning in Description
Logics, Ph.D. Thesis 448, Department of Computer and
Information Science, LinkSping University, 1996.

- 149-

