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Abstract 1 Introduction

This paper presents C-CLASSIC~e, a Descrip-
tion Logic (DL) which is expressive enough 
be practically useful and which can handle de-
fault knowledge.
C-CLASSIC6~ has been given an intensional
semantics (CL6e) in which concepts are de-
noted by a normal form of the set of their
properties (rather than the set of their in-
stances as is the case in model-theoric seman-
tics). Therefore, the subsumption algorithm is
based on computations and comparisons of el-
ements of CL~, thus giving a good adequacy
between the polynomial-time subsumption al-
gorithm and the semantics and allowing the
soundness and completeness of the algorithm
to be established.

Key-words : Default knowledge, intensional semantics,
subsumption algorithm.

The aim of this paper is to present some theoretical re-
sults concerning the deductive aspects1 of the new DL
C-CLASSIC~e. This DL (introduced in section 3) is the
extension of C-CLASSICs with two "non classical" con-
nectives of .ALoe, a toy DL designed by P. Coupey and
C. Fouquer~ (cf. [5]): the connective ~ which describes 
concept by default and the connective e which describes
an exception to a concept. Using these two new connec-
tives (described in section 2) it is possible to define more
concepts and therefore increase the scope of the clas-
sifter which works only on defined concepts3. Both C-
CLASSIC and .AL:~ have polynomial, complete and cor-
rect subsumption algorithms; however, extending these
positive results to C-CLASSIC~ is not straightforward.
In order to make a theoretical study of deductive as-
pects of C-CLASSIC,c (cf. section 4), and especially
the subsumption relation, an algebraic approach (sim-
ilar to [6], for instance, but for a simpler language) is
used. In this framework, subsumption is considered from
two points of view: descriptive and structural. The de-
scriptive point of view for subsumption consists in com-
paring terms (concept descriptions) of C-CLASSIC~ via
an equational system called EQ+. EQ÷ fixes the main
properties of the C-CLASSIC6e connectives and deter-
mines equivalence classes of terms. The structural (and
computational) point of view consists in comparing nor-
mal forms which are computed by applying a homo-
morphism from the set of terms of C-CLASSIC~ into
the set of elements of an intensional semantics (called
CL6e). The subsumption algorithm reflects this struc-
tural computation exactly. The correctness and com-
pleteness of the subsumption algorithm is established
by proving the equivalence between the descriptive and
structural points of view.

*This research is supported as part of the "Creation and
Enrichment of a Knowledge-Base: Application to the Su-
pervision of a Telephone Network" project involving CNRS-
cognisciences, CNET (National Center for Telecommunica-
tion Studies), INRIA, LIPN.

l Inductive investigations are described in [9] (we prove
that C-CLASSIC6~ is PAC-learnable).

2C-CLASSIC is equivalent to CLASSIC2 ([2]) without the
SAME-AS connective. W.W. Cohen and H. Hirsh described
its inductive study in [4].

3A defined concept has both necessary and sufficient prop-
erties to recognize an instance of this concept.
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2 Overview of the connectives 6 and c
This section is a description of the connectives 6 and e
introduced by P. Coupey and C. Fouquer4 in the ~lL~6~
DL (cf [5]).
The connective 6 intuitively represents the common no-
tion of default.

Ex4: Mammal- Animal 17 6Viviparous [q Vertebrate
defines the Mammal concept as a Vertebrate Animal
which is usually Viviparous. Instances of Mammal nec-
essarily have the properties Animal and Vertebrate but
they may not have the property Viviparous. Unfortu-
nately, using this definition of Mammal we can infer that
- for instance - a Duck (Duck - Animal ~ Oviparous rq
Vertebrate I"1 With.beak I"1 Quack I"1 Palmiped Iq 6 Fly)
is a Mammal (as it is a Vertebrate Animal). Thus, 
R.J. Brachman claimed in [3], automatic classification
with default knowledge seems impossible since a default
property is not necessary. To solve this problem, P.
Coupey and C. Fouquerd introduced in [5] the connec-
tive e which represents an exception to a concept. They
defined a definitional point of view for default knowl-
edge and express the following constitutive property: an
object is an instance of a concept C iff it satisfies the
strict definitional knowledge of C, and satisfies or is ex-
plicitly "exceptional" w.r.t, the default knowledge of 6’.
With the constitutive property we can no longer infer
that a Duck is a Mammal as it is neither Viviparous
nor exceptional w.r.t. Viviparous. On the other hand,
an Ornithorynchus5 ( Ornithorynchus - Animal rq Ver-
tebrate n Oviparous I"1 With-beak 17 Viviparous~) will be
classified under the Mammal concept since it is excep-
tional w.r.t. Viviparous.
In the framework described here, the classification pro-
cess is monotonic despite the presence of default knowl-
edge and, at this level, the exceptions are not applied
(defaults are not inhibited by exceptions). The non-
monotonicity of defaults is recovered during the inheri-
tance process, e.g. Mammal inherits the properties Ani-
mal, Viviparous and Vertebrate. Ornithorynchus is sub-
sumed by Mammal but it does not inherit the property
Viviparous since an exception to this property inhibits
it.
P. Coupey and C. Fouquere showed in [5] that the intro-
duction of the connectives 6 and e considerably improves
the capabilities of classification processes since few con-
cepts are definable with only strict knowledge. In the
Supervision of Telephone Network application [1], de-
fault knowledge was integrated so as to be able to give a
full definition for many concepts. However, since .A£6~
is too restricted to be used in practical applications, it
was necessary to design C-CLASSIC~e.

3 The C-CLASSIC6, DL
The set of connectives of C-CLASSIC~ is the union of
the set of connectives of C-CLASSIC [4] and of AL:6~ [5].

4The formal notation (see the syntactic rule, section 3) 
used for descriptions, not the CLASSIC one.

SOrnithoryncus = duck-billed platypus.

C-CLASSIC6, is defined using a. set tt of primitive roles,
a set P of primitive concepts, the constants T and ±, a
set I of individuals (called classic-individuals), and the
following syntactic rule (C and D are concepts, P is 
primitive concept, //is a primitive role, u is a real, n is
an integer and Ii are classic-individuals):

C, D ---* T the most general concept
3. the most specific concept
P primitive concept
ONE-OF { I1. . . I,~ } concept in extension
MINu u is a real number
MAXu u is a real number
C 17 D concept conjunction
VR : C value restriction
R FILLS {I1. ¯ ¯ In} subset of values for R
1:l AT-LEAST n cardinality for/~ (minimum)
R AT-MOST n cardinality for/t (maximum)
6C default concept
Ca exception to the concept C

For example, Switch [q 6(Ineffective-beam AT-LEAST 2)
lq VAlarm-levehMIN 3 [q Linked-to FILLS { CT-Parisl

CT-Paris3} lq VBroken-beam: ONE-OF{Lyon1 Lyon3}
describes all the switches which usually have at least two
ineffective beams, at least level-3 alarms, are linked to
at least CT-Parisl and CT-Paris3, and all the broken
beams of which are Lyonl or Lyon3.

Defining a concept6 means giving a name A to a term
C of the C-CLASSICt~ language using the expression
A=C.

4 Deductive study of C-CLASSIC~,
This section is divided as follows: section 4.1 focuses on
the descriptive point of view, beginning with the equa-
tional system EQ+ and following by a formal character-
ization of descriptive susbsumption. Section 4.2 focuses
on the structural point of view. C-CLASSIC6e is given
an intensional semantics which is used to formally define
structural subsumption, the basis of the subsumption al-
gorithm. Finally, it is shown that structural subsumption
computation in C-CLASSIC6e is polynomial and that the
subsumption algorithm is correct and complete.

4.1 Descriptive point of view
Equational system
In order to formalize the subsumption relation in C-
CLASSIC~e, the equational system EQ+ is defined (see
below). This system fixes the main properties of the
connectives (e.g. axiom 2 expresses the commutativity
of concepts conjunction), and is used to define an equiv-
alence relation between terms. Moreover, EQ+ serves as
the basis for the definition of an intensional semantics~.

YA, B,C E C-CLASSIC~¢, I i E I, El E 2z:
01. (AIT E) II C = AII (B~ 
02. ArIB=BRA
03. ArIA=A
04. TrIA=A

6 Note that cyclic concept definitions are not allowed.

7The presence of individuals in the description language
can lead to intractable reasoning. To avoid this problem, A.
Borgida and P.F. Patel-SchneideFs point of view is adopted
(see [2]), where individuals are regarded as disjoint sets 
objects rather than as distinct objects.
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05..L rlA =.L
o6. va : (A n B) = (Va : A) n (VR 
07. VR:T= T
0S. ONE-OF E1 n ONE-OF E2 = ONE-OF(E1 n E2)
09. MIN mn MIN n = MIN maxi(m,,)
10. MAX mf MAX n = MAX mlni(m,n)
II. R FILLS E1 fl R FILLS E2 = R FILLS(E1 u E2)
12. R FILLS % = T
13. R AT-LEAST mfR AT-LEAST n = It AT-LEAST maxi(m, n)
14. R AT-LEAST 0 = T
15. R AT-MOST mfR AT-MOST , = R AT-MOST mini(m, n)
16. R AT-MOST 0 = VR:I
17. R FILLS {11 ¯ ¯ .l,l = R FILLS {II ¯ ..I,} f R AT-LEAST n
18. VR : ONE-OF {11 ...I,} = VR : ONE-OF {II ...I,} f
R AT-MOST n
19. R AT-LEAST n rlVR : ONE-OF {11 .. ¯ In} = R AT-LEAST n
fYR : ONE-OF {II ... I,}
f R FILLS {II ...I,}
20. R AT-MOST n ~R FILLS {II ¯ .. I,} = R AT-MOST n
fir FILLS {Ii .. ¯ I,}
f YR : ONE-OF {11 ¯ .. I,}
21. (6A)’ = 
22.6(A f B) = (6A) r~ (6B)
23. Af6A=A
24. A" f 6A= A"
25. 66A = 6A

The axioms 1 to 20 are explained and justified in [10].
They formally describe the C-CLASSIC connective prop-
erties which are informally expressed in [2] 8. The axioms
concerning 6 and e (axioms 21 to 25) are defined in [5].
Put simply, (21) presupposes that an exception has 
meaning only if it concerns a default concept. (25) al-
lows redundant chains of 6 to be removed, and (22) is 
distributivity property. The definitional point of view of
default knowledge described section 2 expresses a sub-
sumption relation between A and 6A (A is subsumed
by 6A) and between At and 6A (At is subsumed by 6A).
These subsumption relations are expressed by the axioms

9(23) and (24) . From an extensional point of view, 
set of 6A’s instances is seen as a superset of A’s instances
and a superset of the instances which are exceptions to
A, i.e. to be an A (resp. an t) i s more specific t han to
be a 6A.

Note that EQ+ is the result of choices linked to the
application. Clearly, other choices could have been made
and, for instance, in other applications defaults could
well be non distributive.

Descriptive subsumption
Let --EQ+ denote the equality (modulo EQ+ axioms) be-
tween two terms of C-CLASSIC~. =EQ+ defines equiv-

SA careful reader will have noted the lack of certain ax-
ioms linked to inconsistency (e.g. ONE-OF ¢ = .l.). In fact
this is not the case but the technical explanations required to
highlight this point are too long to be given here (cf. [10]).
Intuitively, note that in this framework the absorption prop-
erty of .I. is undesirable. With respect to subsumption, the
equational system can detect subsumptions between concepts
that are equivalent to 1 from an extensional point of view
(i.e. ¢). In other words, it is possible to detect intensional
subsumptions which are not detected from the extensional
point of view (i.e. a triangle which has four sides is inten-
sionally different from a square circle even if their extension
is equal to the empty set (cf. [11] for more details)).

9Note that subsumption is defined from equality: A is
subsumed by B iff A ~ B = A.

alence classes of terms (e.g. A I"1 66A =EQ+ A thanks to
axioms 25 and 23). Descriptive subsumption E d is then
as follows:
Let C,D be elements of C-CLASSIC6e, C ___d D, i.e. D
descriptively subsumes C, iff C [7 D =EQ+ C.
Example: Ornithoryncus n Mammal = Animal ~ Verte-
brate ~ Oviparous 17 With.beak [1 Viviparous~ ~ An-
imal ~ 6Viviparous I-1 Vertebrate = Animal R Ver-
tebrate R Oviparous ~ With-beak R Viviparous ~ I"1
6Viviparous (applying (2) and (3)) Animal ~ Verte-
brate I"1 Oviparous ~ With-beak ~ Viviparous~ (applying
(24)). Ornithoryncus [’7 Mammal =EQ+Ornit horyn-
cus, Mammalsubsumes Ornithoryncus. It turns out that
terms are not a suitable representation to compute sub-
sumption and so another equivalent representation must
be defined. This is the purpose of the following section.

4.2 Structural point of view

Intensional semantics
Following Birkhoff’s theorem (cf. [7; 8] for a presentation
of sets of equations and universal algebras), we show in
[10] that our equational system induces a class of CL~-
algebras. From this class we propose a structural alge-
bra, which provides C-CLASSICal with an intensional
semantics we called CL6e.
The elements of CL~ are structures the definition of
which is given in appendix. Intuitively, these struc-
tures are "normalized structural representations" of C-
CLASSIC6e terms (i.e. a normal form of their set of
properties) l°. To obtain a normal form, implicit infor-
mation is addedn. This normalization strategy is a kind
of partial saturation which has been adopted to ease the
computation of the Least Common Subsumption algo-
rithm (cf. [9]).

To define CL~, a homomorphismfrom the set of terms
of C-CLASSIC~e into the set of elements of CLue had
to be defined. This homomorphism which is described
fully in [10] and briefly in appendix, takes into account
the axioms of EQ+ and the normalization strategy used.
From a practical point of view, it consists in associating
to each connective and constant of C-CLASSIC~ its in-
terpretation in CL~.

Structural subsumption and the subsumption
algorithm
Two terms C and D of C-CLASSIC~e are structurally
equivalent iff the normal form of C is equal to the nor-
mal form of D. This equality is noted as C =eL6, D.
The formal definition of structural subsumption is then
defined as follows:
Let C, D be elements of C-CLASSIC~e, C ~, D, i.e. D
structurally subsumes C, iff C ~ D =C Lo, C.

Normal forms are the fundamental data handled by
our subsumption algorithm. So, given two terms C and D

1°Henceforth, elements of CL~, are called normal forms.
ZlFor instance, according to axiom 17, the property R

FILLS (a, b, c} leads us to add the property R AT-LEAST
3.
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of C-CLASSICte, answering the question "Does D sub-
sume C?" means performing the following procedure:
The normal forms of C and "C fq D" are computed using
the homomorphism described in [10]. If these two nor-
mal forms are equal then the algorithm returns "yes"
otherwise it returns "no".
We showed in [10] that: i) the computation of the nor-
malform is polynomial in time, ii) the comparison of two
normal forms is straightforward, iii) the size of normal
forms is polynomial with respect to the size of terms.
Consequently, it is true to say that the subsumption al-
gorithm is polynomial. In order to show that it is correct
and complete, it is sufficient to prove the equivalence be-
tween descriptive and structural subsumption.

Theorem 1 Let C and D be terms of C-CLASSICt~,
C Ua D iff C Ed D.

The complete proof of this theorem can be found in
[10]. The "only if" part (i.e. completeness of the sub-
sumption algorithm) consists in proving that each axiom
of EQ+ is valid in CLte. To prove the "if" part (i.e.
correctness of the subsumption algorithm), a descriptive
normal form is defined in C-CLASSICt~, and then both
its uniqueness and the fact that the equality in CLt~
implies the equality of the descriptive normal forms are
proved.

5 Conclusion

This paper presents the C-CLASSICte DL which is an
extension of C-CLASSIC so as to handle default knowl-
edge. C-CLASSICte has been given an intensional se-
mantics based on concept algebras, and then it has been
proved that subsumption in C-CLASSICt¢ (i.e. the main
reasoning operation) is polynomial, correct and com-
plete. C-CLASSICte has been implemented in C++ and
is being used in an industrial application.
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APPENDIX
Definition: A structure S of CLte corresponding to

a term T of C-CLASSICte is a pair < Sa,St > where
S~ contains the strict properties Of T and St its de-
fault properties. Sa and S~ are tuples defined as follows:
(dora, rain, max, 7r, r, e) where dora is either a set
of individuals if the definition of T contains a ONE-OF
property, or the special symbol UNIV otherwise; mln
(resp. max) is either a real if T contains MIN prop-
erty (resp. MAX), or the special symbol MIN-R (resp.
MAX-R) otherwise; r is the set of primitive concepts
belonging to T; r is a set of elements defined as fol-
lows: < R,fillers, least, most, c > where R is a name
role; fillers is either a set of individuals if T contains a R
FILLS property in its definition, or 0 otherwise; least is
an integer representing an R AT-LEAST property; most
is either an integer representing an R AT-MOST prop-
erty, or the special symbol NOLIMIT otherwise; c is a
structure if T contains VR : C in its definition; e is a set
of tuples (dom, rain, max, ~r, r, e).

Extract of the homomorphism from C-
CLASSIC6e into CLte:

C-CLASSICt, CLt,

< (UNIV, MIN-R, MAX-R, 0, 0, 0),
( UNIV, MIN-R, MAX-R, 0, 0, 0) 

P < (UNIV, MIN-R, MAX-R, {P}, 0, 0),
(UNIV, MIN-R, MAX-R, {P}, 0, 0) 

MIN u < (UNIV, u, MAX-R, 0, 0, 0),
( UNIV, u, MAX-R, 0, 0, 0) 
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C~D c®d

Let us examine this extract in more detail:

¯ The interpretation of the primitive concept P con-
sists in filling the field lr of the strict tuple (i.e. S~ 
(dora, rain, maz, ~r, r, ~)) with the name of this con-
cept and, using the normalization strategy (adding
implicit information) and axiom 23, doing the same
thing for the default part (i.e. $6).

¯ e and d represent respectively the normal forms of
concepts C and D. The internal operation ® of
CLt~ is defined as follows: e = < e~,e6 > and
d = < d~, d6 > are two elements of CLt~, where
e~r, d~, e6, d6 are (strict or default) tuples, c ® d 
< e~r ~ d~,, e6 ~ d6 >. The "tuples union operation"

is fully defined in [10]. Put simply, to define
requires defining the result of "union" on each field
of tuples. Thus, for instance, "union" of fields rain
is equivalent to the maximum of the two rain (of.
axiom 9); "union" of fields prim is equivalent to the
standard set union.

Example: The structure (and therefore the normal
form) corresponding to the Mammal concept is:
,~ (UNIV,MIN-R,MAX-R, {Animal, Vertebrate}, ¢, ¢),
(UNIV,MIN-R, MAX-R, {Animal, Vertebrate,
Viviparous}, O, O)
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