
The K-Rep System Architecture

Robert Weida, Eric Mays, Robert Dionne, Meir Laker, Brian White,

Chihong Liang, Frank J. Oles

IBM T. J. Watson Research Center*

P.O. Box 218

Yorktown Heights, NY 10598

1 Introduction

K-Rep is an object-oriented knowledge representation
system based on description logic [Woods and Schmolze,
1992]. K-Rep provides a language to express descriptions
(e.g., of medical concepts such as drugs, treatments, and
diseases), inference mechanisms for reasoning about de-
scriptions and their relationship to one another, and con-
siderable supporting infrastructure. This paper presents
an overview of K-Rep’s system architecture, which has
been motivated in part by the needs of several applica-
tions in the area of clinical information systems [Mays
et al., 1996].

It has become clear that accurate and comprehensive
controlled medical terminologies are crucial for advanced
clinical information systems, e.g., to achieve compara-
ble data across the enterprise in support of outcomes
analysis and inter-operation of ancillary systems, con-
eeptual indexing of clinical advice, and knowledge-based
entry of orders for drugs, procedures, etc. Organization
and maintenance of such a terminology is a formidable
task: there are at least 100,000 concepts of initial inter-
est, both national (or international) standardization and
local customization of content must coexist, and the ter-
minology will evolve significantly over time. The state
of the art in medical terminologies is characterized by
ad hoe definitions, manual classification, little inferen-
tial power, and no provision for collaborative develop-
ment. Therefore, the area of clinical information sys-
tems has become one of our key applications. In October
1994, after several years of experience with a Common
Lisp implementation of the K-Rep description logic sys-
tem [Mays et al., 1991], we embarked upon a substantial
redesign effort to accomplish the following objectives:

Sealability: K-Rep must support extremely large
knowledge bases, potentially beyond the limits of
virtual storage.

Perslstenee: Knowledge bases must be immediately
available to applications, and must continue to ex-

*The first author may be contacted via email at
weida@cs.columbia.edu. The other authors, respectively,
may be contacted at {emays, dionne, melt, bfwhite, cliang,
oles} @watson.ibm.com.

ist independent of process termination or system
shutdown.

Distribution: Knowledge bases must be simultane-
ously accessible from multiple client systems in a
networked environment.

Embeddability: K-Rep must offer terminology ser-
vices as a seamlessly integrated component of larger
application systems.

Performance: K-Rep must be able to respond at
interactive speeds in critical production environ-
ments.

Authoring support: K-l:tep must provide a profes-
sional development environment to facilitate the
collaborative knowledge engineering and visualiza-
tion activities of domain experts in an intuitive and
appealing manner.

Consistency maintenance: Revision and reclassifi-
cation of descriptions is essential, both for interac-
tive knowledge base editing and for run-time infer-
eneing.

Scope: K-Rep must accommodate a wide variety of
information within descriptions, including both se-
mantic roles and primitives, and non-semantic in-
formation such as bitmaps, synonyms, abbrevia-
tions, and codes.

These considerations led us naturally to our current de-
sign point, illustrated in Figure 1 and discussed below.

2 Discussion

K-Rep addresses scalability and persistence using Ob-
jectStore, an object-oriented database management sys-
tem with a persistent memory model. Persistent mem-
ory extends virtual memory similar to the way that vir-
tual memory extends real memory, but also includes the
database characteristics of atomic, serializable, and re-
coverable transactions. A particularly important fea-
ture of ObjectStore’s persistent memory implementation
is the mapping of persistent memory pages into virtual
memory pages using pointer swizzling [Lamb et al., 1991].
For example, once a persistent page’s addresses have

- 197-

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Application

K-Rep
r 5;v;op;,;n;", I I

Environment i I I I ’1
C++ Client ~ D S I ~1 OStore Server I

=’,R,moteK-Ropl ~ r l ~ I 7’ "~ ’
" ~" ’ P A A

i. 0,=‘,o. I/f,’ ,,.,t,,t,.,,, o Io IE I E I1"I K-.ep if : .pp.,=,o°s : /,, I /I IKB II ..v.C,,on,
,

!__ OS_tor_e Client_-

.... ;" OStor’e’S;~;; "i~ I= .~:,==--’~------’ ’- i~-Hen~erver , , ~ u~tore~erver
IJ r" "’’& ’’’E" I

Figure 1: System Architecture

been mapped into virtual memory, dereference of a per-
sistent pointer to that page is implemented with a single
load instruction. An address reference may occur out-
side of the mapped range, in which case a persistent page
fault occurs. K-Rep uses segment allocation and cluster-
ing to improve locality of reference, and its algorithms
are specially designed to minimize persistent memory
references. Although relational database management
systems are now evolving to support objects in the form
of BLOBS1, contemporary systems are simply unable to
match ObjectStore in terms of speed. Nonetheless, we
are actively exploring appropriate uses of relational tech-
nology as our framework evolves.

C++, however grotesque, was an obvious pragmatic
choice for our core implementation language due to its
object-orientation, portability, and amenability to inte-
gration with database systems and applications. (Java’s
cleaner design, potentially superior portability, and espe-
cially its automatic memory management make it an in-
triguing future alternative.) K-Rep’s C++ class library
defines an application program interface (API) which
presents an interface to the underlying kernel. The API
encapsulates numerous implementation details such as
the persistent storage mechanism. It also protects the
integrity of internal data structures, including all those
which persist. An identical interface is presented by
an ephemeral (or transient) memory version of K-Rep
which does not use ObjectStore. Using ephemeral knowl-
edge bases consumes fewer system resources and facili-

1Binary Large Objects.

tates both application development and development of
smaller knowledge bases. In addition to K-Rep applica-
tions, both the K-Rep development enviromment and a
set of K-Rep system utilities access the kernel strictly
through the API.

The K-Rep kernel is divided into definition space
(DSPACE) and semantic space (SSPACE) components,
which are responsible for managing descriptions and
their classification, respectively. The DSPAC~. maintains
consistency among several representations of a descrip-
tion:

1. A source form is a character string which is suitable
for text file import/export operations, and can be
replaced through an API call, e.g., when using the
development environment’s text editor.

2. A normalized form is a canonical, recursive data
structure for the description per se, which is suit-
able for tabular presentation and structural editing.
It is updatable through API calls, e.g., to imple-
ment "direct manipulation" editing in the graphical
development environment. Among other things,
the normalized form includes both normalized roles
for semantic attributes and facets for non-semantic
attributes of concepts and roles as exemplified ear-
lier.

3. A completed form captures the description’s mean-
ing in the overall context of the knowledge base,
i.e., it incorporates the results of inferences such as
inheritance. It is only updated indirectly through
changes to source or normalized forms.

- 198-

There is a many-to-one mapping from DSPACE con-
cepts to their counterparts in the SSPACE. Taxonomic
relationships among DSPACE concepts are determined by
reference to the corresponding SSPACE concepts, which
are organized in an explicit subsumption taxonomy. This
approach neatly handles the coexistence of equivalent
concepts. Semantic descriptions only record local differ-
ences from immediate ancestors in the taxonomy. We
take advantage of this to reduce the number of tests re-
quired by our classification algorithm, and to to mini-
mize the size of SSPACE concepts. In the context of Ob-
jectStore, the DSPACE/SSPACE separation provides dra-
matic performance benefits: SSPACE concepts are clus-
tered in separate ObjectStore segment(s), so only SS-
PACE pages are mapped during classification (and only
for those SSPACE concepts encountered while traversing
the taxonomy). In addition, the small size of SSPACE
concepts reduces the number of pages accessed.

K-Rep can operate in either single system or dis-
tributed client/server mode. Distribution, in turn, is
achieved in two different ways, either through Object-
Store’s client/server facility using K-Rep’s native C++
API, or with K-Rep’s own client/server query facility,
where a run-time server provides access to K-Rep for
lightweight clients via a scripting language (parameter-
ized queries can be parsed and registered for efficient
reuse). The use of a scripting language minimizes the
number of separate client/server transactions, and en-
ables desktop applications where system resources are at
a premium (as may be the case in a clinical workstation).
Both C++ and Java clients are implemented using the
scripting language. The server provides a range of lex-
ical pattern matching capabilities which desktop clients
may use to locate terms. A desktop client can also nav-
igate the structure of a knowledge base to locate items
by their classification. Various forms of navigation are
possible depending on the user interaction technique.

K-Rep’s development environment includes a direct
manipulation graphical user interface, which features
browse, query, and edit capabilities, a commit/abort
protocol for modifications on a per concept basis (or-
thogonal to database transaction commits/aborts), and
a journal facility. Considerable thought and effort was
required to make the user interface suitable for serious
knowledge engineering activities. A taxonomy viewer al-
lows users to navigate the taxonomy in an incremental,
top-down manner. A user can focus his or her atten-
tion by selectively revealing and hiding portions of the
taxonomy. Other viewers, such as the definition viewer
which presents the normalized form and the significance
viewer which presents the completed form, help users
to assimilate definitions, their semantic import, and the
relationship between the two. Incremental terminology
development is fostered by a variety of mechanisms for
description "copy and edit" and role restriction refine-
ment.

During terminology development, K-Rep operates on
a database in exclusive write mode, because modifica-
tions may have non-local effects. In the same way that

design systems support long running transactions, K-
Rep has a model of collaborative work. It records a jour-
hal of changes as textual representations. The journals
associated with several terminology developers may then
be examined and merged. A methodology for automat-
ing this process in association with K-Rep is the subject
of[Campbell et al., 1996]. Key concerns in concurrent,
distributed development of terminologies include:

¯ Conflict detection and resolution

¯ Distribution of approved terms

¯ Update of local versions

Of course, subsumption and related inferences are ex-
tremely useful for conflict detection and reporting.

3 Conclusion
Bringing K-Rep to the point of around-the-clock pro-
duction use at Kaiser-Permanente in Colorado [Mays
et al., 1996] has been a non-trivial endeavor. Other
projects are underway at the inter-regional level of
Kaiser-Permanente, Barnes Jewish and Christian Hos-
pital, Columbia Presbyterian Medical Center, the Mayo
Clinic, and Stanford University. In our experience, rig-
orous attention to a wide range of "systems issues" is
crucial, both to elicit interest from development partners
and commercial customers, and to win their acceptance.

References
[Campbell et al., 1996] K. E. Campbell, S. P. Cohn,

C. C. Chute, G. Rennels, and E. H. Shortliffe. Gala-
pagos: Computer-based support for evolution of a
convergent medical terminology. In Proceedings of
the 1996 AMIA Annual Fall Symposium, Washington,
DC, 1996. To appear.

[Lamb et al., 1991] C. Lamb, G. Landis, J. Orenstein,
and D. Weinreb. The objectstore database system.
Communications of the ACM, 34(10):50-63, Oct 1991.

[Mays et al., 1991] E. Mays, R. Dionne, and R. Weida.
K-rep system overview. SIGART Bulletin, 2(3):93-97,
June 1991. Special Issue on Implemented Knowledge
Representation and Reasoning Systems.

[Mays et al., 1996] E. Mays, R. Weida, R. Dionne,
M. Laker, B. White, C. Liang, and F. J. Oles. Scalable
and expressive medical terminologies. In Proceedings
of the 1996 AMIA Annual Fall Symposium, Washing-
ton, DC, 1996. To appear.

[Woods and Schmolze, 1992] W. A. Woods and J. G.
Schmolze. The kl-one family. Computers and Mathe-
matics with Applications, 74(2-5), 1992.

- 199-

