
Combining Navigational Planning and Reactive Control

Khaled S. All and Ashok K. Goel*
College of Computing

Geo~yia Institute of Technology
801 Atlantic Drive NW, Atlanta, GA 30332-0280

Abstract

Traditional AI methods for navigational planning use
qualitative spatial representations and reasoning. Tra-
ditional robotics techniques for this task are based on
numerical representations and reasoning. Recent work
on robotics posits mechanisms for reactive control that
directly map perceptions of the world to actions on
it. This in turn has given rise to hybrid robot ar-
chitectures that combine navigational planning and
reactive control. But following traditional robotics
techniques, navigational planning in these hybrid ar-
clfitectures to() uses numerical methods. This raises
the following question: Given a hybrid robot architec-
ture, are numerical methods really needed for naviga-
tional planning? To explore this issue, we integrated
a multistrategy qualitative navigational planner with
a reactive-control mechanism. Then we embodied the
integrated system on a physical robot. Next we gave
the robot a series of navigation tasks in a visually
structured spatial world containing discrete pathways,
and monitored its actions as it executed the tasks in
the presence of both static and moving obstacles. Our
experiments show that for hybrid robots qualitative
methods are sufficient for navigational planning in at
least one class of spatial worlds.

Background, Motivations and Goals
Spatial navigation is a classical problem in AI and
robotics. ’~aditional AI methods for spatial naviga-
tion rely on deliberative planning based on qualitative
spatial representations and reasoning [Davis 1986]. For
example, STRIPS [Fikes and Nilsson 1971; Fikes, Hart
and Nilsson 1972] combined the methods of means-
ends analysis and theorem proving to form qualitative
plans. Its spatial representations captured topologi-
cal relationships between spatial regions (e.g., rooms)

*This work has benefited from many discussions with
members of the AI and Robotics groups at Georgia In-
stitute of Technology. We are especially gratefid to Ron
Arkin for allowing us to play with AuRA and Stimpy.
This research has been partially supported by a CER in-
frastructure grant from the National Science Foundation
(CCR-86-19886), and research grants from the National
Science Foundation (IRl-92-10925) and the Office of Naval
Research (N00014-92-J-1234).

and connections between them (e.g., doors) but did
not specify any numerical measures such as distances.
Recent AI programs for navigational planning (e.g.,
[Alterman 1988, Kuipers and Levitt 1988; Lawton and
Levitt 1990; McDermott and Davis 1984]) differ from
STRIPS in the knowledge representations and reason-
ing methods they use. But they too share the core
assumption that qualitative methods are largely suffi-
cient for navigational planning in most, if not all, spa-
tial worlds.

Traditional robotics techniques for spatial naviga-
tion too rely on deliberative planning. But in contrast
to AI methods, robotics techniques for navigational
planning are based on numerical representations and
reasoning [Latombe 1991]. This is because, the ar-
gument runs, the movement of a robot needs to be
computed with an accuracy and precision that is be-
yond qualitative representations and reasoning: accu-
rate navigation from an initial location to a goal lo-
cation requires numerical measures such as the precise
distance the robot needs to traverse and the precise
direction in which it needs to travel.

Recent work on robotics (e.g., [Brooks 1986]) shifts
the emphasis and focus from navigational planning to
situated action. This line of research posits mecha-
nisms for reactive control that directly map percep-
tions of the world to actions on it. The perceptual
inputs, motor outputs, and internal mappings, all are
numerical. But there are no internal representations
of the world, qualitative or numerical, and hence no
deliberative planning either: the world is its own best
representation.

The development of reactive-control techniques in
turn has given rise to hybrid robot architectures that
combine navigational planning and reactive control.
The AuRA architecture [Arkin 1989a], for example,
uses navigational planning to form a high-level plan
for achieving a given goal and reactive control to avoid
obstacles not anticipated by the planner. Following
traditional robotics techniques, navigational planning
in hybrid robot architectures typically uses numerical
spatial representations and reasoning.

This sets up the research question for our work:

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Given a hybrid robot architecture capable of both nav-
igational planning and reactive control, might quali-
tative representations and reasoning suffice for navi-
gational planning? Or, are mnnerical representations
and methods really needed for navigational planning
even in a hybrid architecture? This issue is important
because it pertains to the nature of spatial representa-
tions and reasoning for navigational planning.

To explore this issue we formulated a testable (i.e.,
falsifiable) hypothesis: For hybrid robots capable of
both navigational planning and reactive control, qual-
itative representations and reasoning are sufficient for
navigational planning. The characterization of what,
we mean by "sufficient" will emerge in the following
sections and is made explicit in the last section. But
note that optimality of planning or of navigation is not
an issue here; neither qualitative-planning methods nor
reactive-control techniques provide any a priori guar-
antee of planning or navigational optimality, especially
not, in spatial worlds containing obstacles in addition
to the goal. The engineering of an optimal planner or
navigator is not the goal of our work. Instead, our goal
is only to examine and evaluate a specific hypothesis of
considerable intrinsic merit. If this hypothesis is false,
then qualitative methods art insufficient for all classes
of spatial worlds (barring toy or imaginary worlds, of
course). But if the hypothesis is true, then qualitative
methods are sufficient for navigating in at least one
class of spatial worlds.

Evaluation Method and Experimental

Design
Investigation of the above research hypothesis requires
the design and construction of a navigational planner
which uses only qualitative spatial knowledge and rea-
soning. It also requires the integration of the naviga-
tional planner with a mechanism for reactive control.
Router [Goel et. al. 1993, 1994], a multistrategy navi-
gation planner, provided us with the former capability
and Arkin’s AuRA architecture provided the latter.

A difficult evaluation issue here concerns realism. In
principle, the hypothesis can be evaluated by simula-
tion. One problem with this is that the simulation
environment is bound to make a number of assmnp-
tions not only about the navigation task and domain
but also about the robot’s motor and perceptual capa-
bilities. The results of the evaluation would be strictly
limited by these assumptions. Another problem is that
the simulation cannot accommodate "unknown fac-
tors" such as noise. For these reasons, we evaluated
the hypothesis on a real robot.

But this raises another difficult evaluation issue: our
experiments are naturally constrained by the motor
and perceptual capabilities of the available robot. For
example, the robot readily available to us, a Den-
ning MRV-2, is capable of locomotion only on flat and
smooth surfaces such as an office floor. The robot’s
sensors include shaft eneoders, a ring of 24 ultrasonic

sensors, and a LaserNav rotating barcode reader. The
shaft encoders provide information about the orien-
tation of the robot and the distance traversed from
the initial location. The ultrasound sensors enable
the detection of obstacles. Only the LaserNav bar-
code reader allows the detection of distinctive places
or landmarks in the navigation space. This meant that
we had to visually engineer the landmarks on the of-
flee floor by posting barcodes that could be recognized
by the robot. But the ultrasound sensors admit both
static and moving obstacles, provided that the motion
is at a rate slower than both the processing-cycle and
the motor-actuation times of the robot.

To summarize the design of our experiments, first,
we instantiated the Router system in the AuRA archi-
tecture, replacing the numerical navigational planner
in AuRA with Router’s qualitative planner. We call
the resulting system Raura. Next, we embodied Raura
in a Denning MRV-2 robot that we call Stimpy. Fi-
nally, we gave the robot a series of navigation tasks in
a visually structured office floor containing both static
and moving obstacles, and molfitored its actions as it
executed the given tasks.

Router

In this section, we briefly sketch the design of Router
and outline how it works. Router is a multistrategy
adaptive navigational planner. The system dynami-
cally integrates the strategies of model-based search
and case-based plan reuse. It uses a task-directed
mechanism for strategy selection and integration. Both
the model and the cases in Router are purely qualita-
tive, containing no metrical information.

Router operates in spatial worlds that contain dis-
crete pathways and in which traversal is confined to
these pathways. Its current knowledge enables oper-
ation in two kinds of navigation domains within this
class of worlds: representations of university campuses
in large cities, and representations of specific floors in
office buildings. In the former domain, the roads and
streets are the discrete pathways, and, in the latter,
the corridors and hallways are the pathways.

In both navigation domains, the input to Router is
a pair of spatial locations representing the initial and
goal locations of the robot. The initial and goal lo-
cations are among the intersections between the path-
ways in the spatial world. The output of the planner is
an ordered set of path segments (segments of streets,
hallways) connecting the initial and the goal locations.

Model-Based Search: Router’s model-based
method uses a variant of hierarchical search. The sys-
ten] contains a multiple-resolution topological model
of the spatial world. The model groups known path-
ways into neighborhoods and organizes the neighbor-
hoods in a space-subspace hierarchy. A more signif-
icant pathway connects more distant neighborhoods,
and is represented at a higher level in the hierarchy

2

than less significant ones. Higher-level neighborhoods
in the cover larger spaces but contain knowledge of
relatively few major pathways, while lower-level neigh-
borhoods cover smaller spaces but contain knowledge
of major and minor pathways that fall in them. Also,
higher-level neighborhoods contain only partial infor-
mation about pathways, while lower-level neighbor-
hoods contain more complete information. Adjacent
neighborhoods at the same level may partially overlap
so that an intersection situated close to their border
can belong to both.

Figure 1 illustrates Roster’s task-method structure.
Roster’s model-based method combines means-ends
analysis and limited graph-based breadth-first search.
Given a navigation task, the space-subspace hierar-
chy directly provides a decomposition of the goal, the
neighborhoods in the hierarchy define the problem
spaces associated with the subgoals, and the path-
ways in the neighborhood play the role of "opera-
tors". Within a neighborhood, the pathways form
a graph and are searched by a limited breadth-first
search method.

Case-Based Plan Reuse: Roster’s case-based
method combines means-ends analysis, plan reuse and
plan composition. The case memory is organized
around the space-subspace hierarchy with the neigh-
borhoods acting as indices to the cases. Given a navi-
gation task, the space-subspace hierarchy directly pro-
vides a goal-subgoal decomposition. The neighbor-
hoods in the hierarchy define the problem spaces asso-
ciated with the subgoals, and the plans stored in the
cases indexed by the neighborhoods act as situation-
specific "macro-operators".

A case in Router contains three kinds of information:
(i) the initial and goal locations in a past plamfing
episode, (ii) the spatial neighborhoods to which the
two locations belong, and (iii) the path connecting the
two locations. Each case is indexed in two ways: (a)
the initial and goal locations of the stored plan, where
the two locations act as the primary index, and (b)
the spatial neighborhoods to which the initial and goal
locations belong, where the neighborhoods of the two
locations act as the secondary index to the case.

As Figure 1 illustrates, the case-based method sets
up five subtasks of the path-finding task: (i) case re-
trieval, (ii) case validation, (iii) case adaptation,
plan evaluation, and (iv) case-storage. Here we briefly
describe only tasks (i), (iii) and (v). In case retrieval,
Router uses the neighborhoods of the initial and goal
locations as probes into the case memory to search
for cases that match the current problem as closely as
possible. If an exactly-matching case is found, then
the case contains the solution to the current task. If
only a partially-matching case is available, then it is
retrieved for adaptation. The method for case adapta-
tion uses a recursive strategy: it compares the plan
in the partially-matching case with the initial goal,

formulates navigational-planning subproblems, recur-
sively spawns new path-finding subtasks, finds solu-
tions to the new path-finding subtasks, and combines
their solutions with the initially retrieved plan. Thus
the case-based method as a whole forms new paths
by combining partial solutions contained in multiple
cases. If the case-based method is successful in combin-
ing previously planned paths to solve the given path-
planning task, then Router stores the newly found so-
lution in its case memory. The new case is indexed by
its initial and goal locations and the neighborhoods in
which they lie. In addition to complete plans, Router
also stores partial plans in its memory as reusable
cases.

Router thus automatically acquires additional cases
as it solves new problems. In fact, it does automatic
case acquisition irrespective of whether the naviga-
tion plan is generated by the case-based method, the
model-based method, or by some combination of the
two methods. Thus, as it solves problems using the
model-based method, it incrementally compiles gen-
eral domain knowledge in the form of pathways into
situation-specific cases.

Task-Directed Strategy Selection and Integra-
tion: Roster’s model-based and case-based methods
have method-specific control strategies. The availabil-
ity of the two methods raises the additional issue of
method selection and integration [Punch, Goel and
Brown 1995]. Method selection in Router is based on
two criteria: methods applicable to a given problem,
and computational properties of the applicable meth-
ods. If a case similar to a given problem is available in
memory, then, in general, Roster’s case-based method
is more efficient than its model-based method. Thus,
method selection in Router is biased towards the case-
based method: if a case relevant to a given task is avail-
able in memory, then it invokes the ease-based method;
the model-based is invoked only if a case relevant to the
given task is not available in memory.

The invoked method may potentially set up several
subtasks of task T. Router recursively applies the
same mechanism for method selection to these sub-
tasks. This results in flexible integration of multiple
methods in the course of solving a problem. As an ex-
ample, let us suppose that the case-based method is
selected to solve a given task instance T. If the re-
trieved case does not exactly match T, then Router
has to select a method for adapting the retrieved case.
It uses the method-selection mechanism recursively to
select a method applicable to the adaptation task. If
it can find a case similar to the new task instance,
then it again invokes the case-based method. But if no
such case is available, then it invokes the model-based
method. When the model-based method achieves a so-
lution to the adaptation task, the control of processing
returns to the case-based method, and the complete
plan is synthesized by linking the segment found by

Neighborhood
Finding

Path-Planning Task [

¯

I I ’Path
Finding

Retrieval Validation Adaptation
Case Case

Figure 1: Router’s Task Structure

the latter method to the segment found by the former.

AURA, Raura and Stimpy
In this section, we briefly sketch the designs of AURA,
Raura, and Stimpy, and outline how they work.

AURA: A Hybrid Robot Architecture

Autonomous Robot Architecture (AURA) [Arkin
1989a] is a general, hybrid robot architecture for in-
tegrating navigational planning and reactive control.
AuRA produces plans at three levels of spatial reso-
lution: rnission, navigation, and pilot. The mission
planner may take a set of goals as input (e.g., make
a copy of this paper and collect my mail), and give
mission-plan for achieving the goals as output (e.g., go
to the copier room, make a copy of the paper, go the
mail room, collect my mail, etc.). At the navigation

level, a path planner may take a step in the mission
plan as input. This input may be in the form of an ini-
tial location and goal location in the navigation space,
(e.g., go from my office to the copier room). The path
planner may give a piecewise linear path-plan from the
initial to the goal location as its output that avoids all
known static obstacles (e.g., go from my office into
the corridor, go right until the end of the corridor, go
through the door, etc.). At the pilot level, a motion
planner may take a path segment in the planned path
as input (e.g., go from my office into the corridor), and
may give a sequence of motor actions for accomplish-
ing the goal as output (e.g., move left,, move ahead,
etc.) such that one is executed before the next is out-
put. The motion plalmer directs the robot to move to
the goal location of the specific path segment using re-
active motor schemas. Figure 2 illustrates the AuRA

Mission

Navigation [

.............. 14
<ii’ii;,

Figure 2: Three levels of abstraction in the AuRA architecture. The pilot level is shown expanded into its subcom-
ponents.

architecture.
The mission planner for the AuRA architecture is

yet to be standardized, although mission planners have
been developed for particular tasks. In our experiment
with AURA, the (human) operator played the role
the mission planner. Tile current navigational planner
in AuRA contains a global, flat, topological map with
both qualitative and numerical knowledge. Given a
navigation task, it uses the A* algorithm on the map
for generating navigation plans.

The motion planner in AuRA uses schema-based re-
active control to realize situated action [Arkin 1989b].
Figure 3 illustrates the reactive control mechanism.
Each schema in the mechanism for reactive control is
responsible for one basic "reflex" action, such as avoid-
ing obstacles. Each schema outputs a vector, or a set
of vectors, in response to a particular perceptual stim-
ulus. The direction and magnitude of the vector are
determined by the nature and gain of the schema. The
set of vector outputs from all the schemas are summed
and normalized. The normalized vector is given to the
robot for execution. Thus the various schemas col-
lectively determine the robot’s reaction to the current
environment.

Raura: Integration of Router with AuRA

In our instantiation of Router in AURA, which we call
Raura (for Router in AURA), we used two schemas
that were already developed for use in the reac-
tive control mechanism of AURA: move-ahead and
avoid-obstacle. The move-ahead schema takes no
input and always produces a vector in one particu-

lar direction. The output vector of the move-ahead
schema has a magnitude equal to the gain for the
schema. The avoid-obstacle schema takes input
from the ultrasonic sensors indicating the location of
nearby objects in the environment. It produces a set of
vectors, one for each obstacle. Each obstacle produces
a force on the robot in a direction away from the obsta-
cle and with a magnitude reflecting both the distance
from the obstacle and the gain for the avoid-obstacle
schema.

Router fits nicely into AuRA as a substitute for the
current navigational planner. Thus, for the purposes of
our experimental study, we replaced AuRA’s old navi-
gational planner by the Router system which uses only
qualitative knowledge. However, the form of the out-
put of Router is not the same as the form of the input
to the pilot in AURA. Router outputs a path consisting
of path segments from some initial location to a goal
location. Each path segment contains a direction of
travel, a street name, a start intersection for the street,
and a goal intersection for the street. For instance, one
segment of a Router plan might look something like,
"Go E on 4th from Atlantic to Techwood." But the
pilot level in AuRA needs input in the form of an in-
stantiation of various motor schemas with appropriate
parameters.

In Raura, Router produces a plan in its entirety be-
fore the execution of the plan begins. Then, for each
segment of the plan, Router calls an interpreter. The
.job of the interpreter is to take the path segment from
Router, instantiate the necessary schemas in the pilot
in AuRA with appropriate parameters, and then re-

Perception

i

C>

Motor Schema 1

M°t°r Schema2 I X’

I Synthesizer 1

Figure 3: Reactive control mechanism in AURA.

~[Aetuat°r)

turn control to Router when a perceptual schema sig-
nals that the robot has completed executing the path
segment. Router suspends its problem solving during
the call to the interpreter.

The interpreter instantiates a movo-ahoad schema,
an avoid-obstacle schema, and a special perceptual
schema that is responsible for detecting when the robot
has arrived at the goal of the current path segment.
The direction of travel in the path segment is converted
to radians and put into the direction parameter of the
move-ahead schema. The goal location of the current
path segment is used as a probe into a data base of
locations (intersections) that associates a unique nu-
rnerical code with the location. This code is given to
the perceptual schema described below.

The perceptual schema detects when the robot has
arrived at the goal location of the current path seg-
rnent. The world is visually engineered so that each
intersection between hallways on the office floor is
marked with a unique barcode. The visual barcodes
correspond to tile codes in the data-base of intersec-
tions. The interpreter in Raura gives the perceptual
schema the code for the goal location of the current
path segment. The perceptual schema continuously
monitors the world to see if it can find a barcode that
corresponds to the code of the goal location and if
the robot is directly in front of this barcode. When
the robot arrives at the goal location of the current
path segment denoted by the barcode, the perceptual
schema sends a signal to the interpreter. In this way,
the interpreter knows that the robot has completed the
current path segment, and it transfers the control back
to Router. Router continues to call the interpreter for
each path segment until the path has been completed.

Stimpy: Embodiment of Raura on a
mobile robot

We tested Raura on a Denning MRV-2 robot that we
call Stirnpy. Stimpy is a three-wheeled holonomic ve-
hicle with shaft encoders, a LaserNav rotating barcode

reader, and a ring of 24 ultrasonic sensors for detect-
ing obstacles. In our experiments, Raura ran on an
off-board computer, with two-way comnmnication be-
tween Stimpy and the computer through radio waves.
This was because we did not have the hardware capa-
bility of running Raura on board Stimpy. But this lim-
ited the range of experiments we could conduct with
Stimpy. Radio communication between Stimpy and
the off-board computer running Raura had a strong
tendency to break down as Stimpy wandered away
from the computer, and especially as it took turns
around offices, laboratories and hallways. Thus, the
experiments had to be limited to situations in which
the initial and goal locations were relatively close and
navigation between them did not require Stimpy to
take lot of turns.

Experiments with Raura and Stimpy

We tested Raura on Stimpy in an office building on our
campus. This world consists mainly of laboratories,
offices and corridors. The various walls, doors, pillars
and other objects provide a variety of static obstacles in
this environment¯ In addition, people walking to and
fro during some of our experiments provided moving
obstacles.

We conducted three sets of experiments with Raura.
The first two sets consisted of four trials each and were
conducted in the presence of only static obstacles. The
third set of experiments consisted of twelve trials and
allowed for moving obstacles. Each trial in each of the
three sets of experiments required Raura to go from
an office in the MaRC building to either the hallway
or another office on the same floor of the the same
building.

The four trials in the first set of experiments (Exper-
iment l) were all on the same navigation problem illus-
trated in Figure 4: Stimpy had to go from a laboratory
to a specific hallway intersection outside the labora-
tory. In the first trial in this set, Raura’s (or Router’s)
case memory was empty. But as Raura solved naviga-

tion problems, generated plans (using the model-ba.sed
method), and executed them, it compiled the gener-
ated plans into a case and stored it in its case memory.
In tile subsequent three trials, Raura had access to the
case compiled in the first trial. We found that Stimpy
successfully solved the navigation problem and reached
the goal location on each of the four trials of Experi-
ment 1.

Barcodes Robot

1_
A

Figure 4: Navigation problem of the first set of exper-
iments.

The four trials in the second set of experiments (Ex-
periment 2) were also all on the same navigation prob-
lem illustrated in Figure 5: again, Stimpy had to go
from a laboratory to a specific hallway intersection out-
side the laboratory. However, in Experiment 2, the
goal intersection was in the same direction as that in
the first set of experiments but farther away from the
initial location. Thus, the pathway generated in the
second set of experiments was a superset of the path-
way in the first set. In addition, in Experiment 2,
Raura had access to the case generated in the first.
Thus, to solve the second navigation problem, it reused
the case generated in the first, and adapted it using the
model based method (because it did not have any other
case in its memory). We found that Stimpy success-
fully solved the navigation problem and reached the
goal location on three of the four trials but failed on
one because of a loss of radio communication between
the off-board computer and the robot.

The twelve trials in the third set of experiments (Ex-
periment 3) were all on the same navigation problem
but this time Stimpy had to go from one laboratory to
another as illustrated in Figure 6. In Experiment 3,
we had quite a few problems with the radio commu-
nication breaking down between Stimpy and the off-
board computer during some of the trials. The radio
communication typically broke down because the third
navigation task required Stimpy to travel further from
the controlling off-board computer than in the first two
sets of experiments. This resulted in abortions of the
trials. Even so, Raura succeeded in guiding Stimpy
on eight of the twelve trials. Note that these trials al-
lowed for moving obstacles in the form of people mov-
ing to and fro. We found that as long as the obstacles

p

Figure 5: Navigation problem of the second set of ex-
periments.

moves slowly compared to the processing-cycle and the
motor-actuation times of the robot, Stimpy could react
to the moving obstacle, move away from it, and then
resume its goal-directed, plan-guided navigation.

Moving Obstacle Bare.odes

(pcrs°i walking) /~

_1,
Robot

Figure 6: Navigation problem of the third set of ex-
periments.

Discussion

Integration of qualitative navigational planning
and numerical reactive control: Our experiments
with Stimpy confirm the utility of hybrid robot archi-
tectures. Router’s qualitative plans guide the "macro
behavior" of Stimpy and AuRA’s reactive-control
mechanism governs its "micro behavior." Thus, in Ex-
periments 1, 2, and 3, Router’s qualitative plans guide
the decision about what direction to move in after
Stimpy exits the initial laboratory and enters the hall-
way. Suppose that Stimpy was a purely situated actor,
with no capability of navigational planning. Then, in
Experiments 1, 2 and 3, once it moved out of the initial
laboratory into the hallway, it’s decision on the direc-
tion in which to move next would be arbitrary because
the navigation world affords no clue about the direction
of the goal relative to the current location. If Stimpy
made the "wrong" choice, i.e., it turned away from the

3. surface of the world is flat and smooth enough to
enable robot movement,

4. landmarks in the world contain visual cues that can
be recognized by the robot,

5. obstacles in the world can be either static or moving,
provided that the motion is at a rate slower than
both the processing-cycle and the motor-actuation
times of the robot,

6. errors due to uncontrollable factors, such as loss of
radio communication, are not counted towards nav-
igation success or failure,

7. the planner’s topological model is complete and cor-
rect, and the plans it generates are executable in the
world,

8. optimality of planning and of navigation are not im-
portant to the robot.

The first two of these eight constraints are arti-
facts of Router’s spatial representations and reasoning.
The third, fourth and fifth and sixth constraints arise
from the hardware, motor and perceptual capabilities
of Stimpy. The seventh constraint, pertains to the issue
of plan failures discussed above. The eighth constraint
is an assumption we made at the start of this work.

Our experiments with Stimpy validate a specific ver-
sion of our research hypothesis: For hybrid robots ca-
pable of both navigational planning and reactive con-
trol, qualitative methods are sufficient for navigational
planning for the class of spatial-navigation tasks char-
acterized above. That is, the hybrid robot can suc-
cessfully accomplish navigation tasks characterized by
the eight constraints enumerated above. This result
supports the central assumption of traditional AI tech-
niques for navigational planning, but only for hybrid
robot architectures capable of both navigational plan-
ning and reactive control. In addition, this result is
compatible and consistent with psychological studies
indicating that cognitive agents use qualitative repre-
sentations and reasoning for navigational planning -
[Anderson, Kushmerick and Lebiere 1993] provide a
recent example of this kind of study.

It is also important to note what our experiments
do not show. First, they do not show that numeri-
cal methods are not necessary for any class of spatial-
navigation tasks. Second, they do not show that nu-
merical methods offer no advantage over qualitative
methods. For some spatial-navigation tasks, numerical
methods may provide important benefits in the form
of navigational optimality, for example. Further, for
some spatial-navigation tasks, reactive-control mecha-
nisms may dominate navigational planning, whether
qualitative or numerical, for example, navigation in
rapidly evolving spatial worlds such as water stirring.
But since our experiments demonstrate that, qualita-
tive methods are sufficient for navigational planning for
at least one class of spatial-navigation tasks, they raise
the following question: For hybrid robots, are numer-
ical methods for navigational planning really needed

for some classes of spatial-navigation tasks, or is the
current use of these methods for all spatial-navigation
tasks just a piece of unexamined historical baggage left-
over from traditional robotics techniques prior to the
development of reactive-control mechanisms?

References
Alterman, R. 1988. Adaptive Planning. Cognitive Sci-
ence, 12: 393-422.

Anderson, J., Kushmerick, N., and Lebiere, C. 1993.
Navigation and Conflict Resolution. In Anderson, J.
Rules of the Mind. Hillsdale, New Jersey: Lawrence
Erlbaum Associates, Inc.
Arkin, R. 1989. Navigational Path Planning for a
Vision-Based Mobile Robot. Robotica, 7: 49-63.

Arkin, R. C. 1989. Motor Schema-Based Mobile
Robot Navigation, International Journal of Robotics
Research, 8(4): 92-112.
Brooks, R. 1986. A Robust Layered Control System
for a Mobile Robot. IEEE Robotics and Automation,
2: 14-23.

Davis, E. 1986. Representing and Acquiring Geo-
graphic Knowledge. Morgan Kauffman, California.

Fikes, R.; and Nilsson, N. 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence, 2(3/4): 189-
208.
Fikes, R.; Hart, P.; and Nilsson, N. 1971. Learning
and Executing Generalized Robot Plans. Artificial In-
telligence, 3: 251-288.

Goel, A.; Donnellan, M.; Vasquez, N.; and Callantine,
T. 1993. An Integrated Experience-Based Approach
to Navigational Path Planning for Autonomous Mo-
bile Robotics. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 818-
825. Atlanta, Georgia.

Goel, A.; Ali, K.; Donnellan, M.; Gomez A.; and
Callantine, T. 1984. Multistrategy Adaptive Naviga-
tional Path Planning. IEEE Expert, 9(6): 57-65.
Kuipers, B.; and Levitt, T. 1988. Navigation and
Mapping in Large-Scale Space. AI Magazine, 9(2):
25-43.
Latombe, J. C. 1991. Robot Motion Planning. Kluwer
Academic Publishers.
Levitt, T.; and Lawton, D. 1990. Qualitative Naviga-
tion for Mobile Robots. Artificial Intelligence.

McDermott, D.; and Davis, E. 1984. Planning Routes
through Uncertain Territory. Artificial Intelligence,
22: 107-156.
Punch, W.; Goel, A.; and Brown, D. 1996. A
Knowledge-Based Selection Mechanism for Strategic
Control with Applications in Design, Assembly and
Planning. International Journal of Artificial Intelli-
gence Tools, 4(3): 323 348.

direction of the goal, it still might be able to eventu-
ally reach the goal location, but, only after exploring
a (potentially much) larger portion of the navigation
world.

On the other hand, suppose that Stimpy could form
navigation plans but had no capability of reactive con-
trol. Then, in Experiment 3, it would collide with mov-
ing obstacles because Router’s knowledge of moving
obstacles, unlike that of static obstacles, is necessar-
ily incomplete: it cannot predict what obstacle may
come in the way, where and when. Even in avoid-
ing moving obstacles, though, Router’s qualitative
plan guides Stimpy’s actions through the move-ahead
schema which continues to exert influence in the direc-
tion indicated by the plan.

However, unlike navigational planners in current hy-
brid robots, Router uses only qualitative representa-
tions and reasoning. Raura combines Router with
AuRA’s reactive-control mechanism. Since Router is a
quMitative planner and since AuRA’s reactive-control
mechanism is numerical, Stimpy represents not only
an integration of navigational planning and reactive
control, but also an integration of qualitative and nu-
merical methods for spatial navigation.

Our experiments also point to a limitation of Raura.
The spatial world in our experiments is engineered so
that each intersection is characterized by a unique bar-
code readable by Stimpy. Raura monitors the execu-
tion of a path segment in a navigation plan by reading
the barcodes along the current pathway. This mech-
anism for execution monitoring enables Raura to de-
termine when it has succeeded in completing a path
segment. But it has no way of recognizing plan failure
due to incompleteness of Router’s topological model.
For example, if the current pathway is blocked, then
Raura will not realize this. Instead, Stimpy may enter
a behavioral pattern in which the reactive move-ahead
schema attempts to move Stirnpy in the direction of
the goal intersection but the avoid-obstacle schema
attempts to move it away from the object that is block-
ing the pathway.

This problem has two causes: the inherent incom-
pleteness of Router’s topological model in the presence
of dynamic changes in the world, and the monitoring of
plan execution solely at the reactive level in Raura. If
Router knows that a given pathway is blocked, it would
not generate a plan containing the pathway. But if the
world is dynamically changing and Router’s model is
incomplete, then the plan it generates may fail upon
execution. But Raura’s reactive mechanism for moni-
toring plan execution does not recognize plan failures
of this kind.

Sufficiency of qualitative navigational planning
in hybrid robot architectures: Theories of spatial
navigation are constrained by several factors, some of
which are closely related:

1. The nature of the navigation space. Spatial worlds
can range across a multidimensional spectrum. In
one dimension, the world may be continuous (e.g.,
a soccer field) or it may contain discrete pathways
(e.g., interstate highways). In another dimension,
the world may contain distinctive places (e.g., a
junction in an office corridor) or landmarks (e.g., the
tallest building in downtown) or it may contain no
known distinctive places or landmarks. In yet an-
other dimension, the world may be static, gradually
evolving or rapidly changing.

2. The engineering of the navigation space. Some
worlds can be easily engineered to facilitate naviga-
tion while others cannot. For example, factory floors
often can be structured both spatially, by making
the pathways broad enough to allow the passage of
a robot, and visually, by posting visual cues to guide
the robot, in navigating the pathways.

3. The motor and perception capabilities of the robot.
Robots have limited motor and perceptual capabil-
ities. For example, a robot’s may be limited to lo-
comotion on flat surfaces; it may be incapable of
navigating stairs. Similarly, a particular robot may
be capable of reading only visual barcodes; it may
be incapable of recognizing other objects.

4. The cognitive capabilities of the ~vbot. A robot capa-
ble only of situated action may have no explicit rep-
resentation of any knowledge of the world. A robot
capable of navigational planning may use different
kinds of world knowledge and planning strategies.
A hybrid robot may combine deliberative planning
and situated action.

5. The knowledge constraints. Different kinds of knowl-
edge may be available for navigational planning in
different worlds. For example, in one world the robot
may have only qualitative topological knowledge of
the world, in another world it may have numerical
knowledge in addition to qualitative knowledge, and,
in yet another world, it may have access to a memory
of past navigation plans in addition to a topological
model of the world.

6. The computational constraints. The general task of
spatial navigation may be further constrained by re-
quirements on the properties of the navigation plans
(e.g., optimality, correctness), or on the properties
the method for producing the plans (e.g., efficiency,
robustness), or both.

Our experiments cover only a very small portion of
the vast range of spatial-navigation tasks. In particu-
lar, they are limited to spatial-navigation tasks char-
acterized by the following features:

1. spatial regions in the world are connected by discrete
pathways,

2. robot’s navigation planner has knowledge of topolog-
ical models of the world and past navigation plans,

