
Detecting and Reacting to Unplanned-for World States

Ella M. Atkins Edmund H. Durfee

University of Michigan AI Lab
1101 Beal Ave.

Ann Arbor, MI 48109
{ marbles, durfee, kgshin}@umich.edu

Kang G. Shin

Abstract
The degree to which a planner succeeds and meets
response deadlines depends on the correctness and
completeness of its models which describe events and
actions that change the world state. It is often
unrealistic to expect perfect models, so a planner must
be able to detect and respond to states it had not
planned to handle. In this paper, we characterize
different classes of these "unhandled" states and
describe planning algorithms to build tests for, and
later respond to them. We have implemented these
unhandled state detection and response algorithms in
the Cooperative Intelligent Real-time Control
Architecture (CIRCA), which combines an
planning system with a separate real-time system so
that plans are built, scheduled, and then executed with
real-time guarantees. Test results from the flight
simulation domain show the new algorithm enables a
fully-automated aircraft to react appropriately to
certain classes of unhandled states, averting failure
and giving the aircraft a new chance to achieve its
goals. We are currently working to further improve
CIRCA’s planning system, and to extend our
detection and response mechanisms to other classes of
unhandled states.

1 Introduction

Autonomous control systems for real-world applications
require extensive domain knowledge and efficient
information processing in order to build and execute
situationally-relevant plans of action. To enable absolute
guarantees about safe system operation, domain knowledge
must be complete and correct, plans must contain actions
accounting for all possible world states, and response times
to critical states must have real-time guarantees.
Practically speaking, these conditions cannot be met in
complex domains, where it is infeasible to preplan for all
configurations of the world, if indeed they could even be
enumerated. Realistic autonomous systems use heuristics
to bound the expanded world state set, coupled with
reactive mechanisms to compensate when unexpected
situations occur.

In this paper, we focus on the question of how an
autonomous system can know when it is no longer
prepared for the world in which it finds itself, and how it
can respond. We assume limited sensory and
computational capabilities, and that a system will devote
available resources to the accomplishment of its tasks. As
a consequence, such a system will not notice unexpected
occurrences in the world unless it explicitly has a task of
looking for them. In other words, the system must satisfy
absolute guarantees about safe operation in expected states,
and must also be ready to recognize and respond to the
unexpected.

To ground our discussion and empirically validate our
solutions, we will consider issues in dealing with
unexpected occurrences within the context of the
Cooperative Intelligent Real-time Control Architecture
(CIRCA) applied to the aircraft domain. CIRCA combines
a traditional AI planner, scheduler, and real-time plan
execution module to provide guaranteed performance for
the control of complex real-world systems (Musliner,
Dttrfee, and Shin). With sufficient resources and accurate
domain knowledge, CIRCA can build and schedule control
plans that, when executed, are assured of responding
quickly enough to any events so that CIRCA remaln~ safe
(its primary task) and whenever possible reaches its goals.

When faced with imprecise knowledge and resource
constraints, a CIRCA plan may not be prepared to handle
all possible states. CIRCA may have planned actions to
assure safety in some state but may not be able to progress
toward a goal state. Or, it may have anticipated a state but,
due to resource limitations, chose not to schedule actions to
keep it safe in that state. Or, it may not even have
anticipated that state because of knowledge base
imperfections. The contribution of this paper is to
articulate, more precisely, such different classes of
unhanded states (Section 3), to describe methods to detect
when a system reaches one of these states (Section 4), and
to respond appropriately (Section 5). We argue that these
capabilities are crucial for developing reliable intelligent
real-time control systems, and we highlight how they
improve CIRCA’s performance for simulated aircraft
control (Section 6).

10

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

2 Background

The CIRCA system (Musliner, Durfee, and Shin) was
designed to provide guarantees about system performance
even with limited sensing, actuating, and processing power.
When controlling a complex system in a dynamic
environment, a real-time system may not have sufficient
resources to be able to react in all situations. Based on
user-specified domain knowledge, CIRCA builds a plan to
keep a system "safe" (i.e., avoid catastrophic failure) while
working to achieve its goals. CIRCA then uses its
knowledge about system resources to build a schedule that
guarantees meeting critical deadlines. This schedule is
then executed on a separate real-time processor.

Figure 1 shows the general architecture of the CIRCA
system. The A/subsystem (AIS) contains the planner and
scheduler. The "shell" around all AIS operations consists
of recta-rules controlling a set of knowledge areas, similar
to the PRS architecture (Ingrand and Georgeff). Working
memory contains tasks to be executed, including planning,
scheduling, and downloading plans from the AIS to the
real-time subsystem (RTS), which executes the scheduled
plan.

/ /
[~ initlalstate/toals y

I~EReal-Time Subsystem ~., TAP (AISubsystem ~
TAP Sohedulo 1 i-nv konmo.t Inter faeo Func ice) feedback--ig""°’)1

Figure 1. CIRCA Architecture.

The CIRCA domain knowledge base includes a set of
transitions which model how the world can change over
time, specification of the initial (or startup) state, and a list
of all subgoals which, when achieved in order, will enable
the system to reach its final goal -- the last subgoal in this
list. To minimize domain knowledge complexity, the
world model (i.e., reachable set of states) is created
incrementally based on initial state and available
transitions. The planner uses traditional methods of
selecting actions based on estimated utility (i.e., cost vs.
benefi0 and backtracks if the action does not ultimately
help achieve a subgoal or avoid catastrophic failure (e.g.,
aircraft crash). CIRCA minimizes memory and time usage
by expanding only states produced by transitions from
initial states or their descendants. State expansion
terminates whenever all specified goals have been reached
while avoiding all failure states.

A CIRCA knowledge base contains two transition types:
action and temporal. All CIRCA transitions have a set of
preconditions, feature-valne pairs that must be matched
before that transition can occur, and a set of postconditions,

feature-value pairs that will be true after that transition
occurs. Action transitions correspond with commands that
CIRCA may explicitly execute (e.g., put aircraft landing
gear down), while temporal transitions correspond to state
changes not initiated by CIRCA (e.g., collision-course air
traffic appears). Each temporal transition has an associated
probability function that models that transition’s likelihood
as a function of time, starting at the moment all that
transition’s preconditions become true. Time remaining
until a transition will occur is particularly important when a
temporal transition to failure (TTF) is involved. In this
case, CIRCA must schedule an action that will be
guaranteed to execute before that temporal transition has a
chance of occurring, effectively preempting the TrF (thus
avoiding the catastrophic situation). CIRCA "plays it safe"
by assuming the action must be guaranteed to occur before
the TIT has more than some small probability s. The use
of probabilistic models in CIRCA is described in (Atkin,q,
Duffee, and Shin).

Once CIRCA has finished expanding the set of reachable
states, a list of planned actions and states in which to
execute each of these actions is compiled. This list is
called a control plan and is represented as a set of test-
action pairs (TAPs). Typical tests to deternine system state
involve reading sensors and comparing the sensed values
with certain preset thresholds, while actions involve
sending actuator commands or transferring data between
CIRCA modules. When the AIS planner creates a TAP, it
stores an associated execution deadline, which is used by a
deadline-driven scheduler (Liu and Layland) to create
periodic TAP schedule that guarantees system safety when
TITs are present. If the scheduler is unable to create a
schedule to support all deadlines, the AIS backtracks to the
planner. For the next planner iteration, the lowest
probability temporal transitions are removed to reduce the
number of actions planned. If the scheduler is still not able
to build a schedule when only relatively high probability
transitions are considered, the CIRCA planner fails.
leaving the RTS executing its last plan which will ideally
keep the system "safe" but never reach the goal.

Presuming the planner and scheduler are successful, the
AIS downloads the TAP plan to the RTS. During normal
operation, the RTS sends only handshaking messages to
the AIS. This paper describes the introduction of RTS
state feature feedback to prompt AIS replanning when an
unhandled state is detected.

3 Unhandled State Classes

Figure 2 characterizes the relationships between
subclasses of all possible world states for any domain. At
the top level, states are either "modeled" or "unmodeled".
Modeled states are those whose distinguishing features and
values are represented in the planner’s knowledge base.
Because the planner cannot consider unmodeled states
without the addition of a feature discovery algorithm,
unmodeled states are beyond the scope of this paper.

11

Within the modeled set, the "planned-for" states include
those the planner has expanded. This set is divided into
two parts: "handled" states which avoid failure and can
reach the goal, and "deadend" states which avoid failure
but cannot reach the goal with the current plan.

Aside from the "planned-for" states, a variety of other
states are modelable by the planner. Such states include
those identified as reachable, but which have been
"removed" because attending to them along with the
"planned-for" states exceeds the system’s capabilities.
Other modeled states include those that indicate "imminent
failure;" ff the system enters these states, it is likely to fail
shortly thereafter. Note that some states might be both
"removed" and "immlnent-failure", as illustrated in Figure
2. Finally, some modeled states might not fall into any of
these categories, such as the states the planner considered
unreachable from the initial states but that are not
necessarily dangerous. We are working to find other
important classes or else show no other modelable state
classes are critical to detect.

The boldly outlined region in Figure 2 illustrates a state
set reached during plan execution. To assure reaching the
desired goal, the set should be empty except for where it
overlaps the "handed" region. To assure safety, the set
should only have elements that are in the "planned-for"
region. When the set has elements outside these regions,
safety and performance depend on classifying the new state
and responding appropriately. For this reason, we next
provide more detailed definitions of the most important
classes.

Statee

Modeled

Figure 2. World State Classification Diagram.

A "deadend" state results when a transition path leads
from an initial state to a state which cannot reach the goal,
as shown in Figure 3. The deadend state is "safe" because
there is no transition to failure. However, the planner has
not selected an action that leads from this state via any path
to the goal. As illustrated by a flight simulation example
(Section 6), deadend states produced because a planner
could find no action leading to a goal are called "by-
necessity", while those produced because the planner
simply did not choose an action leading to the goal from
this state are called "by-choice" deadend states.

Figure 3. "Deadend state" illustration.

A planner that generates real-time control plans needs to
backtrack whenever a plan cannot be scheduled.
Backtracking prompts the planner to select different
actions while maintaining those required to avoid failure.
However, even after exhaustive backtracking, a planner
may fail to find actions that meet all objectives while still
being schedulable. One option is ignoring some reachable
states, thus not planning actions for them. A control plan
so constructed cannot claim to be foolproof. However, for
real-time control applications, it is often judged more
important to make timing guarantees under assumptions
that exceptional cases will not occur than to make no
guarantees about a more inclusive set of cases.

One heuristic for deciding which states to prune would
be to overlook states that are least likely to occur. A
"removed" state set, therefore, is created when the planner
has purposefully removed the set of lowest probability
states during backtracking, as illustrated in Figure 4. In the
first planner iteration, all temporal transitions are kept
during state expansion. The "Before Pruning" diagram in
Figure 4 shows a state diagram in which both low and high
probability states are kept. As depicted in the figure, a low
probability transition leads to a state which transitions to
failure. This failure transition is preempted by a
guaranteed action. Suppose the scheduler fails. The
planner will then backtrack and build a new plan without
low-probability states. The resulting state diagram --
"After Priming" -- is shown in Figure 4. Due to the one
low probability transition, all states downstream of this
transition are removed from consideration. The preemptive
action no longer needs to be planned, giving the scheduler
a better chance of success. A flight simulation domain
example with removed states is shown in Sectitm 6.

pr~tlvo

After Prunin~

Figure 4. "Removed state" illustration.

12

During plan development, all temporal transitions to
failure from reachable states are preempted by guaranteed
actions. If preemption is not possible, the planner fails.
However, the planner does not worry about transitions to
failure from any states it considers unreachable from the
initial state set. The set of all modelable states considered
unreachable that also lead via one modeled temporal
transition to failure are labeled "imminent-failure".1

Actually reaching one of the recognizable imminent-failure
states indicates either that the planner’s knowledge base is
incomplete or incorrect (i.e., it failed to model a sequence
of states that in fact was possible), or that the planner chose
to ignore the possibility of this state occurring in order to
make other guarantees.

Figure 5 shows a diagram of a reachable state set along
with an isolated state (labeled "Imminent-failure") leading
via one temporal transition to failure. This isolated state
has no incoming transitions from the reachable state set,
thus the planner will not consider it during state expansion.
However, ff this state is actually reached, the system will
fall if the outgoing temporal transition occurs. The
imminent-failure nnhandled state set is important to detect
because avoiding system failure is considered a primary
goal of CIRCA. Examples of imminent-failure states
present in flight simulation tests are described in Section 6.

%
Figure 5. "Imminent-failure state" illustratimt.

4 Building Tests to Detect Unhandled States

A critical premise in our work is that a planner, or
system in which it is embedded, cannot be expected to
somehow just "know" when it has deviated from plans---it
must explicitly plan actions and allocate resources to detect
such deviations. For example, to make real-time
guarantees, CIRCA’s AI planner must specify all TAPs the
RTS will execute, including any to detect and react to
unhandled states. In our implementation, after the planner
builds its normal plan, it builds special TAPs to detect each
of the deadend, removed, and imminent-failure unhandled
state classes. First, the planner builds separate lists of all
states that fall into each unhandled state class. The

Note that it is also possible that unmodelable states could lead
directly to failure with a known transition, or that modelable
states could lead directly to failure with transitions that are not
known to the planner, or that nnmodelable states could lead
directly to failure with an unknown transition. We exclude these
cases from the "imminent-failure" set because the planner is
incapable of classifying them in this way.

algorithms to build the lists for deadend, removed, and
imminent-failure states are described below. The TAP
tests for an unhandled state class could include an explicit
test for every set of state features in that nnhandled state
class list, but these tests would be repeated frequently
during plan execution and may be unnecessarily time-
consuming with long state lists. Thus, once each list is
completed, the planner calls the ID3 test minimization
algorithm (Quinlan) with that nnhandled state list as the set
of positive examples and a subset of the reachable states
(depending on the unhandled state type) as the set
negative examples. ID3 returns what it considers a
minimal test set. which is then used as the special TAP test
to detect that unhandled state class.

When any of the three unhandled state detection TAP
tests are active, the RTS action is to feed back current state
feature information to the AIS along with a message stating
the type of unhandled state detected. The AIS uses this
feedback to build a new TAP plan which will be able to
handle this state. The algorithm by which the AIS replans
is described in Section 5.

Deadend states are the subset of the reachable state set
from which no path to the goal state is possible with the
planned actions. To identify the deadend state set, CIRCA
follows transition links from each state in search of a goal
state. If no goal path is found, that state is labeled
"deadend" while he reachable states along a goal path are
labeled "non-deadend". The deadend states are used as
positive ID3 examples while non-deadend reachable states
are used as negative examples when building a minimal
feature test set for the deadend state detection TAP.

Each temporal transition has an associated function that
describes its probability of occurring as a function of the
time, starting when that transition’s preconditions were
satisfied. As discussed in Section 3. whenever
backtracking due to scheduling difficulties or the planner’s
inability to find any working plan, transitions with
probabilities below a non-zero threshold (e) may
eliminated, pruning the overall state and action set and
giving the planner and scheduler a better chance of success.
To build the "removed" state list, the planner executes its
state expansion routine using the entire reachable state set
as "initial states". Both low and high probability temporal
transitions are considered, although no high probability
transitions will result in a new removed state except
downstream from the application of a low probability
transition. Only the planned action transitions are used to
build new states, using the associated minimized TAP test
conditions to determine if that action will occur in each
state. The result of this state expansion procedure is a list
of states containing both the original reachable states and.
the new low-probability or "removed" states that were not
considered in the original plan. To build the removed state
detection tests, ID3 is called with the list returned from
state expansion (minus the reachable states) used
positive examples and all reachable states from the original
plan used as negative examples.

13

While the planner should look for deadond and removed
states because they are more likely to occur than other
nnhandled states, likelihood is not the only criterion for
allocating resources to detection. No matter how unlikely,
imminent-failure states are important to detect because of
the potentially catastrophic consequences of being in such
states. When building imminent-failure state sets, we
assume the modeled set of temporal transitions leading
immediately to failure is complete and correct, even though
having gotten to an imminent-failure state may imply that
some temporal or action transition is not accurately
modeled. To build the imminent-failure state list, the AIS
begins with a list of all precondition feature sets from
transitions leading directly to failure (i.e., transitions whose
postconditions violate some safety condition). Next, this
list is expanded to fully enumerate all possible states that
would match these preconditions. Any reachable states
present in the list are removed. The minimized imminent-
failure detection TAP tests are then built by calling ID3
with this "imminent-failure" state list as positive examples
and the list of reachable states as negative examples. Note
that a complete list of fully instantiated states can be very
large when many general preconditions lead to failure, but
this list must be fully-instantiated before the basic ID3
algorithm can succeed. We are still looking for ways to
efficiently build a minimal feature test set, perhaps using
an "anytime" (Dean, Kaelbling, Kirman, and Nicholson)
version of ID3 or another classification system.

5 System Reaction when an Unhandled
State is Detected

Regardless of whether it is a "deadend", "removed", or
"imminent-failure" state, any unhandled state has the
potential to prevent the RTS from ever reaching its subgoal
with the executing TAP plan. Additionally, removed or
imminent-failure states will likely result in system failure if
no appropriate action is taken. To increase CIRCA’s goal
achievement and failure avoidance, the AIS replans to
account for any unhandled states that have been detected.

When one of the special TAPs described in Section 4
detects any class of unhandled state, the RTS feeds back all
state feature information to the AIS.1 Upon receipt of this
message, the AIS generates the equivalent of an interrupt
that is serviced as soon as possible, in the following
sequence. First, the AIS reads the type of feedback
message (e.g., "deadend"). This message type label will
allow future versions of CIRCA to run different procedures
for the different lmhandled state classes, although all three
are treated the same now. Next, the AIS reads the uplinked
state feature values and selects a subgoal (from the
knowledge base lis0 that is closest to the final goal but
with preconditions matching the uplinked state features.
Next, the AIS runs the state expansion part of the planner,

1 Even though the RTS senses feature values in sequence, we
assume none will change before the state is uniquely determined.

using the state feature feedback as the initial state, all
temporal transitions, and the executing plan’s test-action
(TAP) transitions. The state list returned from this state
expansion routine contains all possible states the RTS
could reach while the AIS is replanning,2 thus each is a
possible initial state when the new plan begins executing.
The AIS then replans using this potentially large initial
state set and the selected subgoal. This new plan is
downloaded to the RTS which will then have the ability to
react to the previously unhandled state and its descendants
(i.e., the constructed initial state set).

By detecting all unhandled states which may reach
failure,3 the system will always be able to initiate a reaction
to avoid impending doom. However, this is predicated on
the planner being able to return a control plan to avert
disaster faster than disaster could strike. For the purposes
of the examples within this paper, we assume that this is
the case: in the aircraft domain, we assume that the plane
is at sufficient altitude and distance from the runway so
that a new plan is constructed before the plane crashes
"gear up" during touchdown. However, in other situations
the system might have less opportunity to postpone
disaster. We suggest methods to build a more robust
imminent-failure state handling system by adding failure-
avoidance actions to a control plan whenever possible and
by limiting replanning time (Section 7).

6 Testing in the Flight Simulation Domain

We chose to test our unhandled state classification,
detection, and reaction ideas in an aircraft flight simulator.
In this section, we describe motivations for selecting the
flight domain and discuss how the aircraft is controlled by
CIRCA. We then present examples detecting and
removing unplanned-for states, and describe how our
algorithms improve CIRCA performance.

Perhaps the main attraction to the aircraft domain is that
continuous real-time operation is essential -- an aircraft can
never "stop and remain safe indefinitely" once it has left
the ground. Fully-automated flight is a complex problem
which has only been solved when an aircraft is restricted to
certain regions of state-space, meaning only a special set of
anomalies beyond normal flight can be handled
autonomously. The "solved" part of flight can be modeled
in a CIRCA domain knowledge base, then CIRCA’s AIS
can create plans that will issue commands to a low-level
control system. With the addition of the unhanded state
feedback described in this paper, CIRCA begins to reach
beyond traditional aircraft autopilots, allowing the system
to select a new plan (i.e., trajectory) which may not reach
the previous goal but that allows the system to avoid failure
and divert to a new location if necessary.

2 We assume no further modeling errors during this state
expansion, thus no possible initial states are ignored.
3 Presuming we have modeled all actual transitions to failure.

14

We interfaced the ACM F-16 flight simulator (Rainey)
to a low-level Proportional-Derivative (P-D) control
system (Rowland) which calculated the proper actuator
commands to achieve a commanded altitude and heading.
CIRCA’s RTS issued commands to the low-level
controller, not directly to the simulator. We believe
assisting CIRCA with standard techniques from the control
field is wise because this allows a simpler knowledge base
with high-level discrete-valued features. Modeled state
features include altitude, heading, location (or "FIX"), gear
and traffic status, and navigation sensor data. CIRCA
successfully controlled the aircraft during normal "flight
around a pattern" (illustrated in Figure 6) from initial
takeoff through a full-stop landing on the runway.

I

Navigation Aid

FIX4 ~ approacn I~ II
I

l~’Ixo FIXI

Figure 6. Flight pattern flown during simulation.
We have tested our new algorithms using two

emergencies: "gear fails on final approach", and "collision-
course traffic on final approach". In either situation,
failure to notice and react to the problem will result in a
crash. To detect these problems, we included feature
"gear" with values "up" and "down", and feature "traffic"
with values "yes" and "no". Note that more complex
feature-value sets would work, but these simple examples
illustrate the utility of our algorithms. Due to space
limitations, we will discuss only "gear failure" here;
similar results from the "collision-course traffic"
emergency were obtained and are discussed in (Atkins,
Durfee, and Shin).

During normal flight, the gear was left in the "down"
position. A temporal transition to failure occurred with
gear "up" when landing to simulate the impending crash.
Proper reaction to a "gear up" emergency is to execute a
go-around (i.e., continue around the pattern a second time
to avoid an immediate crash), performing any available
actions such as cycling the gear control to help the gear
extend. A deadend "gear up" state was created using a
high-probability temporal transition with precondition
"gear down" and postcondition "gear up". Figure 7
illustrates the resulting deadend state with planned action
"hold positive altitude" selected to avoid failure. For
brevity, only two of seven state features are listed.

’hlg~=~billty ~~"~ ,,hold altitnde,,

"altitude descent"-~] (gear down)
temporal ~,(alt zero) ...~

Figure 7. Flight Simulation with Deadend State.

A removed "gear up" state set was created by including a
low-probability "gear up" temporal and a time-consuming
action to put the gear back down. The initial AIS plan
included a "gear up" temporal along with a "gear down"
action. This action needed to be guaranteed for the final
approach region, and the scheduler failed because the
action when combined with other critical approach-to-
landing operations was too time-consuming. Thus the
planner pruned all low-probability states, and they became
"removed" states. Figure 8 shows a partial state diagram
illustrating simplifications due to low-probability state
removal.

An imminent-failure "gear up" state set was created by
having an initial state with gear down and omitting any
temporal transitions from "gear down" to "gear up". A
"gear down" action was included in the knowledge base.
Without any temporal transition leading to "gear up", the
planner had no reason to expand any states with the "gear
up" feature value, so no "gear up" action was planned.
However. since attribute "gear up" led directly to failure,
an imminent-failure-state detection TAP was built so that
the RTS could detect the "gear up" state when it occurred.
Figure 9 shows the reachable state set along with the "gear
up" imminent-failure state.

: NITIA L~......m~MOVE~
Bear down] ’.’gear up" I(sear up) /

I,,,,,,, ~ ~ "descent"

Figure 8. Flight Simulation with Removed States.

unmodeled
I FAILURE 1"gear up"
I (gear up) temporal
~(alt pos),/

"d ,,descent,, l

m~

’emp°ral~:~RF-’ ~

k_(alt zero) ...J

Figure 9. Flight Simulation with
Imminent-failure States.

Test results for each of the unhandled state subclasses
using the "gear up" emergency are summarized in Table 1.
For each test, the aircraft flew around the pattern, and the
gear unexpectedly went up just after starting final approach
past FIX4. The table describes the events occurring after
the gear goes up. Rows corresponds to test runs, while

15

columns describe the test features. The "Gear down
action" and "Gear up temporal" columns depict whether
those transitions were present in the knowledge base for
that test run. Column 4 indicates whether the nnhandled
state algorithms were used, followed by the "Detected state
type" column indicating which unhandled state class (if
any) was detected during that test. Output columns show
brief summary of the result (column 5), and finally,
indication of whether the plane crashed or landed safely
(column 6).

In summary, whenever the "gear up" emergency
occurred but went undetected (tests 1 and 2), the aircraft
crashed, regardless of the existence of a "gear down"
action. If the "gear up" emergency was deadend "by
necessity" (tests 3 and 4), the aircraft lands safely after
go-around only if the gear serendipitously extends during a
go-around (which has happened on occasion). In all other
cases (tests 5 through 7), detecting and reacting to the gear
problem enables CIRCA to execute a go-around and
subsequent "gear down" action, resulting in a successful
landing.

As shown in Table 1, detecting the "gear up" problem
only increases the aircraft’s chance to successfully land,

particularly when the "gear down" action is functional,
thus this simple example clearly illustrates how CIRCA’s
performance can improve with the detection of unhandied
states. However, the "gear up" and "collision-course
traffic" anomalies are relatively simple to model. We are
working to show that CIRCA can function properly when
more dynamically complex or interrelated features produce
nnhandled states. This requires modification of the low-
level P-D control law because extreme flight attitudes are
not controllable with such a simple linear system. We also
want to show that CIRCA can react properly when more
than one nnhandled state is detected during execution of a
single plan. We plan to show this by adding more features
to the knowledge base and creating scenarios in which
transitions produce multiple unhandled states during final
approach.

Despite numerous improvements that must be made
before we declare our fully-automated aircraft "ready-to-
fly" (except in simulation), our experiments demonstrate
the advantages of detecting and responding to unhandled
states. We expect flight simulation to provide many
challenges during future testing.

Table 1. Simulation Test Results with "Gear Up" Emergency.

Input Output:
Test "Gear- "Gear Detection Detected
down" up" algorithm state type Result Crash?

action temporal used
1 N/A No No None Lands "[[ear up" on runway Yes
2 N/A Yes No None Flies straight ahead, avoiding Yes

"gear-up" landing until out of
fuel

3 No Yes Yes Deadend Gear never extends; plane Yes
by executes go-arounds until out of
necessi ,ty fuel

4 No Yes Yes Deadend Gear locks itself during go- No
by around(s)
necessity

5 Yes Yes Yes Deadend Plane executes "gear down" No
by choice durin[[[[o-around

6 Yes -- Yes -- Yes Removed Plane executes "gear down" No
slow low during go-around
executionl probability

7 Yes No Yes Imminent- Plane executes "gear down" No
failure during go-around

16

7 Summary and Future Work

Plans built for complex domains may not handle all
possible states due to either imperfections in domain
knowledge or approximations made to enhance planner
efficiency. We have identified important classes of such
unexpected (or unhandled) situations, and for each of these
classes have described a means by which detection tests
can be generated. When these tests detect an unhandled
state, the features of the state are fed back to the planner,
triggering replanning. To implement these techniques, we
modified CIRCA’s planner to create a group of special test-
action pairs (TAPs) which would detect three classes
unhandled states: "deadend" states from which no action
could reach the subgoal, "removed" states which were low
probability states not included in planning primarily due to
scheduling constraints, and "imminent-failure" states that
led directly to failure but were not considered during
planning because no transition sequence led to them from
the initial state set. When the RTS detects one of these
unhandled states, it uplinks all state features to the planner,
which then identifies a new subgoal and initial state set and
replans.

These algorithms were tested using the ACM F-16 flight
simulator. A series of test runs provided examples of each
possible nnhandled state type: deaden& removed, and
imminent-failure. A comparison of tests with and without
the unhandled state detection/reaction routines
demonstrated that the aircraft had a better chance to land
safely when the unhanded states were detected than when
they were ignored.

This paper has identified capabilities that need further
development before CIRCA can consistently succeed when
reaching any nnhandled state. First, we have developed
algorithms that identify and detect three specific unhandled
state subclasses. Other classes may also be important. A
simple solution to this problem is building a TAP to
generically detect any state that is not in the reachable set.
However, classification algorithms such as ID3 cannot be
used to minimize test conditions without enumerating both
positive and negative examples, and building the set of all
modelable states could be prohibitively time-intensive.

CIRCA’s reaction to unhandled states is coincidentally
real-time, but this may not be acceptable when unhandled
states quickly lead to failure. Timely reactions may be
achieved either by bounding replanning execution time or
by building reactions in advance. As planning technology
progresses, more architectures employ methods for
bounding planner execution times ((Dean, Kaelbling,
Kirman, and Nicholson), (Hendler and Agrawala), (Ingrand
and Georgeff), (Zilberstein)). Implementing time versus
quality tradeoffs in the CIRCA planner is considered in
(Musliner, Durfee, and Shin), but no tradeoff algorithms
have been implemented to-date.

8 Acknowledgements

This work was supported under NSF grant IRI-9209031.

9 References

E. M. Atkins, E. H. Durfee, and K. G. Shin, "Plan
Development using Local Probabilistic Models," to appear
in Uncertainty in Artificial Intelligence: Proceedings of
the Twelfth Conference, August 1996.

T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson,
"Planning with Deadlines in Stochastic Domains,"
Proceedings of AAA1, pp. 574-579, July 1993.

J. Hendler and A. Agrawala, "Mission Critical Planning:
AI on the MARUTI Real-Time Operating System," in
Proc. Workshop on Innovative Approaches to Planning,
Scheduling and Control, pp. 77-84, November 1990.

F. F. Ingrand and M. P. Georgeff, "Managing Deliberation
and Reasoning in Real-Time AI Systems," in Proc.
Workshop on Innovative Approaches to Planning,
Scheduling and Control, pp. 284-291, November 1990.

C. L. Liu and J. W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,"
Journal of the ACM, vol. 20, no. 1, pp. 46-61, January
1973.

D. J. Musliner, E. H. Durfee, and K. G. Shin, "World
Modeling for the Dynamic Construction of Real-Time
Control Plans", Artificial Intelligence, vol. 74, pp. 83-127,
1995.

J. R. Quinlan, "Induction of Decision Trees," Machine
Learning, vol. 1, pp. 81-106, 1986.

R. Rainey, ACM: The Aerial Combat Simulation for Xll.
February 1994.

J. R. Rowland, Linear Control Systems: Modeling,
Analysis, and Design, Wiley, 1986.

S. Zilberstein, "Real-Time Robot Deliberation by
Compilation and Monitoring of Anytime Algorithms,"
Proceedings of AAAI, pp. 799-809, 1994.

17

