
Relating logic programming theories of actions and partial order
planning

Chitta Baral
Department of Computer Science

University of Texas at E1 Paso
E1 Paso, Texas 79968, U.S.A.

chitta@cs.utep.edu
915-747-6952/5030 (phone/fax)

Abstract
In this paper we argue that logic programming the-
ories of action allow us to identify subclasses when
the corresponding logic program has nice properties
(such as acyclicity) that guarantees decidability and
sometimes polynomial time plan testing. As an ex-
ample we extend the action description language .A
to allow executability conditions and show its formal-
ization in logic programming. We show the relation-
ship between the execution of partial order planners
and the SLDNF tree with respect to the correspond-
ing logic programs. In the end we briefly discuss how
this relationship helps us in extending partial order
planners to extended languages by following the cor-
responding logic program.

Introduction and Motivation
The aim of this paper is to bridge the gap between
theories of reasoning about actions and planning im-
plementations.

Research in theories of actions is concerned with de-
veloping formal theories that allows us to express and
reason with various facets such as inertia (and the
associated frame problem (GL93; Bro87)), hypothet-
ical facts (GL93; BGP95) constraints and indirect ef-
fects (and the associated qualification and ramification
problem (LR94; KL94; Bar95)), non-deterministic
other complex effects of actions (Bar95; Pin94), narra-
tives and actual situations (MS94; PR93; BGP95), con-
current and compound aetions(LLL+94; LS92; BG93),
causality and dependency between fluents(MT95;
Lin95; Bar95; GL95), knowledge producing or sensing
actions (SL93), etc.

One of the agenda behind the research in reasoning
about actions has been to contribute towards the de-
velopment of ’autonomous agents’ that can ’perform’
in a dynamic environment. To ’perform’ in a dynamic
environment the agents have to sense, reason, plan, and
execute actions (hopefully according to the generated
plan).

Planning means finding a sequence of actions which if
executed will achieve a given set of goals. A simple ap-
proach to planning would be to (non-deterministically)

guess a sequence of actions and verify (i.e. test)
that the sequence of actions when executed indeed
achieves the goal. In a deterministic computer the
guessing part is implemented by a searching strat-
egy. More sophisticated approaches involve pushing
the testing deeper into the searching (or into a gen-
erate function) and/or testing with respect to a set
of sequences of actions. This results in various kinds
of planners such as the partial order planners (We194;
KKY95), a planner that uses (BF95) plan graphs,
etc. The intractability of planning in the STRIPS
(augmented with conditional effects) domain and its
subdomains is analyzed in detail in (ENS92; ENS95).
This inherent complexity has led researchers develop-
ing planners to concentrate on domains where testing
is "easy". Until recently this meant the domain of
choice was STRIPS and recently some planners con-
sider ADL which is more expressive than STRIPS but
still has the testing part tractable)

But to our knowledge very few planners have used a
more expressive language than ADL. In other words
recent advances in the theory of reasoning about ac-
tions has had very little impact in developing planners
for the extended languages and features formalized in
these theories. We believe there are two main reasons
for this.

The first reason is that the proposed theories have not
paid much attention to the "easy testing" criteria that
is a de-facto requirement in most planning implemen-
tations. This is because most planning implementa-
tions already have to deal with the complexity of the
searching part and hence, tend to prefer action theories
where at least plan verification is easy.

The second reason is that the entailment relation cor-
responding to theories of actions tell us about testing
and plan existence (not plan construction, which re-
quires an answer extraction procedure) and in recent
planners (such as the POP planners) the testing is

1In case of ADL it is shown in (Ped94) that the regres-
sion operators can be constructed easily, i.e. in polynomial
time.

18

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

much integrated into the generate part (for efficiency
purposes) that connections between these planners and
theories of actions is hidden. This has led to questions
in the mind of many researchers in both areas. Some of
the common questions are: (i) how is the frame prob-
lem taken care of in a POP, (it) how can I test if
sequence of actions is a plan using a POP, (iii) how
I use a theory of reasoning about actions in a POP if
an explicit regression operator is not provided, etc.

Our goal in this paper is to contribute towards elimi-
nating these two obstacles.

We tackle the first obstacle by using logic program-
ming theories of actions. By logic programming the-
ories of actions we refer to those theories of actions
that either use logic programming directly to formal-
ize some aspects of reasoning about actions (AB90;
BG94) or those that provide translations to logic pro-
grams (GL93; BG93; BGP95; DDS93; HT93). Besides
expressibility (Bar95) 2 the main reasons we prefer3

logic programming theory of actions are:
(a) for most theories of actions we can identify sub-
classes where the logic programming translation has
the nice property of ’acyclicity’ (AB91) where entail-
ment is decidable in general, and identify further sub-
classes where testing is polynomial time, and
(b) theoretical results (AP94) linking logic program-
ming entailment to PROLOG derivation enable us (in
many cases) (BGP95) not only to prove correctness
logic programs but also to prove correctness of corre-
sponding PROLOG programs4.

We tackle the second obstacle by showing the corre-
spondence between testing in a logic program and in
a partial order planner. In particular we extend the
action description language .4 (GL93) to include ex-
ecutability conditions and schema variables. The re-
sultant language is more expressive than STRIPS. We
then provide several translations of descriptions in this
extended language to logic programs. We then show
the correspondence between doing testing with respect
to these logic programs and with respect to the plan-
ners. These correspondence suggests how planning
methodologies can be extended to larger domains by
using the extended domains considered in the various
theories of reasoning about actions. Finally, we briefly
discuss some of these extensions.

2The non-classical implication in logic programs and re-
cent extensions such as epistemic disjunction make logic
programming highly expressive. (BG94) has a discus-
sion on this expressibility and its usefulness in knowledge
representation.

3There are some similar efforts (Lin95) that use classical
logic formalization of theories of actions and relate planning
algorithms to resolution strategies. We believe our work is
complementary to this work.

4Note that unlike logic programs, PROLOG is a pro-
gramming language with many commercially available effi-
cient interpreters and compilers.

A Simple theory of actions
In this section we consider a high level action descrip-
tion language (that extends the language .4 (GL93)
by allowing executability conditions) and its transla-
tion to logic programs. Later we describe the standard
partial order planner (POP) and show how the planner
can be extended as we extend the language.

Syntax of A1
A description of an action domain in the language
.41 consists of "propositions" of three kinds. A "v-
proposition" specifies the value of a fluent in the initial
situation, or after performing a sequence of actions. An
"ef-proposition" describes the effect of an action on a
fluent. A "ex-proposition" describes when an action is
executable.

We begin with two disjoint nonempty sets of symbols,
called fluent names and action names. A fluent literal
is either a fluent name or a fluent name preceded by ~.
For a fluent literal I, by 7 we denote the fluent literal
~l, and we shorten ~l to l.

A v-proposition is an expression of the form

f after al,..., am, (1)
where f is a fluent literal, and al,...,am (m > 0) are
action names.
If m = 0, we will write (1) as initially

An el-proposition is an expression of the form
a causes f if pl p~, (2)

where a is an action name, and each of f, pl,...,p,
(n > 0) is a fluent literal. About this proposition
say that it describes the effect of a on f, and that
Pl,... ,P~ are its preconditions. If n = 0, we will drop
if and write simply a causes f.

Two el-propositions with preconditions Pl, ¯ ¯., pn and
ql,..., qm respectively are said to be contradictory if
they describe the effect of the same action a on com-
plementary fs, and {Pl,...,Pn} ¢3 {~’,...,~mm} = q)

A ez-proposilion is an expression of the form
executable a if ql, ¯ ¯ ¯ qn, (3)

where a is an action name, and each of ql,...,q,~
(n > 0) is a fluent literal. About this proposition
say that it stipulates that a is executable in a situation
where ql , ¯ ̄ ¯, qn are true.

A proposition is a v-proposition, ex-proposition, or an
el-proposition. A domain description, or simply do-
main, is a set of propositions which does not contain
contradictory el-propositions, and which contains at
least one ex-proposition for each action name.

Domain descriptions in which each v-proposition has
the form initially f correspond to temporal pro-
jection problems, and we will call them projection do-
mains. Domain descriptions that contain complete in-
formation about the initial state (i.e. for any fluent
name f, either initially f or initially -~f is in the

19

domain description, but not both) are referred to as
strongly complete.

Semantics
A state is a set of fluent names. Given a fluent name
f and a state cr, we say that f holds in ~ if f E c~; -~f
holds in cr if f ~ cr. A transition function is a mapping

of the set of pairs (a, ~), where a is an action name
and c~ is a state, into the set of states. A structure is
a pair (~0, (I)), where C~o is a state (the initial state of
the structure), and ̄ is a transition function.

We say that a sequence of actions a],...,am is exe-
cutable in a structure M -- (~r0, (I)) if for every 1 <
m, (I)(ak, (I)(ak-1,..., (I)(al, ~0)...)), is
corresponding state is denoted by M(al ak). We say
that a v-proposition (1) is true (false) in a structure
M if al,...,am is executable in M and f holds in
the state M(at a.~). In particular, the proposition
initially f is true in M iff f holds in the initial state
of M.

A structure (~r0, (I)) is model ofa domain description
D if the following two conditions are satisfied: (i) every
v-proposition from D is true in (c% ~); and
(it) for every action a and every state or,
(a) if the precondition of at least one ex-proposition
corresponding to a hold in c~ then ~(a, c~) -- aU~r’\a’,
where (r ~ (~") is the set of fluent names f such that
D includes an el-proposition describing the effect of a
on f (respectively, -~f) whose preconditions hold in c~;
else,
(b) (I)(a, a) is undefined.

The condition (it) characterizes ¢ uniquely. Conse-
quently, different models of the same domain descrip-
tion can differ only by their initial states. A domain
description is consistent if it has a model, and complete
if it has exactly one model.

A v-proposition is entailed by a domain description D
if it is true in every model of D.

Proposition 0.1 A strongly complete and consistent
domain description has exactly one model. []

Notice that so far we considered fluents and actions to
be propositional. We extend our language to allow vari-
ables by considering them as schema variables. (Tb, is is
similar to the approach in (GL88).) The semantics
domain descriptions in this extended language is then
defined with respect to the inslantiated domain descrip-
tions. (Note that the instantiated domain description
may then be infinite.)

Describing Actions by Logic Programs :
the translation 7r

In this section we describe a translation of domain
descriptions in .A1 to logic programs. The logic
program IrD, corresponding to a domain description
D, uses variables of three sorts: situation variables

S, S(,..., fluent variables F, F’,..., and action vari-
ables A,A’,.... It includes the situation constant so,
and the fluent names and action names of D, that be-
come object constants of the corresponding sorts. The
predicate holds has two arguments; the first argument
is a fluent literal, and the second is a situation. For
example, we can have holds(-~alive, s0), where alive is
a fluent, and -~alive is a negative fluent literal. There
are also some other predicate and flmction symbols;
the sorts of their arguments and functions will be clear
from their use in the rules below.

The program ~rD will consist of the translations
of the individual propositions from D and the
standard rule of inertia. The following nota-
tions will be useful: If al,...,am are action
names, [a],...,am] stands for the ground term
result(am, result(am_a,..., result(a1, so)...)).

For any domain description D, the translation rrD con-
sists of the following rules:

1. An inertia rule of the form:

holds(F, result(A, S)) ~ holds(F, S), reachable(res(
not ab(F,A,S)

2. For each v-proposition of the form (1), if m =
then 7rD contains the rule

holds(f, So)

otherwise ~D contains the rules

holds(f, [al,..., am]) *--- reachable([al, a2, . . . , an, l)

ab(7, am, [al,..., arn-1]) +-

3. For each ef-proposition (2) 7rD contains the rules:

holds(f, result(a, S)) ~ reachable(res(a,
holds(p~, S),..., holds(p,, S)

ab(-], a, S) ~-- not holds(~-f, S),..., not holds(~7, S)
4. For each ex-proposition of the form (3) 7rD contains
the rule

reachable(res(a,S)) +-- holds(q1, s), . . . , holds(qn,
reachable(S)

5. Finally, we also have the rule

reachable(so)

Proposition 0.2 7rD is an acyclic (AB90) logic pro-
gram. []

Acyclicity guarantees that SLDNF resolution is sound
and complete with respect to rD with respect to the
stable model semantics. (In fact almost all major se-
mantics such as completion semantics, stable model
semantics, well-founded semantics etc. coincide for
acyclic programs.) Acyclicity (AB90) guarantees
cidability for queries (using SLDNF resolution) that
do not flounder. Hence, acyclicity of 7rD guarantees
that plan existence is decidable. (This approach can

2O

also be used to extend decidability results in (ENS95)
to extended languages, such as when restricted ramifi-
cation rules are added.)

Moreover, for a query Q of the form ~ holds(f, [al,..., an])
the instantiated rules in 7rD that are necessary to eval-
uate Q are polynomial in size with respect to the size
of ~rD (not with respect to the instantiated 7rD, which
is infinite in size) and Q. This is evident from the fact
that the variable S in all the rules is 7rD need only
be instantiated with n different values; the n prefixes
of [al,..., an]. Since, acyclicity implies that each in-
stantiated rule be used only once (when using SLDNF
with tabling (CSW95)) answering Q (i.e. testing)
polynomial time5.

Proposition 0.3 For consistent domain descriptions
D,
(i) ~rD is consistent with respect to holds i.e. it is not
the case that for any f and any s, 7tO ~ holds(f, S)
and 7rD ~ holds(f, S).
(ii) 7rD is sound, i.e. If 7rD ~ holds(f, [at,...,anD
then D~fafter al,...,an. []

Proposition 0.4 For strongly complete and consis-
tent domains D, ~-D is sound and complete, i.e. 7rD
holds(f,[at,...,an])iffD~fafter al,...,an. []

Proof (sketch): The proof of the above two propo-
sitions is done by induction on the size of the action
sequences, and extensively uses a lemma from (MS89)
which relates the presence of atoms in the head and
body of a rule in the program to their presence in a
stable model of the program. []

Corollary 0.1 For strongly complete and consistent
domains D, 7rD is equivalent to 7VD, which is same
as rrD except that no~ holds(-~, S) is replaced by
holds(p~, S) (for 1 < i < n) in the body of the rules
item (3) where ab is in the head. []

Simpler translations for particular
subclasses
In this section we consider several simple classes of pro-
jection domains and give sound and complete transla-
tions to logic programs. These translations are simpler
than 7r.

We assume that domain descriptions are not only pro-
jection domains but also are strongly complete. With
these assumption we identify four domains, Vanilla,
.A6, STRIPS and CSTRIPS domains based on whether
conditional effects are present (i.e. the ef-propositions

5Note that we are referring to expression complexity
rather than data complexity (AHV95). In our case the
program is given and the size of the query varies while in
databases, since function symbols are not allowed the size
of the query is fixed while the size of the data varies.

6We call them .A domains because of its close similar-
ity with the language .A (GL93) where actions are always
assumed to be executable.

have preconditions or not) and if the actions have ex-
ecutability conditions (i.e. the ex-propositions have
preconditions or not). In the Vanilla domain el-
propositions do not have preconditions and actions are
always executable. In the STRIPS domain the el-
propositions have empty preconditions (i.e. no con-
ditional effects) but actions do have executability con-
ditions. In the A domain actions do not have exe-
cutability conditions but do have conditional effects
and in CSTRIPS actions have both conditional effects
and executability conditions.

The table (in the last page) shows the translations 7r,,
7r~, 7ra, and rrc for translating vanilla, STRIPS, .A and
CSTRIPS domains.

Proposition 0.5 The translations 7r,, 7r~, 7r~ and 7r~
are sound and complete with respect to the entailment

for domain descriptions in appropriate domains (i.e.
in domains vanilla, STRIPS, .A and CSTRIPS respec-
tively). []

Partial Order Planning

In this section we briefly describe partial order planing
algorithms for STRIPS and for STRIPS extended with
conditional effects. Due to lack of space our exposition
which is based on (Wel94) is short and only meant
be a quick reference for readers already familiar with
similar algorithms.

In later sections we refer to the algorithms in this sec-
tion to show how they can be used for plan testing,
and how and which steps in the algorithms need to be
extended so as to be able to construct plans when we
have extended ontologies.

Without Conditional Effects (STRIPS)
Algorithm 0.1 POP(< A, O, L >, Agenda, AList)

A: A set of instantiated actions;

O: A set of orderings of the form at < a2 between
instantiated actions where at < a2 means at occurs
before a2.

L: A set of causal links of the forms at /-~ a2 which
means at should occur before a2 to satisfy one of the
preconditions f of a2.

Agenda: A collection of pairs < Q, a >, where a E A,
and Q is a precondition of a. Intuitively it means that
the algorithm must try to achieve Q so that a can be
executed.

Alist: A list of actions.

Step 1: (Termination) If Agenda is empty then re-
turn < A, O,L >.

Step 2: (Goal Selection) Select a pair < Q,a
from the agenda. (Not a backtracking point.)

21

Step 3: (Action Selection) Choose an action aaaa
that adds Q either by instantiating an action in Alist
or from A which can be consistently ordered before a.
If no such action exists, then return failure.

Otherwise, L’ = L U {aadd Q a}, 0’ = 0 U {aadd <
a, ao < aadd, aadd < a~}, and A’ = A U {a~dd}.

Step 4: (Updating Goal state) Agenda’ =
Agenda \ {< Q, a >}
If aadd is newly instantiated, then for each conjunct Qi
of its precondition add < Qi, aadd > to Agenda~.

Step 5: (Causal Link Protection) For every action
R

at that might threaten a causal link ap --+ ae, add a
consistent ordering constraint, either
(a) Demotion: Add at < ap to O’ or (b) Promotion:
Add ae < at to 0’.

If neither constraint in consistent, then return failure.

Step 6: (Recursive invocation) POP(< A’, 0’, L’
,Agcnda’, Alist). [:3

With Conditional Effects
In the presence of conditional effects, the modified al-
gorithm is as follows:

Algorithm 0.2 POPe(< A, O, L >, agenda, AList)

Step 1 and Step 2 are as in Algorithm 0.1.

Step 3: (Action Selection) Choose an action a~dd
that adds or (conditionally) adds ei ther byinstanti-
ating an action in Alist or from A which can be con-
sistently ordered before a. If no such action exists,

then return failure. Otherwise, L’ L U {aadd Q a}
0t ----- 0 U {aadd < a, ao < aadd, aadd < a~o}, and
A’ = A U {a~dd}.

Step 4: (Updating Goal state) Agenda’ =
Agenda \ {< Q,a >}
If Q is a conditional effect and it has not been already

Qused to establish a link of the form aadd ~ A, for
some A, then for each conjunct Qi in the condition
add < Qi, aadd > to Agenda’. If aadd is newly instan-
tiated, then for each conjunct Qi of its precondition
add < Qi, aadd > to Agenda’.

Step 5: (Causal Link Protection) For every action

at that might threaten a causal link ap ~ a¢, add one
of the following consistent constraint
(a) Demotion: Add at < ap to 0’ or (b) Promotion:
Add ae < at to 0’, or.
(c) Confrontation: If at’s threatening effect is condi-
tional with antecedent S, then non-deterministically
choose some conjunct g from S and add (-~g, at) to
Agenda’.
If none of the constraint is consistent, then return fail-
ure.

Step 6: (Recursive invocation) POP¢(< A’, &, L’
, Agenda’, Alist). rn

Relating logic programming theories of

actions and partial oder planners

In general theories of actions provide us with an entail-
ment relation using which we can entail whether a for-
mula is entailed by a theory or not. When the formula
is of the form 3Xholds(f, X) then its entailment cor-
responds to plan existence, and when the formula is of
the form holds(f, [al , and then its entailment cor-
responds to testing. The general purpose procedural
methods (such as resolution for theories in first-order
logic and SLDNF for theories in logic programming)
corresponding to the entailment relations are very in-
efficient when used for query answering (i.e., in our case
finding a plan), and that was the reason other methods
to find plan were explored in the planning community
which gave rise to many planning algorithms. But as
we show in Section 2, for certain classes of theories we
can efficiently do testing.

Therefore, the approach we take in extending planning
algorithms to larger languages is to investigate the cor-
respondence between testing with respect to the logic
programs (obtained by the translations in Section
and testing using partial order planners. This is the
goal of this section.

Although partial order planners do not do any direct
testing, it is important to discuss how they can be used
for testing. This will enable us to answer questions
such as, "where is the frame problem in partial order
planners’’7, and also will allow us to modify existing
partial order planners to allow extended languages.

Testing with respect to the logic programming theories
of actions corresponds to finding if the logic program
entails h.olds(f, [a~,..., a,]). Now the question is how
do we reason about the truth of holds(f, [al,..., a=])
in a POP.

When dealing with vanilla domains (i.e. when ac-
tions do not have conditional effects or precondi-
tions) the following call to POP will determine if
holds(f, [al,..., a=]) is true.

POP(< {a0, al,...,an,aoo},{a0<al,al < a2,...,an <
aoo), O} >, {(f, aoo)}, Alist)

We make a restriction that we do not choose new in-
stantiations of actions in Step 3 and for statements of
the form initially h in our theory we include h as an
effect of a0.

But when actions have preconditions the above call
to POP is not sufficient as its Agenda does not in-
clude the precondition of the various actions. Instead
the following call with Agenda* defined as the set
{< Q, ai > : 1 < i < n and Q is aprecondition of
ai) will be able to determine if holds(f, [el,..., an]) is
true or not.

7A partial answer to this is suggested by the modal truth
criteria (KN94; Cha87).

22

POP(< {a0, al,...,an,aoo}, {a0 < al, al < a2,...,a,~ <
a~}, ~} > Agenda* U {(f, a~)}, Alist)

We are now ready to show the correspondence be-
tween the execution following the above mentioned
calls to POP and the execution of the query ~--
holds(f, [al,..., an]) with respect to the appropriate
logic programs.

Testing in STRIPS domains
In this section we consider planning problems which
can be described in the STRIPS domain. For such a
domain description D, 7rsD is an acyclic program and
hence SLDNF resolution is sound and complete with
respect to it. Moreover, testing is polynomial with
respect to ~rsD.

To find out if holds(f, [hi,... an]) is true in the logic
program we now need to find an av such that

(i) f is an effect ofap (which means holds(f, [al,..., av])
is true), such that all of ab(f, av+l),..., ab(f, an) are
false, (This would ensure that by repeatedly using the
inertia rules we will obtain holds(f, [al,...an]) to be
true. If we do not find such an av then we will con-
clude holds(f, [al,...an]) to be false.), and for all i,
p < i < n reaehable([al,...,ai]) is true.

Now let us consider what the call

POP(< {a0, al,..., an, am}, {a0 < hi, al < a2,..., an <
coo}, {~ > Agenda* U {(f, a~)}, Alist)

with Agenda* defined as the set {< Q, ai > : 1 < i < n
and Q is a precondition of at}

does to determine the truth of holds(f, [al,... an]).

In Step 3 of the algorithm it chooses an av such that av
adds f. It then needs to check that none of the actions

in {ap+l,..., an} threatens the link av 2-~ am.

¯ Ch.ccking ifav+l threatens the link av ~ a~o is equiv-
alent to determining if ab(f, av+l) is lrue in the logic
program 7rsD.

¯ To check that for all i, p < i _< n
reaehable([al,..., a/I) is true, the logic program has to
check that for each of these i’s, holds(Q, [al,..., ai_~])
is true where Q is a condition for the executability
of hi. This corresponds to the pair < Q, ai > in the
Agenda*.

The above two bulleted items correspond to the bot-
tom leaf node of the SLDNF tree with respect to ~rsD
in the following figure (in the next page).

Testing in A domains

In this section we consider planning problems which
can be described in the .A domain. For such a domain
description D, 7taD is an acyelie program and hence
SLDNF resolution is sound and complete with respect

SLDNF-tree w.r.t. 7taD

(--holds(f ,[al ,...,an])

,t
hoZas(w,[a,...a~-,])

*---holds(f ,[hi ,...,an--I]),
,*or ab(/,a.,[a~ a,,_~])

*--holds(f,[a ,]),
not ab(f,ap+l ,[al ap]),

not ab(f,a,,[al,...,a,_l])

*---holds(p1 ,[al a,- 1]) holds(pn ,[hi a,- 1]),
not ab(f ,ala+ l ,[hi ,...,ap]),

not ab(f,a,,la ,])

~-ab(f,ap+l,[al ap])

~--holds(gl ,[a a,]),

hoza;(g~ ,ta a.l)

We assume ap+l causes f if gl,...g~, is inD

to it. Moreover, testing is polynomial with respect to
71"a D,

To find out if holds(f, [al,...an]) is true in the logic
program we now need to find an ap such that f is an
effect of ap (which means holds(f, [al,..., ap]) is true),
and such that all of ab(f, ap+1, [al,...,%]), ...,
ab(f, an, [al,..., an-l]) are false. (This would ensure
that by repeatedly using the inertia rules we will obtain
holds(f, [al,... an]) to be true. If we do not find such
an av then we will conclude holds(f, [al,... an]) to be
false.)

Now let us consider what the call

POP(< {no, a1,...,an,aoo},{ao < al,al < a2,...,an <
coo}, 0} >, {(f, coo}, Alist)

does to determine the truth of holds(f, [al,... an]).

In Step 3 of the algorithm it chooses an av such that
av conditionally adds f. For each of the condition Q it
adds the pair < Q, av > to the Agenda’. It then needs
to check that none of the actions in {an+l, ...,an}

threatens the link ap f-~ am.

¯ Checking if ap+l might ~hreaten the link ap 1_.
aoo is equivalent to finding a rule whose head is
ab(f, %+1, [al,..., ap]) in lhe logic program raD. This
is evident the bottom leaf node of the SLDNF tree with
respect to ~raD.

23

SLDNF tree w.r.t. 7rsD

+--holds(],[.........])

--reachable([al ,..

.-hotds(y,[a~ a,~_~]),
not ab(f,au),
r~aeh,bZ~([al,...,am])

¯ --holds($,[a~ at]),
not ab(f ,ap+l),

.o,
reachable([al ,...,a,~]),
reachable([al,...,an_l]),

r~a~h~’~Z~([a a,+~])

-̄-not ab(f,ap+l),

~o~ ab(y,a,),r~achabl~([....... a~]),
holds(q [al t]) holds(q lax ,...,an-l]),¯ ̄ o

holds(qp+ x,1 ,[al ,...,ap]),...,hotds(qp+ a,,~v+1 ,[al ap])

Since the ordering between the action steps rules out
promotion and demotion, confrontation is the only op-
tion to protect the causal link. As a result POP chooses
a condition gi of the effect f for the action %+1 and
adds (~gi, ap+l) to the Agenda.

¯ Selecting (-~gi,ap+l) in Step 2 in a later’ ex-
ecution of the algorithm is equivalent to proving
holds(gi, [al,...,ap]) is false which will guarantee
that ab(f, ap+l, [al,..., ap]) is false. This is evident
from the small box in the figure.

POP with Incomplete Initial State

Let us now remove the strong completeness assmnption
(i.e. the initial state may be incompletes, but stay with
consistent projection domains. From Proposition ().3
7rD will be sound (but no longer complete)¯

When we put additional restrictions about the ef and
ex-propositions similar to the ones put in the vanilla,
STRIPS, .4 and CSTRIPS domains, the only change
we need is in 7ra (no changes are necessary in 7r, and

8Note that we are referring to a particular kind of in-
completeness (GL91) where we know that some fluents are
true in the initial situation, some fluents are false and the
truth value of the rest of the fluents is unknown. This is a
special kind of incompleteness which is more tractable than
when we have incompleteness due to disjunctive informa-
tion about the initial state.

Ir~), where we change the body of the rule with ab in
the head by replacing holds(p~, s) by not holds(~7, s)
for 1 < i < n. Lets call this translation as ~r~. (Gelfond
and Lifschitz (GL93) noticed the impact of this change
and used not holds(~, s) in their logic programming
formalization of .4. They explain in details why using
not holds(~, s) is the correct approach.)

Consider the underlined portion of the second bulleted
item in Section . While with respect to ~raD we were
proving holds(g, In1,..., ap]) to be false, with respect
to ~r~n we need to prove holds(y, In1,..., ap]) is true.
This directly corresponds to selecting (-~g,%+1) in
Step 2 of POP~.

This suggests that POP and POP~ can be used to
find plans even in the absence of complete information
(Recall the last footnote which states the restricted
kind of incompleteness we have in mind.) about the
initial state. The algorithms will be sound in the sense
that if they find a plan the plan would be correct. But
they will not necessarily always find a plan.

Using LP theories of Actions to extend
POP

We are now ready to discuss how logic programming
theories of actions can be used to extend POP so as to
be able to plan in an extended domain.

Disjunctive preconditions and conditional
effects
Notice that in none of the domains that we discussed
(vanilla, STRIPS, .4 and CSTRIPS) we required that
there can be only one el-proposition for each pair of
action and fluent. We also did not require that there
be only one ex-proposition with respect to each action.
This means that if we have two ex-propositions

executable a if ql,..., qn and

executable a if rl,...,rp,

then in effect we are saying that a is executable if (ql
... A an) V (rl A...A rn) is true¯

This suggests that we can make minor changes to our
POP and POPe to accept such an extended domain.
Moreover, the minor changes can be obtained by look-
ing at the SLDNF tree of the corresponding logic pro-
gram.

In the above example the translation ws D will have two
rules with reachable(res(a,S)) in the head. Hence,
during the SLDNF resolution there will be an or-
branching. This corresponds to modifying Step 4 of the
POP algorithm where we can non-deterministically
choose to either add {< ql,aadd >,...,< qn,aadd >}
or add {< rl, aadd >,..., < rp, aadd >} to the Agenda’

Similar changes can be made in POPe to take care
of disjunctive preconditions, and conditional effects
where the conditions may be disjunctive¯

24

The above extension of POP is taken care of in
UCPOP. Let us discuss an extension that is not taken
care of in UCPOP.

Using learned hypothetical facts
Recall that so far we are only concentrating on pro-
jection domains, i.e. we have been only allowing v-
propositions about the initial state. Suppose we would
like to remove this restriction. But then what will a
v-proposition f after al,. ¯., an correspond to?

It corresponds to the fact that we are told or somehow
the planner learnt that executing al ¯ ¯ ¯ an sequentially
from the initial state will make f true. Our goal now
is to extend POP and POPe to be able to use such
facts.

When we use such facts in ~rD the logic program is
only sound (not complete). This means our extension
of POP and POPe suggested 7rD will only be sound.

The extension to POP suggested by 7rD is to expand
step 3 where not only we can choose an action but can
also nondeterministically choose a sequence of actions.
The updating of L’, 0’, A’ and Agenda’ in steps 3 and
4 is modified appropriately.

Acyclic ramifications
Let us now extend our language to allow a particu-
lar restricted kind of ramifications (Unrestricted ram-
ifications are discussed in (KL94; Bar95)). We will
now have two kind of fluents: basic fluents and de-
rived fluents. The fuent f in the v-propositions (1)
and the el-propositions (2) will be required to be basic
fluents, while the fluents pi’s and qi’s in the ef- and
ex-propositions can be either basic or derived fluents.

Besides the v-, el- and ex-propositions we allow a new
kind of proposition called c-propositions (where ’c’
stands for constraint) of the form p if Pl,.. ¯ ,Pk, (4)
where p is a derived fluent and Pl, ¯ ¯., Pn are either ba-
sic fluents or derived fluents. We will require that the
domain descriptions do not have contradictory (similar
to the definition in Section) c-propositions.

The set of c-propositions in a domain description will
be said to be acyclic if we can assign each fluent to a
natural number (called the level) such that for any
proposition the level of the fluent in the head is higher
than the level of any of the fluents in the body. This
will guarantee that when we translate a domain de-
scription to a logic program with the added changes
that c-propositions of the form (4) are translated
the rule

holds(p, S) ~-- holds(p1, S),..., holds(pn, S)

and inertia rule is only for the basic fluents. The resul-
tant program will be still acyclic and hence will retain
the decidability property. The program will also retain
the polynomial time testing property.

To incorporate this extension to the POP, step 3 of the
algorithm will be modified where if the Q selected in
step 2 is a derived fluent, then if there is a c-constraint
with Q in the head and the fluents Pl p,~ in the
body then < pl,a >,...,< pn,a > are added to the
Agenda. The rest of step 3 and the whole algorithm
remains unchanged.

Conclusion
In this paper we extended the language ,4 to include
executability conditions and provided translation to a
logic program. We provided several simple translation
corresponding to particular restricted domains. We
showed the correspondence between doing projection
with respect to the logic programs and with respect to
the planners. We discussed how these correspondence
can be used to extend planning methodologies to larger
domains. We briefly discussed three such extensions:
having disjunction in the preconditions and conditional
effects with disjunctive conditions; having facts about
the effect of sequence of actions; and having restricted
ramifications.

Our next goal is to consider concurrent actions and
use the logic programming theory in (BG93) to extend
partial order planners to be able to plan in presence
of concurrent actions. This is necessary in many eases
when actions needed to be executed concurrently to
achieve certain effects. For example, consider two ac-
tions called left_lift and right_lift which individually
cause a table to be tilted while executed together they
cause the table to be lifted. If our goal is to lift the ta-
ble we must construct a plan which does left_lift and
rightJift concurrently, not in any sequential order.

In summary, we would like to advocate the following
methodology. While formulating new theories in rea-
soning about actions subclasses need to be identified
that guarantee decidability of the plan-existence prob-
lem and polynomial time testing. Furthermore we be-
lieve that logic programming theories of actions makes
this identification easier. (Note that the decidability
proofs in (ENS95) critically depend on properties
logic programs.) Also, in many cases the SLDNF tree
helps us to identify the modification necessary to the
original POPs so as to accept an extended language.

References

K. Apt and M. Bezem. Acyclic programs. In D. War-
ren and Peter Szeredi, editors, Logic Programming:
Proc. of the Seventh Int’l Conf., pages 617-633, 1990.
K. Apt and M. Bezem. Acyclic programs. New Gen-
eration Computing, 9(3,4):335-365, 1991.

S. Abiteboul, 1%. Hall, and V. Vianu, editors. Foun-
dations of Databases. Addison Wesley, 1995.
K. Apt and A. Pellegrini. On the occur-check free
logic programs. ACM Transaction on Programming
Languages and Systems, 16(3):687-726, 1994.

25

C. Baral. Reasoning about Actions : Non-
deterministic effects, Constraints and Qualification.
In IJCAI 95, pages 2017-2023, 95.

A. Blum and M. Furst. Fast planning through plan-
ning graph analysis. In IJCAI 95, pages 1636-1642,
95.

C. Baral and M. Gelfond. Representing concurrent
actions in extended logic programming. In Proc. of
13th International Joint Conference on Artificial In-
telligence, Chambery, France, pages 866-871, 1993.

C. Baral and M. Gelfond. Logic programming and
knowledge representation. Journal of Logic Program-
ruing, 19,20:73-148, 1994.

C. Baral, M. Gelfond, and A. Provetti. Represent-
ing Actions
I: Laws, Observations and Hypothesis. In Proc. of
AAAI 95 Spring Symposium on Extending Theories
of Action: Formal theory and practical applications,
http://cs.utep.edu/chitta/publications.html, 1995.

F. Brown, editor. Proceedings of the 1987 worskshop
on The Frame Problem in AL Morgan Kaufmann,
CA, USA, 1987.

D. Chapman. Planning for conjunctive goals. Artifi-
cial Intelligence, pages 333-377, 1987.

W. Chen, T. Swift, and D. Warren. Efficient top-
down computation of queries under the well-founded
semantics. Journal of Logic Programming, 24(3):161-
201, 1995.
M. Denecker and D. De Schreye. Representing incom-
plete knowledge in abductive logic programming. In
Proceedings of ILPS 93, Vancouver, pages 147-164,
1993.

K. Erol, D. Nan, and V.S. Subrahmanian. On
the complexity of domain-independent planning. In
AAAI 92, pages 381-386, 92.

K. Erol, D. Nau, and V.S. Subrahmanian. Com-
plexity, decidability and undecidability results for
domain-independent planning. To appear in AI Jour-
nal (Also Univ of Maryland CS TR-2797), 95.
M. Gelfond and V. Lifschitz. The stable model se-
mantics for logic programming. In R. Kowalski and
K. Bowen, editors, Logic Programming: Proc. of the
Fifth Int’l Conf. and Symp., pages 1070-1080, 1988.

M. Gelfond and V. Lifschitz. Classical negation in
logic programs and disjunctive databases. New Gen-
eration Computing, pages 365-387, 1991.

M. Gelfond and V. Lifschitz. Representing actions
and change by logic programs. Journal of Logic Pro-
gramming, 17(2,3,4):301-323, 1993.
E. Giunchiglia and V. Lifschitz. Dependent fluents.
In IJCAI 95, pages 1964-1969, 95.

S Holldobler and M Thielscher. Actions and speci-
ficity. In D. Miller, editor, Proc. of ICLP-93, pages
164-180, 1993.

S. Kambhampati, C. Knoblock, and Q. Yang. Plan-
ning as refinement search: A unified framework for
evaluating design tradeoffs in partial order planning.
AI Journal (to appear), also in ASU-CSE-TR 94 002,
1995.

G. Kartha and V. Lifschitz. Actions with indirect
effects: Preliminary report. In KR 94, pages 341-
350, 1994.

S. Kambhampati and D. Nan. On the nature of modal
truth criteria in planning. In Proc. of AAAI-94, pages
1055-1060, 1994.
F. Lin. An ordering on goals for planning- formalizing
control information in the situation calculus, 1995.
manuscript.

F. Lin. Embracing causality in specifying the indirect
effects of actions. In IJCAI 95, pages 1985-1993, 95.

Y. Lesperance, H. Levesque, F. Lin, D. Marcu, R. Re-
iter, and R. Scherl. A logical approach to high level
robot programming- a progress report. In Working
notes of the 1994 AAAI fall symposium on Control of
the Physical World by Intelligent Systems (to appear),
New Orleans, LA, November 1994.

F. Lin and R. Reiter. State constraints revisited.
Journal of Logic and Computation, 4(5):655-678, oc-
tober 1994.

F. Lin and Y. Shoham. Concurrent actions in the
situation calculus. In Proc. of AAAI-92, pages 590-
595, 1992.

W. Marek and V.S. Subrahmanian. The relationship
between logic program semantics and non-monotonic
reasoning. In G. Levi and M. Martelli, editors,
Proc. of the Sixth Int’l Conf. on Logic Programming,
pages 600-617, 1989.

R. Miller and M. Shanahan. Narratives in the sit-
uation calculus. Journal of Logic and Computation,
4(5):513-530, october 1994.
N. McCain and M. Turner. A causal theory of ramifi-
cations and qualifications. In IJCAI 95, pages 1978-
1984, 95.

E. Pednault. ADL and the State-transition model of
actions. Journal of logic and computation, 4(5):467-
513, october 1994.

J. Pinto. Temporal Reasoning in the Situation Calcu-
lus. PhD thesis, University of Toronto, Department
of Computer Science, February 1994. KRR-TR-94-1.

J. Pinto and R. Reiter. Temporal reasoning in logic
programming: A case for the situation calculus. In
Proceedings of lOth International Conference in Logic
Programming, Hungary, pages 203 221, 1993.

R. Scherl and H. Levesque. The frame problem and
knowledge producing actions. In AAA193, pages 689-
695, 1993.
D. Weld. An introduction to least commitment plan-
ning. AI Magazine, 15(4):27-61, winter 1994.

26

~rv : for Vanilla domains - empty Ira : for .A - domains empty preconditions in
preconditions in e f and ex - propositions ex - propositions
Inertia
rl : holds(F, res(A, S)) ~-- holds(F, S),

not ab(F, A)
Translating v - propositions
r2 : holds(f, so) ~- if initially f E D
Translating e f - propositions
For every action a with effect f

r3: holds(f, res(a, S))

r’3 : ab(y, a)
~rs : for STRIPS domain - empty ~rc : for CSTRIPS domains
preconditions in ef - propositions
Inertia
rl : holds(F, res(A, S)) +- holds(F,

reachable(res(A, S)
not ab(F, A)

Translating v - propositions
r2 : holds(f, so) ~ if initially f E D
Translating e f - propositions
For every action a with effect f

r3: holds(f, res(a, S)) ~-- reachable(res(a,

r~3 : ab(f,a) +--
Translating ex -- propositions
For every action a with

preconditions ql, ¯ ¯ ¯ qn
r4: reachable(res(a,S)) +- holds(ql,S),...,

holds(qn, S), reachable(S)
r5 : reachable(so) ~--

Inertia
rl : holds(F, res(A, S)) +- holds(F, S),

not ab(F, A, S)
Translating v - propositions
r~ : holds(f, so) ~-- if initially f E D
Translating e f - propositions
For every action a with conditional effect f
and with conditions Pl , . . . , Pu
r3: holds(f, res(a, S)) ~ holds(p1, S),...,

holds(pn, S)
r~3 : ab(f, a, S) +- holds(p1, S),..., holds(pn,

Inertia
rl: holds(F, res(A, S)) +--- holds(F,

reachable(res(m, S)
not ab(F, A, S)

Translating v - propositions
r2 : holds(f, so) ~ if initially f E D
Translating e f - propositions
For every action a with conditional effect f
with conditions Pl, ¯ ¯., Pn

r3 : holds(f, res(a, S)) ~- reachable(res(a,
holds(p1, S), . . . , holds(pn,

rt3: ab(], a, S) ¢-- holds(p1, S),..., holds(p~, S)
Translating ex - propositions
For every action a with

preconditions ql, ¯ ¯ ¯ qn
r4: reachable(res(a, S)) *- holds(q1, S),...,

holds(qn , S), reachable(S)
r5 : reachable(so) +--

27

