
Relating theories of actions and reactive robot control

Chitta Baral and Tran Son
Department of Computer Science

University of Texas at E1 Paso
E1 Paso, TX 79968
chitta@cs.utep.edu

Abstract

In this paper we explore the connection between theo-
ries of actions and reactive robot control architectures
that ~re based on the paradigm of situated activity. In
particular, we use the entailment relation of the action
description language to formalize the notion of ’an ac-
tion leading to a goal’ of Kaelbling and Rosenschein.

Content Areas: Robotics, Theory of Action

Introduction

Research in theories of actions (Bro87; Wor95; Geo94)
is concerned with developing formal theories that al-
lows us to represent effects of actions on the world and
reason about them. One of the main agenda behind
research in reasoning about actions is to develop au-
tonomous agents (robots) that can act in a dynamic
world. The early attempts to use theories of reasoning
about actions and planning to formulate a robot con-
trol architecture were not successful for several reasons:

¯ The early theories based on STRIPS and its ex-
tensions allowed only observations about the initial
state. A robot control architecture using these the-
ories was usually of the form: (i) make observations,
(it) use the action theory to construct a plan
achieve the goal, and (iii) execute the plan.

For such an architecture to work the world must be
static so that it does not change during the execu-
tion of the plans, and knowledge about relevant con-
ditions must be complete. This assumption is not
valid for a dynamic world where other agents may
change the world and/or the robot may not have
all the information about the environment when it
makes the plan.

¯ Planning is a time consmning activity lENS92) and
it is not usually wise for the robot to spend a lot of
time creating a plan, especially when it is supposed
to interact with the environment in real time.

This led to the development of several robot control
architectures that were reactive in nature (e.g., the ap-
proaches in (Fir87; GL87; Bro86) and in the papers

the collection (Mac91)) and usually were based on
paradigm of ’situated activity’ which emphasized on-
going physical interaction with the environment as the
main aspect in designing autonomous agents. Some ad-
vocates of this alternative approach go to the extreme
(Bro91) and suggest that reasoning and high level plan-
ning may not be at all necessary while some others
(Ark91; KR91; Ms91) advocate to combine high level
planning and reasoning with situated activity. These
approaches were quite successfid, especially in the do-
main of mobile robots.

But unfortunately, the connection between the theories
of reasoning about actions and these control architec-
tures has been largely ignored, resulting in less and less
interaction between the researchers of the two fields.
Some attempts were made in (KR91), but it was not
made clear what the formal equivalent of the concept
of ’all action leading to a goal’ (KRgl) was.

/.From an intuitive point of view theories of actions al-
low us to represent and reason with knowledge about
actions and their effects and observations about the
world. On the other hand control architectures tell
the robot (quickly) what to do in a situation. How
are these two related? ’]?he action that the control
architecture tells the robot to do in a situation must
be an action that leads to the goal based on the the-
ory about the actions. Let us consider an analogy with
language theory and parsers. The language theory cor-
responds to the theory of actions and the parsing ta-
ble and parser correspond to the condition-action rules
and the control architecture respectively. The parser
needs to parse quickly and hence uses a parsing table.
But the parsing table is constructed using the theory of
languages. The robot in its need to act quickly needs
to use condition-action rules (or a similar table). But
where do the condition-action rules come from? Cur-
rently, they do not come from the corresponding theo-
ries of actions, and usually they are hand coded (except
in some cases such as (KR91)). We are not going
argue (in this paper) that they should be automati-
cally derived from theories of actions. (Perhaps, they
should in many cases.) We are going to argue that
at least we should bc able to show that they are cot-

28

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

rect with respect to the theories of actions. In fact, the
properties or conditions that guarantee correctness (to
be presented later in the paper) carl be used as a guide
in manually coming up with the control rules. This is
the main goal of this paper.

Motivating Example
Let us motivate the main contribution of this paper
through an example.

Consider a mobile robot navigating in a building. To
make the example simple let us consider the building
in Figure 1. We assume that the doors of the outer
rooms are painted white and the doors of the inner
rooms are painted black. We also assmne that the
control program that takes the robot out of a room also
aligns the robot such that its side faces the door. Let
us now consider a control loop which when executed
by a mobile robot will take the robot from the outside
of a room to the elevator. We first define the module
’Go_clockwise_one_room’ which takes the robot to the
front of the next room in a clockwise manner. We
then define a higher level modulet work where they
use called Goto_elevator which takes the robot to the
front of the elevator.

Module : Go_clockwise_onea-oom

* if white_door_on_rt then turn_180

* if just_started, black_door_on_rt then
go_forward

if just_started, wall_on_rt then delete_started

¯ if ~just_started, wall_on_rt then go_forward

¯ if -~jusl_started, corridor_on_rt then
turn_right_90

¯ if -~just_started, black_door_on_rt then HALT

Module : Goto_elevator

* if -~elevator_on_rt then Go_clockwise_one_room

¯ if elevator_on_rt then HALT

The modules Go_clockwise_one_room
and Goto_elevator defined above are similar to the pro-
grams generated by the Gapps compiler (KRgl), and
also similar to production systems and active database
rules (with a slightly different semantics though). The
intuitive semantics of these modules is that in each cy-
cle the condition part of the rules are evaluated and all
rules whose conditions are satisfied are fired (i.e., their
action part is performed). Of course we assume that
the rules are given such that the action part of two
rules that may fire simultaneously do not contradict.
This loop continues until one of the action is HALT,
after which the execution of the loop terminates.

1 The approach of having several levels of control mod-
ules is similar to Firby’s work in University of Chicago
where three such levels are used.

The first question we would like to answer in this paper
is: Is there any connection between these modules and
specification of actions and their effects that are used
in reasoning about actions?

For example, let us consider the various actions that
appear in the above rules and their effects. We repre-
sent them as causal rules in the syntax of ,,4 (GL93).
(The rules and their meaning are intuitive. Due to
lack of space we do not present their formal meaning
here.) It should be noted that the causal rules and the
world model in the action theory is from the robot’s per-
spective. It is not from the perspective of an impartial
observer. The later is usually used in action theories,
but causes problems when mapping sensor values to the
world model.

Causal Rules describing actions in module
Goto_elevator

¯ Go_clockwise_one_room causes at_room(X + 2)
if at_room(X),-~al_room(349)

¯ Go_clockwise_one_room causes elevator_on_rt
if at_room(349)

¯ Go_clockwise_one_room causes at_room(301)
if clevator_on_rt

¯ Go_clockwise_one_room causes -~at_room(X)
if at_room(X)

¯ Go_clockwise_one_room causes -~elevator_on_rt
if elevator_on_rt

¯ The effect of the action Go_antielockwise_one_room
can be defined similarly.

Now, what is the connection between the above causal
rules and the control module Goto_elevator. After the
robot executes this control module it has the eleva-
tor on its right, i.e., the fluent elevator_on_rt becomes
true.

Intuitively, based on the sensor readings, the control
module directs the robot to take actions that lead to
the goal of making elevator_on_rt true. But can we
prove the correctness of the control module? And what
does it mean when we say an action leads to a goal in
a particular situation? This is where the causal rule
plays a role. Intuitively, it means that, for any set of
sensor readings, if the robot constructs a minimal plan
(using theories of actions and planning methodologies)
to achieve the goal of making elevator_on_rt true, then
the first action in that plan is one of the actions (be-
cause there may be several minimal plans) that leads to
our goal from the situation(s) described by the sensor
readings.

Let, us elaborate on this using the Goto_elevator con-
trol module. Suppose the robot is at room 335. A min-
imal plan that will take the robot to the elevator con-
sists of executing the action Go_clockwise_one_room
eight times. The first action of this sequence is of
course the action Go_clockwise_one_room. Hence,

29

303 349

301 elevator

:i

Figure 1:

30

in the situation where the robot is at room 335
the action that leads to the goal is tile action
Go_clockwise_one_room. The first rule of the con-
trol module Goto_elevator subsumes this case. Now,
let us consider the case when the robot is next to
the elevator. Using the causal rules we can conclude
that the minima] plan to achieve our goal is the null
plan. This is exactly specified by the second rule of
Goto_elevator. We will formalize the above intuition
in tile next section. But first we will consider the larger
module Go_clockwise_one_room, the actions used in it
and their causal rules.

Causal Rules describing actions in module
Go_clockwise_one_room

¯ turn_180 causes black_door_on_rt
if white_door_on_rt

¯ turn_lS0 causes -~white_door_on_rt
if white_door_on_rt

¯ go_forward causes wall_on_rt
if black_door_on_rt

¯ go_forward causes black_door_on_rt
if wall_on_rt,-~app_corner

¯ go_forward causes corrridor_on_rt
if wall_on_rt, app_corner

¯ go_forward causes -~app_corner
if app_corner

¯ turn_right_90 causes wall_on_rt
if eorridor_on_rt

¯ delete_started causes -~just_started
if wall_on_rt

¯ always (black_door_on_rt ¯ white_door_on_rt
wall_on_rt (~ corridor_on_rt

Before we discuss the connection between the con-
trol module Go_clockwise_one_room and the above
causal rules, we need to state the effect of execut-
ing this module. In this case the effect is that
the fluent just_started becomes false and the fluent
black_door_on_rt becomes true. In other words, for
the control module to be correct, each rule in the con-
trol module Go_clockwise_one_room specifies what ac-
tion leads to the goal -~just_startedA black_door_on_rt
for the sensor readings satisfying the conditions in the
premise of the rules.

Let us now intuitively explain why the given con-
trol module is correct with respect to the causal
rules. Suppose the sensors tell the robot that the
white_door_on_rt is true. Then it is easy to see that all
minimal plans that will achieve the goal start with the
action turn_180 and this justifies the correctness of the
first rule in the module Go_clockwise_one_room. This
is justified because there exists a plan which achieves
the goal, and because none of the if parts of the
other causal rules are satisfied and, hence, no other ac-
tion can achieve anything if executed first. Similarly,

when just_started is true and a sensor detects that
black_door_on_rt is true, go_forward is the action that
is in the beginning of all minimal plan that achieves the
goal. This justifies the correctness of the second rule
in the module Go_clockwise_one_room. The correct-
ness of the other rules in the control module can be
explained in a similar manner. It should be noted that
our only concern is what action is in the beginning of a
minimal plan. At this point we are not concerned with
how to find a minimal plan.

We hope that we have provided some intuitive idea of
how to connect control modules and causal rules. In
the next section we will formalize this connection.

Action theory
Surprisingly, a simple action theory without features
such as being able to observe (as in £ (BGP96)),
having narratives (MS94; PR.93; BGP95), or having
knowledge producing actions (SL93) etc, is sufficient
for our purpose.

This is because of the fact that the robot does not
reason about its past. It just takes into account the
current sensor values (and possibly some additional flu-
ents) to decide what actions to do next. Also, it does
not rely on its actions. It is prepared to sense again
and proceed from there.

Our action theory has two kinds of actions: one that
the robot can perform, and the other that may hap-
pen independent of the robot and which is beyond the
control of the robot. The second kind of action may
5:ustrate the robot trying to achieve the goal or may
provide the robot with an opportunity. For both kinds,
we have effect axioms that describe the effect of the
actions. Our theory allows us to express values of flu-
ents in particular situations and allows us to reason
in the forward direction from that situation. In other
words, given values of fluents in situation s, our theory
lets use determine if a fluent f is true in the situation
Res(an, Res(an_l,..., Res(al, s)...).2 We denote this
by ~ holds(f, [al , a,~]s)

But, when we refer to a plau that achieves a goal the
plan only consists of actions that the robot can per-
form. The other kind of action is only used to deter-
mine states that the robot may be in.

In this paper we do not advocate or consider any par-
ticular theory of action. Any theory that has the above
mentioned entailment relation and that subscribes to
our notion of two different kinds of actions is suitable
for our purpose.

Formalizing Reactive Modules
We are now ready to formalize reactive control mod-
ules, and relate them to action theories. But first, we
need to formally define what a control module is.

2We often denote this situation by [al,..., an]s.

31

Definition 0.1 (Control rules and Control modules)
A simple control rule is of the form,

if Pl ,Pk then al,...,az (1)

where, Pl,... ,Pk are fluent literals and al , az are
actions.

A termination control rule is of the form

if Pl,...,pkthen HALT,

and a suspension control rule is of the form

if pl,...,pk then SUSPEND, (3)

A control rule is a simple control rule, a termination
control rule, or a suspension control rule. The part
between the if and then of a control rule is
referred to as the LHS of the rule and the part after
the then is referred to as the RHS of the rule.

A control module is defined as a collection of control
rules.

Achievement control module, and mixed control mod-
ules consist of only simple and termination control
rules. A maintenance control module consists of only
simple and suspension control rules. []

The operational semantics of a control module
is as follows. The control module can be in four
different states: active, suspended, success-terminated,
and failure-terminated. In the active state it continu-
ously executes the following loop: observe, match, and
act. In the observe cycle it reads its sensor values and
quickly computes and updates the fluent values. (Note
that although many of the fluents, which we call ba-
sic fluents, may directly correspond to sensor values
with possible use of thresholds, there may be fluents
whose values are derived from the basic fluents.) In
the match cycle it matches the values of the fluents
with the LHS of the rules. In the act cycle it exe-
cutes the actions in the RHS of all the rules whose
LHS was matched successfully. If there are more than
one such rules and the actions in their RHS are differ-
ent hut non-contradicting then it executes them con-
currently. If they are contradicting then it uses some
priority mechanism (similar to the approach in the sub-
sumption architecture (Bro86)) to decide which ones
execute. 3 If the RHS of the rule is HALT then the
control module reaches the success-terminated stage.
If the RHS of the rule is SUSPEND then the control
module reaches the suspended stage. In the suspended

3 Note that the operational semantics of control modules
differs from that of production systems in that in produc-
tion systems of all the rules whose LHS matches successfully
the RttS of only one of those rules is executed. This rule is
chosen either non-deterministicMly or using some conflict
resolution strategy.

stage the sensors are active and any change in the sen-
sor values takes the robot from the suspended stage
to the active stage. If in the match cycle no rule is
found whose LHS is matched then the control module
reaches the failure-terminated stage.

In Section we discussed the control module of
the actions Goto_elevator and Go_clockwise_one_room
whose effects were to achieve goals. We will now
give an example of a maintainance control mod-
ule Avoid_obstacle (a similar module is discussed
in (JF93)) whose purpose is to maintain the goal
-~exist_obstacle.
Module : Avoid_Obstacle

¯ if exist_obstacle then go_around_obstacle

¯ if --~exist_obstacle then SUSPEND

Notice that the above control module does not con-
tain any rule that has tIALT in its RHS. This means
once the execution of the control module starts it never
terminates.

Before we formally characterize control modules, we
define the closure of a set of states with respect to a
control module and an action theory.

Definition 0.2 Let S be a set of states, M be a
control module and A be an action theory. By
Closure(S, M, A) we denote the smallest set of states
that satisfy the following conditions:

¯ S C_ Closure(S, M, A).
¯ If s E Closure(S, M, A) and a is an action in A that

can occur independent of the robot then Res(a, s)
Closure(S, M, A).4

¯ If s E Closure(S, M, A) and there exist a rule in
M whose LHS is satisfied by s and whose RHS is
al,..., al, then [al al]s E Closure(S, M, A)

Definition 0.3 A set of states S is said to be closed
w.r.t, a control module M and an action theory A if
S = Closure(S, M, A).

We will now formally characterize the effect of execut-
ing a control module. Intuitively, a control module M
executed in a state s executes a sequence of actions.
For a control module M, an unfold interpretation/gM
is a fimction from states to set of sequences of actions.

Definition 0.4 For an achievement (or a mixed) con-
trol module M, we say lAM is an unfold model if the
following conditions are satisfied.

¯ IfUM(S) = ~ then there exists a termination control
rule r in M which is applicable in s

4In this section t)y Res(a, s) we denote the state corre-
sponding to the situation Res(a, s). Formally, this state is
expressed by the set {f : holds(f, Res(a, s)) is entailed by
the theory}.

32

¯ If riM(S) = al,...,a,~,.., then there exists a simple
control rule if LHS then al,...,az, I < n in
M which is applicable in s and HM([al,..., at]s)
al+ l , . . . , an

¯ llM(S) = M i f t here exists n o r ule r inM whi ch
is applicable in s where, the action arM is a special
action in our action theory which denotes that the
execution of M fails.

[]

We are only interested in control modules which have
a unique unfolding model. (Later we describe some
conditions on control modules that. guarantee a unique
unfolding model.)

Definition 0.5 An achievement control module M is
said to achieve goal G from a set of states S, if for all
/4¢M and for all s in S l~M(8) is finite and does not end
with arm and and for all f in G, ~ holds(f, [HM(s)]s).

Furthermore, M is said to n-achieve goal G from S, if
m-~s lUM(s)I =

In the following, we will specify sufficient conditions
for a control module M achieves a goal G. We first
define the notion of minimal cost plan. To each pair
of states s and s~ and an action a we assign a number
which is called as the cost of the translation from s to
s~ by means of a and satisfies the following conditions:

¯ cost(s, s’, a) = c~ if s’ ~ Res(a, s), and
¯ 0 < cosi(s, st, a) < ~ if .st = [a]s.

The cost function from a state s to a state s~ by
means of a plan Q = a o P is defined as follows:

cost(s, s’, Q)’= cost(s, [a]s, a) + cost([a]s, s’,

A plan P is called a minimal cost plan from s to st if

cost(s, s’, P) = rain{cost(s, s’, P) I [P]s =

If P is a plan which achieves G from s then we define
cost(s, G, P) = cost(s, IF]s, P). A plan P is called
minimal cost plan which achieves G from a state s if

cost(s, G, P) = rain{cost(s, G, P’) p’achieves G from s}.

Definition 0.6 [Soundness]

1. A simple control rule r is said to be sound w.r.t, goal
G and aset of states S (or w.r.t. (G,S)) if one
the following conditions holds:

(a) r is not applicable in every s E S,
(b) For all s E S such that r is applicable in s there

exists a minimal cost plan that achieves G from
s and has the RHS of r as its prefix.

2. A termination control rule r is said to be sound w.r.t.
goal G and a set of states S (or w.r.t. (G, S)) if
LHS satisfies G.

3. A achievement control module M is sound w.r.t.
goal G and a set of states S (or w.r.t. (G,S))
each rule r E M is sound w.r.t (G, S).

r3

Definition 0.7 [Completeness] A achievement con-
trol module M is said to be complete w.r.t, goal G
and a set of states S, if for each s in S there exists at
least one rule in M whose LHS is satisfied, and [RH~s
is defined. []

Definition 0.8 A achievement control module M is
said to be non-conflicting w.r.t, a set of states S if for
any s E S, the t~HS of all rules in M whose LHS is
satisfied by s is the same. []

Proposition 0.1 Consider a pair (M, S), where M
a non-conflicting achievement control module w.r.t, a
finite set of states S and S is closed w.r.t. M and
a deterministic action theory. Then M has a unique
unfolding model modulo S. []

Proposition 0.2 Consider a pair (M, S), where
is a non-conflicting control module w.r.t. S and S is
closed w.r.t.M. Given a goal G, if M is sound and
complete w.r.t. G and S then M achieves G from S.
[]

Proof:(sketch)
LFrom Proposition 0.1, the control module M has a
unique unfolding model. Let us refer to it by //M.
Consider any s E S. The ininimal plan requirement in
the strongly sound condition guarantees that Urn(s) is
finite. The completeness condition guarantees that the
last action in HM (s) is not arM. Using induction on the
number of cycles the control module has to go through
before it stops we can show that for any f in G, the
action theory entails hohls(f,14M(S)).

The conditions in the above proposition may be used
as a guide while writing control modules.

It should be noted that in the above formalization of
control modules, the dynamic nature of the world is
captured by requiring a closed S. An achievement con-
trol module only achieves the goal if there is an window
where there is no outside interference. This is reason-
able because it is impossible for a robot to achieve its
goal if it is continuously harassed.

Proposition 0.3 The control module Goto_elevator
achieves the goal elevator_on_rt (with respect
to the causal rules of Goto_elevator) from the
set of states S = {{-~elevator_on_rt, at(301)},
..., {--,elevator_on_rt, at(349) }, {elevator_on_rt} }.

Although, many of the definitions since Definition 0.4
are with respect to achievement control modules only,
the definitions can be easily modified to consider main- -
tainance and mixed modules. In fact the defilfitions
remain largely unchanged when we consider a mixed
control module. For maintainance control modules
the condition in the first item of Definition 0.4 and
in Definition 0.7 is changed to require the RMS to be
SUSPEND. All other changes are straightforward.
With these changes, we can now prove the following
results.

33

Proposition 0.4 The control module Avoid_obstacle
maintains the goal -~exist_obstacle (with respect to
the causal rules of Avoid_obstacle) from the states
{ {-~exist_obstacle}, {exist_obstacle}}. []

Proposition 0.5 The mixed control module ob-
tained by adding the rules in the control mod-
ules Goto_elevator and Avoid_obstacle and removing
the rule with SUSPEND in its RHS from it (i.e.
from the union) achieves elevator_on_rt and main-
tains --,exist_obstacle (with respect to the causal rules
in Goto_elevator and Avoid_obstacle) from all possi-
ble states that, can be constructed from the fluents
elevator_on_rt and exist_obstacle. []

Conclusion and Future Work

So far, our formalization of control modules required
complete information about the states. But we need
to take into account the fact that tile sensor values
of the robot can not always completely determine the
state, and the robot has to decide its action in the pres-
ence of incomplete information. This can be partially
formalized by modifying Definition 0.8 to characterize
when control modules are non-conflicting w.r.t, a set
of incomplete states. This aspect together with condi-
tional plans that a robot may execute will be further
discussed in the full paper.

Other concerns that will be addressed in the full pa-
per are formalization of conditional plans encoded in a
control module (ex: Robot is programmed to go to the
fridge to get a beer and if it does not find a beer there
then to go to the cellar.), formalization of repeatative
actions (ex: the module that implements go_forward.)
etc.

Our work is different from the recently proposed action
theories (LLL+94; Kow95; BGP96) that allow obser-
vations and other features to reason about and control
a robot. Since these theories require on-line planning
they can not be the main source of robot-control. How-
ever, they can be used as a back-up when the reactive
rules fail. We will further elaborate on this in the full
paper.

Our work in this paper although related to the work
on universal plans (Sch87) has many significant differ-
ences. Our control modules are not universal plans.
They only achieve the goal from certain (most com-
monly encountered) states. We believe in general an
universal plan will be too big and unmanageable. Also,
we consider maintainance goals, which is not consid-
ered in (Sch87).

References
R. Arkin. Integrating behavioral, perceptual, and
world knowledge in reactive navigation. In P. Maes,
editor, Designing Autonomous Agents, pages 105-
122. MIT Press, 1991.

C. Baral, M. Gelfond, and A. Provetti. Represent-
ing Actions I: Laws, Observations and Hypothesis. In
Proc. of AAA1 95 Spring Symposium on Extending
Theories of Action: Formal theory and practical ap-
plications, 1995.

C. Baral, M. Gelfond, and A. Provetti. Representing
Actions: Laws, Observations and ttypothesis. Journal
of Logic Programming (to appear), 1996.

R. Brooks. A robust layered control system for a mo-
bile robot. IEEE journal of robotics and automation,
pages 14 23, April 1986.

F. Brown, editor. Proceedings of the 1987 worskshop
on Th.e Frame Problem in AL Morgan Kaufmann,
CA, USA, 1987.

R. Brooks. Elphants don’t play chess. In P. Maes, ed-
itor, Designing Autonomous Agents, pages 3-16. MIT
Press, 1991.

K. Erol, D. Nau, and V.S. Subrahmanian. On
the complexity of domain-independent planning. In
AAAI 92, pages 381-386, 92.

R. Firby. An investigation into reactive planning in
complex domains. In AAAI 87, 1987.

M. Georgeff, editor. Journal of Logic and Computa-
tion, Special issue on Action and Processes, volume 4
(5). Oxford University Press, October 1994.

M. Georgeff and A. Lansky. Reactive reasoning and
planning. In AAAI 87, 1987.
M. Gelfond and V. Lifschitz. Representing actions
and change by logic programs. Journal of Logic Pro-
gramming, 17(2,3,4):301-323, 1993.

J. Jones and A. Flynn. Mobile Robots. A. K. Peters,
1993.

R. Kowalski. Using metalogic to reconcile reactive
with rational agents. MIT Press, 1995.

L. Kaelbling and S. Rosenschein. Action and planning
in embedded agents. In P. Maes, editor, Designing
Autonomous Agents, pages 35-48. MIT Press, 1991.

Y. Lesperance, H. Levesque, F. Lin, D. Marcu, R. Ra-
tter, and R. Scherl. A logical approach to high level
robot programming- a progress report. In Working
notes of the 1994 AAAI fall symposium on Control of
the Physical World by Intelligent Systems (to appear),
New Orleans, LA, November 1994.

P. Maes, editor. Designing Autonomous Agents.
MIT/Elsevier, 1991.

C. Malcom and T. smithers. Symbol grounding via
a hybrid architecture in an autonomous assembly
system. In P. Maes, editor, Designing Autonomous
Agents, pages 123 144. MIT Press, 1991.

R. Miller and M. Shanahan. Narratives in the sit-
uation calculus. Journal of Logic and Computation,
4(5):513-530, october 1994.
J. Pinto and R. Reiter. Temporal reasoning in logic
programming: A case for the situation calculus. In

34

Proceedings of lOth International Conference in Logic
Programming, Hungary, pages 203-221, 1993.

M. Schoppers. Universal plans for reactive robots
in unpredictable environments. In I,ICAI 87, pages
1039-1046, 1987.

R. Scherl and H. Levesque. The frame problem and
knowledge producing actions. In AAAI 93, pages 689-
695, 1993.

Working notes of AAAI Spring Symposium. Extend-
ing Theories of Aclion: Formal Theory and Praclical
Applications. AAAI Press, 1995.

35

