
Reformulating Theories of Action for Efficient Planning

D. Paul Benjamin

School of Computer and Information Science, Syracuse University
Center for Science & Technology, Syracuse, NY, 13244-4100 USA

benjamin@ top.cis.syr.edu http’//www.cis.syr.edu/people/benjamin

Abstract
Domain theories are used in a wide variety of fields of
computer science as a means of representing proper-
ties of the domain under consideration. These fields
include artificial intelligence, software engineering,
VLSI design, cryptography, and distributed comput-
ing. In each ease, the advantages of using theories
include the precision of task specification and the
ability to verify results. A great deal of effort has
gone into the development of tools to make the use of
theories easier. This effort has met with some success.
However, a fundamental problem remains: the choice
of symbolic formulation for a theory, including both
the choice of features for describing the environment
and the design of abstractions that encode the actions.
This paper describes fundamental research on the
algebraic structure of the representations of domain
theories. The perspective of this work is to view a
problem’s state space as though it were physical
space, and the actions in the state space as though
they were physical motions. A domain theory should
then state the laws of motion within the space. Fol-
lowing the analogy with physics, a representation is a
coordinate system, and theories are transformed by
changing coordinates. This permits symbolic compu-
tational techniques to be used to transform theories
and find useful decompositions. A system has been
implemented using Mathematiea and GAP that per-
forms these computations. The mathematical basis for
this approach is given, and the computations are illus-
trated by examples.

1 Formulations of Theories of Action

Each theory can be represented in a large number
of different ways that vary in their computational
effectiveness. A good choice of symbols and a good
choice of formulation using those symbols are abso-
lutely necessary for effective symbolic computation.
A simple example is given by the following three
representations for the two-disk Towers of Hanoi.

Representation TOHI: Let the nine states of the
2-disk Towers of Hanoi be
{ (b, s), < b < 3,1 <s < 3], whereb and s are the
numbers of the pegs the big and small disks are
on, respectively. Let the two actions be:
X: (b, s) ~ (b, s (rood(3))

Y: (b, s) ~ (b+ 1 (mod(3))

as

X moves the small disk right one peg (wrapping
around from peg 3 to peg 1), and Y moves the
large disk one peg to the left (wrapping around
from peg 1 to peg 3). X is always executable, but
Y can be executed only in three states.
Representation TOH2: Let the states be the same
TOH1, and let the six possible actions be:

X1 = move the top disk from peg 1 to peg 2
Y1 --- move the top disk from peg 1 to peg 3
X2 = move the top disk from peg 2 to peg 3
Y2 = move the top disk from peg 2 to peg 1
X3 = move the top disk from peg 3 to peg 1
Y3 = move the top disk from peg 3 to peg 2

Each of these actions is executable in four states.
Representation TOH3: Let the states be the same

as TOH1, and let the two possible actions be:

X: (b, s) ~ (b, s (rood(3))

Z: (b, s) ~ (b + 1 (rood(3)) + 1, s + 1 (rood(3))

X is as before, and Z is a macro-action that moves
both disks left one peg.

Each of these representations can be implemented
in terms of every other. For example, Z in TOH3 is
implemented as a disjunction of sequences of actions
from TOHI: Z = [XXY, XYX, YXX} or from TOH2:
Z = {X1Y1X2, X2Y2X3, X3Y3X1 }.

One of the most important properties of a repre-
sentation for planning is the mutual interference of
its actions. The actions in TOH3 are independent
controls; X solves the position of the small disk, and
Z solves the big disk. X does not changethe position
of the big disk, and Z does not change the relative
positions of the disks. The disks can be solved in
either order. This representation captures the impor-
tant property of the Towers of Hanoi task: the disks
can be solved in any order. In representations TOH1
and TOH2, this property was obscured by details of
the implementations of the disk moves.

Even for this simple puzzle there are many possi-
ble formulations. The three formulations given above
differ in that the first indexes the moves according to
the disk moved, whereas the second indexes the
moves by the peg moved from (or to, for the inverse

36

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

moves.) The third representation eliminates subgoal
interference, which is present in the first two repre-
sentations. One advantage of the first and third for-
mulation is clear: they scales up to theories for more
disks, because their actions will be included
unchanged in those theories. New moves will be
added for the new disks. However, the actions in the
second formulation must be redefined as more disks
are added, so this theory does not scale up. The result
is that analysis and synthesis of the two-disk problem
performed using the first or third formulation can be
reused when larger problems are attempted, but anal-
ysis and synthesis from the second formulation must
be discarded when larger problems are attempted.
Furthermore, the properties of these two representa-
tions scale up to all Towers of Hanoi problems, e.g.,
the family of representations based on TOH3 have no
subgoal interference. The third representation is
clearly the best for efficient planning in this domain.

Computer science is not the first field to be faced
with the problem of properly formulating theories.
Throughout the history of science, it has always been
desirable to formulate theories in as general a way as
possible, so that important regularities are identified
and separated from details particular to individual
situations. In particular, physics has had a great deal
of success in formulating theories of wide generality
yet high predictive accuracy. In this paper, we will
see that many of the mathematical structures
employed in the statement of physical theories can
be usefully generalized to the statement of abstract
theories.

We will begin with a brief discussion of the prop-
erties of physical theories in the next two sections.
The remainder of the paper discusses the appropriate
mathematics for analyzing these properties, and
gives examples of the analysis and reformulation of
theories.

2 Invariants of Laws
The ability to formulate any law of nature

depends on the fact that the predictions given by the
law, together with certain initial conditions, will be
the same no matter when or where the results of the
predictions are observed. In physical theories, the
fact that absolute time and location are never rele-
vant is essential for the statement of laws; without
this fact, general laws could not be stated, and the
complexity of the world would eliminate the possi-
bility of intelligent comprehension of the environ-
ment. This irrelevance is stated in terms of the
invariance of laws under translation in time and
space. Such invariance is so self-evident that it was

not even stated clearly until less than a century ago.
It was Einstein who recognized the importance of
invariance in the formulation of physical law, and
brought it to the forefront of physics. Before Ein-
stein, it was natural to first formulate physical law
and then derive the laws of invariance. Now, the
reverse is true. As the eminent physicist Wigner
states, "It is now natural for us to try to derive the
laws of nature and to test their validity by means of
the laws of invariance "(Wigner, 1967, p.5). This
is especially clear in the development of quantum
mechanics.

Invariance is important not only in physics. As
Dijkstra states, "Since the earliest days of proving
the correctness of programs, predicates on the pro-
grams’s state space have played a central role. This
role became essential when non-deterministic sys-
tems were considered I know of only one satisfac-
tory way of reasoning about such systems: to prove
that none of the atomic actions falsifies a special
predicate, the so-called ’global invariant’." (Dijk-
stra, 1985.) In other words, as the system moves in
its state space, the global invariant is a law of
motion. Dijkstra goes on to point out the central dif-
ficulty in the use of invariants: "That solves the
problem in principle; in each particular case, how-
ever, we have to choose how to write down the global
invariant. The choice of notation influences the ease
with which we can show that, indeed, none of the
atomic actions falsifies the global invariant." We
need a mathematics of invariance to help us formu-
late invariants.

3 Symmetry

A symmetry is a mapping of an object or system
to itself such that the result of the mapping is indis-
tinguishable from the original. For example, the
human body (idealized) has a left-right symmetry.
The following square has a number of symmetries,
including flipping it onto itself about the lines x -- 1/
2 or y -- 1/2 or x - y, and rotating it ninety degrees
either clockwise or counterclockwise:

Y

1

0

x=0, 0~y~l
x=l, 0~y~l
y=0, 0~x~l
y=l, 0~x~l

y

0 1 x

Symmetries can exist in physical space or in state
space. For each invariance, there is a corresponding
set of symmetries, each of which maintains the

37

invariant. For example, the invariance of physical
law under translation in space corresponds to the
symmetries of space under all translations. Also, the
global invariant of a non-deterministic program cor-
responds to all permutations of the atomic actions;
each permutation maintains the invariant. This corre-
spondence holds in reverse, also. For each set of
symmetries, there is a corresponding invariant.

For example, the square above can be represented
by the theory shown to its right. This theory has syn-
tactic symmetries corresponding to the symmetries
of the square, e.g. interchanging x and y gives the
flip about the line x = y, and interchanging the first
and second lines of the theory flips the square about
the line x -- 1/2.

Many of the important symmetries in physics are
geometric. In other words, they are symmetries of the
space in which motion takes place. By viewing a pro-
gram as "moving" in its state space, we can take the
same approach as physicists: formulate geometric
symmetries of the space, and use them to derive
invariants, thereby obtaining laws governing the use
of the program.

4 The Mathematics of Symmetry:
Group Theory

Given a global invariant, the corresponding set of
transformations is closed under composition, and for
every transformation, its inverse is also a transfor-
mation that preserves the invariant. The identity
transformation is also always in the set. Thus, the set
of transformations form a group. Group theory is the
language of symmetries, and has assumed a central
role in modern physics. Group theory can also be
used to analyze the symmetries of a task and derive
invariants, which are then used to synthesize a pro-
gram. The following example is given in Benjamin
(1994). (This paper will not provide any background
in group theory. The reader is referred to any stan-
dard text.)

Let us begin by examining a simple task, the
2x2x2 Rubik’s Cube with 180-degree twists (we use
such a small example for brevity of presentation, but
the techniques are generally applicable, as will be
shown). Let the 8 cubicles (the fixed positions) in
2x2x2 Cube be numbered in the following way (8 is

the number of the hidden cubicle):

The goal configuration
for the 2x2x2 Rubik’s
Cube with 180-degree
twists.

Number the cubies (the movable, colored cubes)
similarly, and let the goal be to get each cubic in the
cubicle with the same number. For brevity of presen-
tation, we will consider only 180° twists of the cube.
Let f, r, and t denote 180° clockwise turns of the
front, right, and top, respectively (cubie 8 is held
fixed; Dorst (1989) shows that this is equivalent
factoring by the Euclidean group in three dimen-
sions). Note that this cubic numbering is just a short-
hand for labeling each cubic by its unique coloring.
This holds true for the Cube with only 180" twists, as
position determines orientation.

The actions for the Cube can be represented as a
group, which is generated by the actions f, r, and t.
We use group representation theory to represent f, r,
andtasma~ices:

O0100
01000
10000

f= 00000

00001
00010
00000

06
00
00
10
00
00
01

"1000000
0010000
0100000
0000001
0000100
0000010
0001000

O1
10
O0

t= O0
0001
0000
0000

00000
00000
10000
00100

000
010
001

These matrices are 7-dimensional, corresponding
to the 7 unsolved cubies. We find eigenvectors of
eigenvalue 1; these are the invariants. Any invariant
of all the actions is irrelevant and can be projected
away. To do this, we first change the coordinate sys-
tem so that the invariant eigenvectors are axes, and
then project to the noninvariant subspace, removing

38

all irrelevant information at once. In this case, the
eigenvectors are:

[Y] [:]r: , , for ~, = 1, and for ~ = -1

f: , , for~,= 1, and for~, =-1

t: , , for ~, = 1, and for L = -1

and the common invariant eigenvector is:

Note that we have shortened these eigenvectors to
save space; they are actually 7-vectors, with addi-
tional zeroes. We then change the basis. The appro-
priate matrix is:

"1 0

1 0

1 0

P= 10

10
1o
10

yielding Ehe new

.... 1 1

.... -1 1

-2IIn0
__

dd
0 0

0 0

0 0

0 0

.... 0 0 0

.... 0 0 0

0 0 0

1 1 1

-1 -1 1
7- 7-
-1 1 -1
7- ~ 7-
1 -1 -1

T T
representations for r, f, an~t:

-100 0
010 0

1 .~_~
oo~

1oo~ -~

000 0
000 0
000 0

00 0-
00 0

00 0

00 0

10 0
00 -1
0-I 0

"1
0

0

f-
0

0
0
0

0 0 0 000"
1 0 0 000

0
1 ,4~000
2 2

0 "f~ 1 000
2 2

0 0 0 00-1
0 0 0 010
0 0 0 -100

"10000 0()
01000 O0
00-100 O0

t= 00010 O0
00000-10
0000-100
00000 O1

This well-known procedure computes the irreduc-
ible invariants of a group. The irreducible factors of
dimension 1, 1, 2, and 3 are found along the diago-
nals of the matrices. Projecting to these subspaces
yields two subproblems:

r= f= t=

Ii!1 1] [o °iJ EolO i]r= f= 1 t=

- 0 0

On cubelets 1, 2, and 3, the subgroup generated is
{i. r. f. t. rt. tr}

On cubelets 4, 5, 6, and 7, the subgroup generated
is: { i, r, f, t, rf, rt, fr, ft, tr, tf, fir, fit, rtr, rff, frt.ftr,
ftf, trf, fir. rfrt, rftr, rftf. rtrf, rtfr }.

Using each set of matrices as generators, we get
two subgroups of actions, the second of which is a
faithful representation of the whole group. The first
subgroup moves cubies 1, 2. and 3, while holding 4.
5, 6. and 7 in position. The second subgroup moves
cubies 4, 5, 6, and 7 while holding 1, 2, and 3 in their
positions. We then repeat this procedure on the first
set of actions to obtain a full set of prime factors of
the group.

These factors can be assembled in different ways
to form serial algorithms. There is more than one
way to decompose this group, analogous to the dif-
ferent ways of listing the prime factors of a number.
Five serial algorithms are obtained in this way. We
examine one of them.

R = {i, frtr} {i, rtft} {i,t} {i,r.f}

39

One of { i,r,f } brings cubelet 3 into cubicle 3.
One of { i,t } brings cubelet 1 and 2 into their

places.
One of I i, rift] brings (4,6) and (5,7) in

proper planes (" the front face looks right’).

One of { i, frtr } finishes the Cube.
The above figure is read right-to-left; shaded

cubicles have been solved. "i" denotes the identity
(null) action.

Each step in the algorithm brings a subset of
cubies to its goal value. Subsequent steps hold that
pattern of cubies invariant. In this way, a divide-and-
conquer algorithm is synthesized. For example, the
first step solves cubicle 3. Knowing the colors of the
solved cubicle 8, we know the colors of cubicle 3 - it
has the same color as the bottom of cubicle 8, and
two new colors. There is only one such cubic, and it
must be in one of three locations: in its goal position,
or in cubicle 1 or 2. The system need only examine
those 3 values to determine what action to take. Once
cubicle 3 is solved, it need not be examined again.
The system next solves cubicles 1 and 2; it need only
examine either position to see if the proper cubic is
there; if so, it does nothing, otherwise, it twists the
top. Finally, the system uses the appropriate
sequence of actions to solve the remaining four cubi-
cles, by first examining the front face to see if it is a
uniform color, and then examining the top or right
face to see if it is of uniform color.

We have transformed the global 7-dimensional
description of the Cube into a composition of local
descriptions, each characterized by a set of symme-
tries. This decomposition has average cost of 5.17,
whereas aa optimal solution is of average length
2.46. This is the usual cost of planning by decompo-
sition: the solution need not be optimal.

We see that there are two "subspaces" of cubies in
this Cube: one consisting of cubicles 1,2,3 and 8, and
the other of cubicles 4,5,6, and 7. For each subspace,
there is a subprogram that interchanges the cubies in
its cubicles while holding the cubies in the other sub-
space invariant, in exactly the same way that the X
and Z actions in TOH3 are independent controls. We
are thus justified in thinking of these two sets of
cubicles as independent subspaces. Recognizing the
symmetries that characterize such subspaces is
essential for synthesizing such algorithms.

5 The Mathematics of Local Symme-
tries: Inverse Semigroups

The previous section illustrates how the analysis
of global symmetries can be useful in synthesis.

However, global symmetries, and in general global
properties, are not sufficiently general. We must also
examine local symmetries, which are symmetries
between parts of a system, rather than of the whole
system. Local symmetries correspond to local invari-
ants, which are predicates that hold for some part of
a system, but not necessarily for the whole system.
An example is a loop invariant in a program, which
holds during the execution of the loop, but not neces-
sarily elsewhere. This is the sort of invariant more
often encountered in computing.

To handle local symmetries, we use a more gen-
eral theory than group theory: the theory of inverse
semigroups. A semigroup is a closed, associative
system, and an inverse semigroup has the additional
property that every action is invertible. The differ-
ence between a group and an inverse semigroup is
that the transformations in the group must be glo-
bally defined (they correspond to global symmetries)
whereas those in the inverse semigroup can be
defined on only part of the space, and are thus partial
functions on the space. Inverse semigroups are thus
more appropriate for reasoning about programming
constructs, e.g., rules, which can be defined only on
some variable bindings.

We want to understand the structure of the space
of possible formulations for a given model. Appro-
priate mathematical tools for this work come from
algebraic linguistics, which studies structural proper-
ties of languages and their transformations. A formu-
lation corresponds to a presentation of a semigroup.

In physical theories, space-time is represented in
terms of a coordinate system. Invariance under trans-
lation in time or space then becomes invariance
under coordinate change. Inverse semigroups possess
a similar notion of coordinate system, and we use
this in the same way.

We consider a system formulation M ffi (Q, A, 6)
to be a set A of actions defined as partial functions
on a state space Q, together with a mapping 5: Q x A

Q that defines the state transitions. We are not
concerned with the syntactic details of the encoding
of the actions A, but rather with which actions
should be labeled the same and should therefore be
considered instances of a common abstraction. In
other words, we are concerned with the algebraic
structure of A. Without loss of generality, we restrict
our attention to semigroups of partial 1-1 functions
on the state space Q (Howie, 1976). This formalism
is general, encompassing nondeterministic systems
and concurrent systems.

To analyze the structure of such a semigroup of

40

transformations, a usual step is to examine Green’s
relations (Lallement, 1979). Green’s equivalence
relations are defined as follows for any semigroup S:

aRb iff aSl=bS 1 aLb iff Sla=Slb

aJb iff SINS1 =SlbS 1 H=RnL

D=RL

where S1 denotes the monoid corresponding to S (S
with an identity element 1 adjoined). Intuitively, we
can think of these relations in the following way:
aRb iff for any plan that begins with "a", there exists
a plan beginning with "b" that yields the same behav-
ior; aLb iff for any plan that ends with "a", there
exists a plan ending with "b" that yields the same
behavior; aHb indicates functional equivalence, in
the sense that for any plan containing an "a" there is
a plan containing "b" that yields the same behavior;
two elements in different D-classes are functionally
dissimilar, in that no plan containing either can
exhibit the same behavior as any plan containing the
other.

Green’s relations organize the actions of a trans-
formation semigroup according to their functional
properties, and organize the states according to the
behaviors that can be exhibited from them. Utilizing
Green’s relations, Lallement defines a local coordi-
nate system:

Definition. Let D be a D-class of a semigroup, and let

Hx0 (LE A, 19 E P) be the set of H-classes con-
tained in D (indexed by their L-class and R-
class). A coordinate system for D is a selection of

a particular H-class H0 contained in D, and of ele-
ments qx0’ q’ r’ S1x0, rxo, ~0 E with~ EA, p EP
such that the mappings x ---> qxoxrxo and y --->
q’ z0Y r’ ~o are bijections from H0 to Hxo and from
H~0 to H0, respectively. A coordinate system for
D is denoted by [H0;{ (qxo’ q’ ’ "zp, rxp, r xp). ~ E A,
p E P}].

There may be more than one local coordinate sys-
tem for a D-class. Each coordinate system gives a
matrix representation in much the same way that a
coordinate system in a vector space gives a matrix
representation, permitting us to change coordinates
by performing a similarity transformation (inner
automorphism) in the usual way (the reader
referred to Lallement for details).

Each local coordinate system within the semi-
group expresses a distinct syntactic labeling of a sub-
system. Reformulation to improve computational
properties is done by transformation of coordinates
in the familiar manner (inner automorphisms). As
vary the coordinate system, each action varies

through an equivalence class of sequences of actions
- its reformulations.

Any property that is invariant under all local
coordinate transformations is an abstract property;
otherwise, it is an implementation property. In par-
ticular, the abstract syntactic formulations of inputs.
which should not reflect implementation distinctions,
can be determined by factoring a given semigroup by
its group of local coordinate transformations. The
quotient semigroup thus obtained is the abstract lan-
guage implemented in the given system, and the sys-
tem is decomposed into the product of the quotient
and the kernel, thereby facilitating analysis and syn-
thesis.

6 Example: The Towers of Hanoi

Let us number the nine states of the 2-disk Towers
of Hanoi as follows:

1
2

3

.1.$1 .t. I .L

6 8
5 9

Let us use representation TOH1. The two actions
X and Y generate a semigroup of 31 distinct partial
functions on the states. Green’s relations for this
semigroup are:

I 0 1 D1 x, xx, xxxDO
I I D2

xyx xy xyxx
xyxxyx xyxxy xyxxyxx
xyxxyxxyx xyxxyxxy xyxxyxxyxx

xxyx xxy xxyxx
xxyxxyx xxyxxy xxyxxyxx
xxyxxyxxyx xxyxxyxxy xxyxxyxxyxx

yx yxx
yxxyx

Y
yxxy yxxyxx

yxxyxxyx yxxyxxy yxxyxxyxx

There are three D classes, shown as the three sep-
arate large boxes. In each D class, the R classes are

41

rows and the L classes are columns, and they inter-
sect in the small boxes, which are H classes. Note
that DO and D1 consist of only one R class and one L
class, and hence one H class. The idempotents are in
bold type.

There are no nontrivial inner automorphisms of
DO and D1. The group of inner automorphisms of D2
is a cyclic group of order three. These coordinate
transformations are global within D2, but are local in
the semigroup. These inner automorphisms are calcu-
lated by the matrix techniques explained by Lalle-
ment [7]. A generator for this group is the
automorphism that maps xyx to xxy, xxy to yxx, and
yxx to xyx. Factoring D2 by this map gives:

Define z = case {
little disk left of large disk: xxy
little disk on large disk: xyx
little disk right of large disk: yxx }

where z is a new symbol.
This is representation TOH3. This representation

applies not only to the two-disk problem, but to all
Towers of Hanoi problems. This is seen by forming
free products of the semigroup with itself, amalgam-
ating the coordinate axes in all possible ways. There
are three free products of this semigroup with itself
that amalgamate coordinates: D2 can be identified
with itself, D1 with itself, and D2 with D1 (by map-
ping xxy, xyx, and yxx to x). These correspond to
identifying the moves of the larger disk of one copy
of the semigroup with the moves of the larger disk in
another copy, identifying the moves of the smaller
disk with the moves of the smaller disk, and identify-
ing the moves of the larger disk with the moves of
the smaller disk, respectively. The result of this con-
struction is the three-disk Towers of Hanoi, which is
viewed as three copies of the two-disk task running
concurrently.

From the logical perspective, this can be viewed
as composing three copies of a theory for the two-
disk Towers of Hanoi, to yield a valid theory for the
three-disk problem. Copies of the theory are joined
by unifying variables between theories. Two copies
joined at the middle disk will not suffice, as then the

largest disk could be placed on the smallest disk. A
third copy of the theory prohibits this. The purpose
of computing a coordinate system is that the coordi-
nate axes determine what to unify.

The interaction of these three smaller tasks yields
a set of relations. For example, consider moving the
middle disk one peg to the right. When considering
this disk as the larger disk in the task consisting of
the upper two disks, this move is xyxxy (in the state
when all disks are on the left peg), yxxyx (when the
smallest disk is to the right of the middle disk), or
xxyxxyxx. On the other hand, when considering this
disk as the smaller disk in the task consisting of the
lower two disk, this move is x (in the other copy of
the semigroup). This means that we add the relation
xyxxy = yxxyx = xxyxxyxx to the presentation of the
semigroup.

This method of composing larger tasks from
smaller ones guarantees that this decomposition gen-
eralizes to any Towers of Hanoi problem with n
disks, by considering a coordinate system for the
three-disk task, and forming free products with amal-
gamation in the same manner as before. These free
products with amalgamation will always reduce to
free products with amalgamation of coordinate sys-
tems of the two-disk task, so that by induction the
properties of the two-disk task determine the proper-
ties of all Towers of Hanoi tasks.

7 Example: A Robot Vehicle

This procedure has been applied to a number of
more interesting examples, including one given by
Nelson (1967). Consider a mobile robot or car mov-
ing on a smooth, 2-dimensional surface. The configu-
ration space of the car is an open submanifold of
Rz × T2, parameterized by (x, y, cp, 0), where x and

are the Cartesian coordinates of the center of the
front axle, q~ is the angle of the car measured coun-
terclockwise from the positive x-axis, and 0 is the
angle made by the front wheels with the car.

T is the torus generated as the angles vary
between -r~ and n, and 0 is constrained to vary

42

between -0ma x and 0max , which gives the submani-

fold of R2 x T2. The two control fields are:

Steer = ~ and

Drive= cos (cp + 0) ~-~ + sin (cp + 0) ~y + sin0~0.

Let S(t) and D(t) be the flows generated by Steer
and Drive, respectively. Each of these flows consti-
tutes a semigroup. The semigroup S of motions of the
car is generated by these two semigroups, together
with a set of commutation relations relating S and D,
e.g., if the driver turns the wheels a certain angle
then drives a certain distance, the car ends up where
it started.

We apply the same reformulation procedure used
on the previous example. The reformulation proce-
dure chooses a small piece of the configuration
space, such as a square Q large enough to permit the
car to maneuver to reach every configuration in the
square. Analyzing Green’s relations for these flows
in Q, the reformulation algorithm finds those sub-
semigroups of maximal symmetry in Q. These are the

circles in x-y space, the curves of constant 0 that
return to their starting point. The inner automor-
phisms of these spheres are the rotational symme-
tries, and factoring by this group gives the familiar
decomposition of planning the car’s motion into
planning position and then planning rotation. Synthe-
sis in the new representation is done by synthesizing
the path in the x and y dimensions, e.g., avoiding

obstacles, then lifting this path into the q~ dimension
by planning the necessary orientation changes, then
lifting this path into the 0 dimension by planning the
necessary turns of the steering wheel. This decompo-
sition applies to all surfaces that can be composed
from the base case (the squares) which include all the
usual roads, parking lots and garages, etc.

8 Related Work

Sacerdoti (1974), Knoblock et al. (1991),
Unruh & Rosenbloom (1989), among others, describe
techniques for building an abstraction hierarchy. For
example, in ABSTRIPS an ordering was imposed on
the state-description predicates; bringing the predi-
cates to their goal values in this order was viewed as
top-down search in a hierarchy of abstract problem
descriptions.

Niizuma & Kitahashi (1985) and Banerji & Ernst
(1977) describe techniques for projecting the states
to a quotient space. In this view, an equivalence rela-

tion is imposed on the states, and the equivalence
classes are the states in the quotient space. The only
actions retained in the new representation are those
that move between equivalence classes.

Zimmer (1990) and Benjamin et al. (1990)
describe ways for decomposing the actions. In this
approach, the set of sequences of actions is decom-
posed into two sets: those that are most relevant
(according to some criterion) for solving the prob-
lem, and those that are less relevant. This induces an
equivalence relation on the set of states, as in the
previously described approach; a difference is that
sequences of actions (macros) are used, rather than
actions. The decomposition procedure is then
repeated on the less relevant actions.

A similar approach is taken by Subramanian
(1987). who drops statements from a theory if the
reduced theory can still derive the goal statement;
the dropped statements are considered irrelevant. In
these approaches, the state space is reduced by
removing states that can no longer be reached by
actions (statements) retained in the representation
(theory). These approaches differ from the state pro-
jection approach mainly in the order in which states
and actions are reformulated. In the state projection
approach, a feature is chosen, inducing an equiva-
lence relation that factors the states and decomposes
the actions. In the action decomposition approach,
the sequences of actions are decomposed according
to some criterion, e.g., irrelevance, which induces an
equivalence relation on the states.

Korf (1983) and Riddle (1986) describe methods
for serializing the subgoals. Finding a set of serializ-
able subgoals for a problem permits solution of the
problem by solving each subgoal in order, which can
be viewed as a hierarchy of abstract goals. Korf
points out that this reduces the exponent of the
search, possibly resulting in a big gain in efficiency.

However, none of these authors have addressed
the problem in the general way described in this
paper. The reformulation techniques used by the
above authors merely elucidate the structure of a
given representation, and thus possess a serious limi-
tation: they must preserve the structure of the repre-
sentation, and are thus limited in the reformulations
that they can produce. Such techniques can only
remove extraneous information to uncover existing
structure in a given representation. If this structure is
not appropriate for efficient problem-solving, then
their techniques will be of little use.

For example, in ABSTRIPS (Sacerdoti, 1974) the
relevant predicates must already exist in the initial

representation, or numbers cannot be assigned to
them. In Subramanian’s work, if the theory is stated
in such a way that the irrelevant information is dis-
tributed among all the statements of the theory,
rather than concentrated in a subset of the state-
ments, then it cannot be dropped without rendering
the theory incapable of solving the task. TOH2 is an
example of such a representation. Earlier work by
Ernst & Goldstein(1982) achieved results by restrict-
ing the permissible strategies to a specific class.

In contrast, reformulation by factoring by the
group of coordinate transformations is fully general,
as it applies to any semigroup of transformations on
a state space. The only projects that are similar in
scope to the research described in this paper are
those of Lowry (1987, 1987a) and van Baalen (1989,
1992), both of whom use reformulation techniques
that can modify structure in a general way. Their
research is not in disagreement with the ideas pre-
sented in this paper. However, the techniques and
results of this research project are very distinct from
Lowry’s and van Baalen’s. The use of semigroup
coordinate systems gives a formal yet intuitive
understanding of representations, and yields new
insights, such as viewing the n-disk Towers of Hanoi
as composed of concurrent copies of the 2-disk task,
which leads to the extension of the abstract proper-
ties of the 2-disk task to the general case.

9 Summary

Subgoal decompositions are crucial for effective
planning and learning, but often the useful decompo-
sitions are obscured by implementation detail. This
work views a representation of a theory of actions as
a language, and analyzes its structure to identify
those properties that are invariant under reformula-
tion. These properties include the subgoal decompo-
sitions.

The advantage of planning in a decomposed for-
mulation is obvious: the size of the search space is
no longer the product of the sizes of the search
spaces for each component of the decomposition, but
instead is the sum. A similar advantage holds for
learning: once the formulation has been decomposed,
each component can be learned independently of the
others, thereby reducing the size of the hypothesis
space to the sum of the sizes of the hypothesis spaces
for each component. For example, learning the fast-
est way to change orientation is independent of
learning the most direct path between two positions.
It is possible for a problem-solver to learn different
dimensions by different means, e.g. learning the path
between two positions by being told and learning

how to turn by exploration.
In addition, the fact that the decomposition of the

base case scales up to large systems guarantees that
anything learned in one part of the system applies
everywhere. This follows because every large system
in the class generated by the base case is locally
everywhere isomorphic to the base case.

10 Acknowledgements

This research was supported in part by NSF grant
9509537, and in part by AFOSR grant F49620-93-C-
0063.

References

Benjamin, D. Paul, (1994). Formulating Patterns
Problem Solving, Annals of Mathematics and
Artificial Intelligence, special issue on Mathe-
matics in Pattern Recognition, Vol. 9, No. III-IV.

Benjamin, D. Paul, (1992). Reformulating Path Plan-
ning Problems by Task-preserving Abstraction,
Journal of Robotics and Autonomous Systems, 9,
pp. 1-9.

Howie, J. M., (1976). An Introduction to Semigroup
Theory, Academic Press.

Lallement, Gerard (1979). Semigroups and Combina-
torial Applications, Wiley & Sons.

Nelson, Edward, (1967). Tensor Analysis, Mathemat-
ical Notes, Princeton University Press.

Petrich, Mario, (1984). Inverse Semigroups, John
Wiley & Sons, Inc., New York.

44

