
Moving a robot starting from a theory of actions

Giuseppe De Giacomo and Luca Iocchi and Daniele Nardi and Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Universit£ di Roma "La Sapienza"
Via Salaria 113, 00198 Roma, Italy

{degiacomo, iocchi, nardi, rosat i}~dis, uniromal, it

Abstract

The paper describes an approach to reasoning about
actions and planning that starting from a logical for-
malization arrives at the realization of an actual agent,
the mobile robot "Tino". The reasoning tools al-
low the robot to derive plans from the knowledge
about the environment and the action specification,
while its reactive capabilities allow it to execute its
plans in the real world. The formalization is based on
the propositional dynamic logics framework, but ex-
ploits the correspondence that exists between propo-
sitional dynamic logics and description logics, to care-
fully weaken the logical inference process in order to
keep the reasoning tools of the robot both effective and
efficient. Such reasoning tools are then implemented
by making use of a general knowledge representation
system based on description logics, namely the system
CLASSIC.

Introduction
In Artificial Intelligence there has always been a great
interest in the design of agents that can exhibit dif-
ferent forms of intelligent behavior. A mobile robot
can be regarded as an intelligent agent, that is de-
signed both to achieve high-level goals and to be able to
promptly react and adjust its behavior based on the in-
formation acquired through the sensors. In the recent
past, much attention has been directed to the reactive
capabilities of agents in general, and mobile robots in
particular. Reactive capabilities are often necessary to
cope with the uncertainties of the real-world. How-
everl the capabilities of reasoning about actions and
high-level planning are important as well. In this re-
spect, we consider two aspects particularly relevant:
the integration of the reactive and planned activities,
and the possibility of using a general knowledge repre-
sentation system, where one can design the agent by
relying on the general purpose tools provided by the
system. In this paper we mostly focus on the latter
issue. Indeed we address high-level planning for a mo-
bile robot within the framework of Propositional Dy-
namic Logics (PDLs), and we rely on a tight correspon-
dence that exists between PDLs and Description Logics
(DLs). In this way we are able to relate planning

PDLs with an implementation that uses the knowledge
representation system CLASSIC (Borgida e~ al. 1989,
Borgida & Patel-Schneider 1994), which is based on
DLs. However, we also address the integration of the
proposed framework within an actual mobile robot. In-
deed, starting from a logical formalization we arrive at
the realization of an Erratic-based mobile robot, which
is equipped with wheels and sonars (Konolige 1995).
We named our mobile robot agent "Tino" and demon-
strated it at the 1995 Description Logic Workshop.

The natural way to approach the design of a system
for plan generation in a knowledge representation sys-
tem has its roots in the work on deductive planning.
The idea is that a plan can be generated by finding
an existence proof for the state where the desired goal
is satisfied (Green 1969). However, this approach has
mostly been considered at a theoretical level, since the
computational cost of deriving a plan from a logical
specification has always been considered too high. We
face this difficulty, that arises in the PDLs-framework
as well, by making use of the mentioned correspon-
dence to take advantage of the work on DLs, which
has paid a special attention to the trade-off between
expressivity and efficiency of reasoning.

The basic elements of our work originate from the
proposals in (Rosenschein 1981) of using the PDLs
framework for reasoning about actions and deductive
planning. In this setting PDLs formulae denote prop-
erties of states, and actions (also called programs) de-
note state transitions from one state to another. The
dynamic system itself is described by means of ax-
ioms. Two kinds of axioms are introduced, "static ax-
ioms" that describe background knowledge, and "dy-
namic axioms" that describe how the situation changes
when an action is performed. In our formalization we
closely follow this setting. However, since we want our
robot to reason about actions efficiently, we use the
correspondence between PDLs and DLs to rephrase
the above setting in DLs, so as to exploit the large
body of research on the trade-off between expressivity
and efficiency of reasoning. Notably, from this research
it is known that the typical form of dynamic axioms
is problematic wrt efficiency (such axioms are "cyclic"

55

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

in the DLs terminology). Hence we have reinterpreted
dynamic axioms by means of the so-called procedu-
ral rules. By relying on the epistemic interpretation
of these rules given in (Donini el al. 1994) we have
been able to define a setting which provides both a
novel epistemic representation of dynamic axioms and
a weak form of reasoning, which makes the implemen-
tation of the deductive planning approach computa-
tionally feasible.

The paper is organized as follows. After reviewing
the main technical points upon which our work relies,
we describe our setting for the representation of dy-
namic systems and address reasoning in this setting,
pointing out the connections with the actual realiza-
tion in CLASSIC. We finally describe the implementa-
tion of "Tino", which includes a simple monitor and a
module for the exchange of information with the un-
derlying low-level software.

Preliminaries
In this section we present the correspondence between
propositional dynamic logics (PDLs) and description
logics (DLs) and the various technical notions upon
which our formalization is based.

The correspondence between PDLs and DLs, first
pointed out by Schild (Schild 1991), is based on the
similarity between the interpretation structures of the
two kinds of logics: at the extensional level, states in
PDLs correspond to individuals (members of the do-
main of interpretation) in DLs, whereas state tran-
sitions correspond to links between two individuals.
At the intensional level, propositions correspond to
concepts, and actions correspond to roles. The cor-
respondence is realized through a (one-to-one and
onto) mapping from PDLs formulae to DLs concepts,
and from PDLs actions to DLs roles. For a de-
tailed presentation of such a mapping and more gen-
erally of the correspondence we refer to (Schild 1991,
De Giacomo & Lenzerini 1994). For our purposes it
suffices to consider DLs concepts and roles as syntac-
tic variants of PDLs formulae and actions respectively.

We present our formalization using directly the no-
tation of DLs, in order to make it easier to relate the
formalization to the actual implementation in CLAS-
SIC, which is a DLs based knowledge representation
system.

Technically we base our work on a simple DL which
is extended with a modal operator interpreted in terms
of minimal knowledge as in (Donini e~ al. 1994,
Donini, Nardi, & Rosati 1995), and thus denoted as
K. We call /CD/: the epistemic language and simply
l)/: the language obtained dropping the epistemic op-
erator. The concept expressions of :DE coincide with
those of .T£:- (Brachman & Levesque 1984) and are
expressible in the system CLASSIC. An epistemic ex-
tension of CLASSIC has been proposed in (Becket
Lakemeyer 1994), but it is restricted to answering epis-
temic queries to a first-order knowledge base.

The syntactic definition of/~:D£ is as follows (C,
denote concepts, Q denotes a role, A denotes a primi-
tive concept and R a primitive role):

C, D , A I (primitive concept)
T I (top)
C M D [(intersection)
VQ.C[(universal quantification)
3Q.TI (existential quantification)
KC (epistemic concept)

Q ----. nI (primitive role)
KR (epistemic role).

The semantics of/C:D/: is based on the Common Do-
main Assumption (i.e. every interpretation is defined
over a fixed domain, called A).

An epistemic interpretation is a pair (2:, 142) where
l/Y is a set of possible worlds, Z is a possible world
such that Z ¯ l/V, such that the following equations
are satisfied:

(C n D)z’w
w

Notice that non-epistemic concepts and roles are given
essentially the standard semantics of DLs, conversely
epistemic sentences are interpreted on the class of
Kripke structures where worlds are interpretations,
and all worlds are connected to each other, i.e. the
accessibility relation is universal.

As usual a /(;:DE-knowledge base ~P is a pair @
(T,A), where T, called the TBox, is a set of inclusion
statements of the form:

CUD

where C, D ̄ /~:D/:, and A (the ABoz) of is a set of
membership assertions, of the forms:

C(a), R(a,

where C, R ̄ /~:D/: and a, b are names of individu-
als (different names denote different individuals). The
truth of inclusion statements and membership asser-
tions in an epistemic interpretation is defined as set
inclusion and set membership, respectively.

An episiemic model for an/~:D£-knowledge base
is a a set of interpretations 142 such that for each world

56

2: E W, every sentence (inclusion or membership as-
sertion) of ¯ is true in the epistemic interpretation
(Z, W).

A preferred model for ¢2 is an epistemic model W
which is a maximal set of worlds, that is no world can
be added to W obtaining another (greater) epistemic
model for @.

A K::D£-knowledge base ̄ is said to be satisfiable
if there exists a preferred model for q~, unsatisfiable
otherwise, q~ logically implies an assertion ~r, written
q~ ~ c~, if ~ is true in every preferred model for ~.

Using the epistemic operator, it is possible to pro-
vide a characterization of procedural rules as epistemic
sentences of the form:

KCED

where C, D are concept expressions of :DE and there
are no other occurrences of the epistemic operator in
the knowledge base. Notice that a knowledge base in
which the epistemic operator occurres only in rules of
the above form has a unique preferred model. More-
over, reasoning can be performed by constructing a
knowledge base including all the consequences of the
rules, called first-order extension, which can be used
for answering queries in place of the epistemic knowl-
edge base (see (Donini et al. 1994)). We point out that
in our formalization the use of the epistemic operator
will be restricted to the sentences expressing dynamic
axioms. Such sentences are obtained by exploiting the
above notion of procedural rule.

Reasoning about actions
Following a common approach in reasoning about ac-
tions, dynamic systems are modeled in terms of state
evolutions caused by actions. A state is a complete de-
scription (wrt to some logic/language) of a situation
the system can be in. Actions cause state transitions,
making the system evolve from the current state to the
next one.

In principle we could represent the behavior of a
system (i.e. all its possible evolutions) as tr ansition
graph where:
¯ Each node represents a state, and is labeled with the

properties that characterize the state.

¯ Each arc represents a state transition, and is labeled
by the action that causes the transition.

Note, however, that complete knowledge of the behav-
ior of the system is required to build its transition
graph, while in general one has only partial knowledge
of such behavior. In deductive planning such knowl-
edge is phrased in axioms of some logic (e.g. PDLs
(Rosenschein 1981, De Giacomo & Lenzerini 1995)
situation calculus (R.eiter 1993)). These axioms select
a subset of all possible transition graphs, which are
similar since they all satisfy the same axioms, but yet
different wrt those properties not imposed by the ax-
ioms. The actual behavior of the system is indeed de-
noted by one of the selected graphs, however which one

is not known. Hence one has to concentrate on those
properties that are true in all the selected graphs, i.e.
those properties that are logically implied by the ax-
ioms.

Following R,osenschein (Rosenschein 1981) two kinds
of axioms are distinguished:

¯ Static axioms are used for representing background
knowledge, that is invariant with respect to the exe-
cution of actions. In other words, static axioms hold
in any state and do not depend on actions.

¯ Dynamic axioms are introduced to represent the
changes actions bring about. Typically they have
the following form1:

C::~ [RID

where R is an action, C represents the preconditions
that must hold in a state, in order for the action R
to be executable; D denotes the postconditions that
are true in the state resulting from the execution of
R in a state where preconditions C hold.

In deductive planning one is typically interested in
answering the following question: "Is there a sequence
of actions that, starting from an initial state leads to
a state where a given property (the goal) holds?". As-
suming actions to be deterministic this is captured by
the following logical implication (here we phrase it in
PDLs):

r t= s =>- (1)
where: (i) F is the set of both static and dynamic
axioms representing the (partial) knowledge on the
system; (ii) S is a formula representing the (partial)
knowledge on the initial situation; (iii) G is a formula
representing the goal, which is, in fact, a (partial) de-
scription of the final state one wants to reach; (iv)
(c~*/G is a formula that expresses that there exists
finite sequence of actions (here ~ stands for any action)
leading to a state where G is satisfied.

From a constructive proof of the above logical impli-
cation one can extract an actual sequence of actions (a
plan) that leads to a atate where the goal is satisfied.

Observe that in this setting one may have a very
sparse knowledge on the system (say a few laws (ax-
ioms) one knows the system obeys) and yet be able
to make several non-trivial inferences. Unfortunately,
this generality is paid by a high computational cost
(typically PDLs are EXPTIME-complete (Kozen
Tiuryn 1990)).

Instead of referring to the subset of transition graphs
determined by unrestricted axioms, we lower the com-
putational cost by recovering the ability of representing
the behavior of the system by means of a graph, called
in the following partial transition graph. The partial
transition graph is an incomplete description of the

1The validity of (R)T is also assumed in (Rosenschein
1981)

57

actual transition graph where certain states and tran-
sitions may be missing, and the properties of the states
present in the graph may be only partially specified.

As we shall see, the notion of partial transition graph
is going to be captured by dynamic axioms of a spe-
cial form involving the epistemic operator, and by the
notion of first-order extension (FOE).

Representation of actions in JU~/:
In our ontology, an agent is, at any given point, in a
certain state (roughly corresponding to the position of
the robot).

Properties of states are represented as concept ex-
pressions of 7)£:. This means that a concept expression
denotes a property that may hold in an state.

Instead, actions are represented as DE roles. In fact
we distinguish two kinds of roles: static-roles which
represent the usual notion of role in DLs and can be
useful to structuring properties of states; action-roles
which denote actions (or better state transitions caused
by actions) and are used in a special way.

The behavior of the agent is described by means of
both static axioms and dynamic axioms. In principle,
axioms could be represented as inclusion statements of
the form:

CFD

where C and D are concepts of 7)£:. Notice that inclu-
sion statements of the above kind represent the most
general form of TBox, since concept definitions can
be treated as double inclusions. However, reasoning
with general inclusions is intractable and restrictions
are normally considered. For example, concepts on the
left-hand side are typically required to be primitive,
and cycles (recursive inclusions), which are especially
problematic from the computational point of view, are
not allowed (see for example (Buchheit et al. 1994)).

Therefore we model static axioms as acyclic inclu-
sion assertions and concept definitions, not involving
action-roles. While we model the dynamic axioms,
which are inherently cyclic, by making a special use
of the epistemic operator provided by)U/)£: in order
to weaken the reasoning capability and thus gain effi-
ciency.

Specifically dynamic axioms are formalized through
epistemic sentences of the form:

KC E 3KR.T ~VR.D

which, as we shall see, can be intuitively interpreted as:
"if C holds in the current state x of the partial tran-
sition graph, then there exists an R-successor y in the
partial transition graph, and for all the R-successors of
x (and hence for y) D holds".

Given an initial state denoted by the individual init
and a concept S describing our knowledge about the
such an initial state. The partial transition graph can
be generated as follows. We start from the initial state
init, which is going to be the first state included in the

partial transition graph. On this state certain proper-
ties, namely those denoted by S, are known to hold.
Hence we can apply the dynamic axioms whose precon-
ditions C hold in init - i.e. C(init) must be implied by
S plus the static axioms. By applying a dynamic axiom
in init we get an R-successor s in the partial transition
graph, and in the new state s we know that D holds.
We can now apply the dynamic axioms whose precon-
ditions hold in s, and so on. Note that if two states
of the partial transition graph have exactly the same
properties, i.e. the same concepts hold, then we can
collapse the two states into one. Therefore, to avoid
redundancies, we can assume that in the final partial
transition graph all states are in fact distinguished.
We shall see that the notion of first-order extension
exactly captures this process. Moreover it ensures us
that there exists a unique partial transition graph.

Notably the dynamic axioms cannot be used in the
reverse direction for contrapositive reasoning. This
weakening is essential to lower the computational cost
of reasoning in our formalism.

We remark that, although at first sight it may not be
apparent, in our formalization actions are determinis-
tic. Indeed the only existential we allow for actions is
unqualified (3R.T). Hence we do not have the ability
to say that something holds in one R-successor state
and doesn’t in another one.

In our CLASSIC implementation static axioms be-
come CLASSIC inclusion assertions and concept defini-
tions (cycles are not allowed), while dynamic axioms
become CLASSIC rules of the form

C => (AND (ALL R D) (FILLS R

where a is an individual denoting the state reached as a
result of the action execution. In this way, we identify
all successor states resulting by applying a dynamic
axiom, which results in a sound reasoning method as
long as the following condition holds: for each action
R the precondilions C in dynamic axioms involving R
are disjoint from each other. Indeed, this condition
implies that in every state at most one of the precon-
ditions C for each action R is satisfied. Therefore the
only concept that holds in a R-successor, obtained by
applying the dynamic axiom KC _E 2KR.T [7 VR.D, is
D. Hence, we can identify all such successor states and
give an explicit name (using FILLS) to such a succes-
sor without compromising the soundness of reasoning.
In the next section we shall see that this condition
causes the generation of a number of new known indi-
viduals which is at most linear in the number of rules,
and hence it also keeps the CLASSIC implementation
tractable.

Reasoning
We now formulate the planning problem in the K:/)£:
setting. In the following, we use Fs to indicate the set
of static axioms and FD to indicate the set of dynamic
axioms; S stands for the concept describing the prop-

58

erties of the initial state and G stands for the concept
corresponding to the goal.

A plan exists for the goal G if there exists a finite
sequence of actions which, from the initial state, leads
to a state satisfying the goal. This condition can ex-
pressed in our setting by a logical implication which is
similar to (1), namely:

(Fs U FD, {S(init)}) ((3Ka)*.KG)(init) (2

where (3Kc~)*KG stands for any concept expression of
the form

3KR1.2KR2 SKR~.KG

in which n > 0 and each Ri is an action-role. Intu-
itively, condition (2) checks for the existence of a state
of the partial transition graph in which the goal is sat-
isfied.

It can be shown that condition (2) holds iff the K;7)£-
knowledge base

(Fs U FD U {T E -,KG}, {S(init)}) (3)
is unsatisfiable. Informally, this is due to the fact that
(3) is unsatisfiable iff there exists a named state
every model where G holds. However, the only way for
G to hold in every model is either to be valid and in this
case it would hold in particular on init, or there must
be a sequence in the partial transition graph leading
to a state where G holds. Hence we can conclude that
(3) implies (2). The converse is immediate to verify.

Now, because of its restricted form, the knowledge
base E = (Fs U FD, {S(init)}) is trivially satisfiable.
Hence, condition (3) is verified iff for each preferred
model Ad for E, there exists an individual x such that
M ~ a(x).

We point out that in general the K:Ol:-knowledge
base E = (Fs U FD, {S(init)}) has many preferred
models, which are distinguishable even up to renaming
of individuals. Nevertheless, we can still follow the ap-
proach defined in (Donini et al. 1994) to capture the
notion of minimization of the information the agent is
able to infer from its initial knowledge. Specifically, we
can give a notion of completion of E, in terms of a first-
order extension of the epistemic knowledge base, based
on the observation that a rule should always generate
a new individual, unless such an individual is exactly
characterized by the same properties of another exist-
ing individual.

The first-order extension (FOE) of a knowledge base
E = (Fs U FD, {S(init)}) is thus introduced with
the aim of providing a characterization of the knowl-
edge that is shared by all the preferred models of E.
FOE(E) is computed by the algorithm reported in Fig-
ure 1, in which POST(E, R, x) denotes the effect of the
application of the rules of E involving the action-role
R to the individual x, i.e. the set of postconditions
(concepts) of the rules which are triggered by x, and
CONCEPTS(E, i) denotes the set of concepts verified
by the individual i in E. Formally,

POST(K, R, x) = {Di I(KCi 3KR.T~YR.Di) E EA
E

and

CONCEPTS(K,i) = {DIE ~ D(i)}

It can be shown that for every knowledge base E
the first-order extension is unique, that is, every or-
der of extraction of the individuals from the set SET-
IND produces the same set of assertions, up to renam-
ing of individuals. Moreover, it is easy to see that
the algorithm terminates, that is, the condition SET-
IND = q} is eventually reached, since the number of
created individuals is bounded to the number of dif-
ferent conjunctions of postconditions of the rules, i.e.
2~, where n is the number of rules in E. Finally,
the condition cogCEPTS((Fs,Assertionsl,l)
CONCEPTS((Fs,Assertions’),j) can be checked
by verifying whether (Fs,Assertions) ~ C(l)
(Fs, Assertions’) ~ C(j), for each concept C obtained
as a conjunction of the postconditions of the rules in
FD.

Informally, the algorithm, starting from the initial
individual init, applies to each named individual the
rules in the set FD which are triggered by such indi-
vidual. A new individual is thus generated, unless an
individual with the same properties had already been
created. This corresponds in the transition graph to
the creation of a new node (state) caused by the execu-
tion of an action, unless such a node is already present
in the graph. In this way the effect of the rules is com-
puted, thus obtaining a sort of "completion" of the
knowledge base.

Observe that the above notion of first-order exten-
sion captures the intuition underlying partial transi-
tion graphs.

Since the first-order extension of E represents the
information which must hold in any preferred model
for E, up to individual names, we can establish the
following property:

Theorem 1 There exists an individual x such that

FOE(K) ~ G(x) (4)

if and only if, for each preferred model A~ for E, there
exists an individual x such tha~ All ~ G(x).

By the above property, we can solve the planning
problem (2) by solving (4) on the first-order knowl-
edge base FOE(K). Notice that the number of rule
applications required to verify condition (4) is in gen-
eral exponential in the number of rules appearing in E,
since the number of new individuals generated in the
first-order extension is 2~ in the worst case, where n is
the number of rules in E. Under the assumption that
for each action-role R the preconditions C in the rules
involving R are disjoint from each other, the number of
individuals generated by the FOE algorithm is at most

59

equal to the number of rules, since every application
of the same rule generates the same individual.

As shown in the previous section, this condition must
hold for the correctness of our CLASSIC implementa-
tion. In fact, in the CLASSIC setting, rules are actually
used to extend the knowledge base just like in the first-
order extension. Since in the CLASSIC implementation
we use the FILLS construct to simulate the existential
quantification on epistemic roles, each individual name
must appear in the rules, therefore the cardinality of
the set of individuals in the CLASSIC knowledge base is
linearly bounded to the number of rules. Consequently,
we cannot compute the FOE of a/~7)Z:-knowledge base
E in the general case using CLASSIC.

The mobile robot "Tino"

Our planning methodology has been practically tested
on the Erratic base (Konolige 1995) and demonstrated
at the 1995 Descriptions Logic Workshop. The ba-
sic approach to the software architecture of the robot
allows one to reach a good balance between reactive
behavior and high-level goal achievement.

This is obtained by a fuzzy controller which is re-
sponsible of obstacle avoidance and, more generally, of
reactive actions, while the robot is trying to achieve a
high-level goal such as reaching the next door in the
corridor. A critical aspect of the multi-level approach
to the robot software architecture is in the exchange of
information between the different layers. In our case
we need to represent the information about the map
into a knowledge base of static axioms and to represent
the action descriptions into a set of rules. This is actu-
ally achieved by analyzing the low-level representation
of the robot and constructing a CLASSIC knowledge
base. For example given the map of Figure 2 we ob-
tain the knowledge base of Figure 3. To this end we
have implemented a module that takes as input the
internal map and generates the knowledge base.

The overall system is constituted by a plan genera-
tion module, whose implementation follows the above
described setting and a monitor, which handles the
communication between the planner and the fuzzy con-
troller.

The planner is activated by adding to the knowl-
edge base the (partial) description of the initial state.
CLASSIC rules are thus triggered, and their propaga-
tion eventually generates a state where the goal is sat-
isfied. The plan is then extracted by the explanation
facility associated with the rules, which allows for an
automatic generation of a graph (essentially the par-
tial transition graph) with all the paths from the initial
state to the final state. An example of the explanations
and their associated graph are given below, in Figure 4
and Figure 5, respectively. The plan to be sent to the
robot is then selected by finding the path between the
initial state and the final state which is minimal in
terms of the number of actions.

The monitor calls the planner, activates the execu-
tion of the plan and controls it. This is achieved by
combining each action with the reactive behaviors for
obstacle avoidance, through the underlying "blending"
mechanism (see (Saffiotti, Konolige, & Ruspini 1995)).
By setting a time out for the execution of each ac-
tion the monitor detects the plan failure and provides
a justification for the failure such as "door closed". In
such a case the system can re-plan by updating the
knowledge base and, consequently, the internal repre-
sentation.

Conclusion
The goal of our work was to exploit the reasoning
services offered by a knowledge representation system
based on description logics to the task of plan genera-
tion.

We have presented a formalization of planning based
on Description Logics and described an implementa-
tion of the proposed framework in the system CLASSIC.
Previous work (Devambu & Litman 1991) aimed
using CLASSIC for reasoning about plans, by introduc-
ing a formalism for describing plans, while the present
work is focussed on plan generation and relies on the
standard features of the system. Our implementation
is actually used to plan the actions of the mobile robot
Erratic, capable of integrating reacting behavior with
action execution.

One original contribution of our work is in the idea
of using the rule mechanism, and its associated inter-
pretation in terms of minimal knowledge, to weaken
the assumptions underlying a first-order formalization
of actions. In this way a plan can be obtained by a for-
ward reasoning process, that is weaker than ordinary
deduction, but semantically justified and computation-
ally feasible. We are currently addressing other aspects
of reasoning about actions, such as the treatment of
perception actions and the frame problem.

References
Becker, A., and Lakemeyer, G. 1994. Epistemic
queries in CLASSIC. In Proceedings of the Eighteenth
German Annual Conference on Artificial Intelligence
(KI-94). Springer-Verlag.

Borgida, A., and Patel-Schneider, P. F. 1994. A se-
mantics and complete algorithm for subsumption in
the CLASSIC description logic. Journal of Artificial
Intelligence Research 1:277-308.

Borgida, A.; Brachman, R. J.; McGuinness, D. L.;
and Alperin Resnick, L. 1989. CLASSIC: A structural
data model for objects. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, 59-67.

Brachman, R. J., and Levesque, H. J. 1984. The
tractability of subsumption in frame-based descrip-
tion languages. In Proceedings of the Fourth National

6O

Conference on Artificial Intelligence (AAAI-84), 34-
37.

Buchheit, M.; Donini, F. M.; Nutt, W.; and Schaerf,
A. 1994. Terminological systems revisited: Termi-
nology -- schema + views. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-94), 199--204.
De Giacomo, G., and Lenzerini, M. 1994. Boost-
ing the correspondence between description logics and
propositional dynamic logics. In Proceedings of the
12th National Conference on Artificial Intelligence,
205-212.
De Giacomo, G., and Lenzerini, M. 1995. Enhanced
propositional dynamic logic for reasoning about con-
current actions (extended abstract). In Working notes
of the AAAI 1995 Spring Symposium on Extending
Theories of Action: Formal and Practical Applica-
tions, 62-67.
Devambu, P., and Litman, D. 1991. Plan-based ter-
minological reasoning. In Allen, J.; Fikes, 1%.; and
Sandewall, E., eds., Proceedings of the Second In-
ternational Conference on the Principles of Knowl-
edge Representation and Reasoning (KR-91), 128-
138. Morgan Kaufmann, Los Altos.

Donini, F. M.; Lenzerini, M.; Nardi, D.; Nutt, W.;
and Schaerf, A. 1994. Queries, rules and defini-
tions. In Foundations of Knowledge Representation
and Reasoning. Springer-Verlag.
Donini, F. M.; Nardi, D.; and 1%osati, 1%. 1995. Non
first-order features in concept languages. In Proceed-
ings of the Fourth Conference of the Italian Associ-
ation for Artificial Intelligence (AI*IA-95), Lecture
Notes In Artificial Intelligence. Springer-Verlag.
Green, C. 1969. Theorem proving by resolution as
basis for question-answering systems. In Machine In-
telligence, volume 4. American Elsevier. 183-205.
Konolige, K. 1995. Erratic competes with the big
boys. AAAI Magazine Summer:61-67.
Kozen, D., and Tiuryn, J. 1990. Logics of pro-
grams. In van Leeuwen, J., ed., Handbook of Theo-
retical Computer Science. Elsevier Science Publishers
(North-Holland), Amsterdam. 790-840.
1%eiter, R. 1993. Proving properties of states in the
situation calculus. Artificial Intelligence 64:337-351.
1%osenschein, S. 1981. Plan synthesis: a logical ap-
proach. In Proc. of the 8th Int. Joint Conf. on Arti-
ficial Intelligence.
Saffiotti, A.; Konolige, K.; and 1%uspini, E. 1995.
A multivalued logic approach to integrating plan-
ning and control. Technical report, S1%I International,
Menlo Park, CA.
Schild, K. 1991. A correspondence theory for termi-
nological logics: Preliminary report. In Proceedings
of the Twelfth International Joint Conference on Ar-
tificial Intelligence (IJCAI-91), 466-471.

61

ALGORITHM FOE

INPUT: G = (rs U PD, {S(init)})
OUTPUT: FOE(G)

begin
SET-IND ---- {init};
SET-ALL-IND ---- {init};
Assertions---- {S(init)};
repeat

ind = choose(SET-IND);
for each action-role R do
begin

j ---- NEW individuM name;
Assertions’ -=Assertions o (R(ind, j)}U

{D,(j)]D~ e POST((Fs U FD, Assertions), R, ind)};
if there exists an individual l E SET-ALL-IND such that

CON C E PT S((F s , Assertions), l) = CON C E PT S((F s , Assertions’),
then Assertions = Assertions U R(ind, l)
else
begin

Assertions = Assertions’;
SET-IND = SET-IND O{j}
SET-ALL-IND -- SET-ALL-IND U{j}

end
end;
SET-IND -- SET-IND -{ind}

until SET-IND -- 0;
return (Fs, Assertions)

end;

Figure 1: Algorithm computing FOE(E)

I I
I Corridor " " "" ~ ¯ I

/ CloseToDoor \
I

Door

Figure 2: A simple environment

62

; Role definitions
(cl-define-primitive-role ’Followcorr)
(cl-define-primitive-role ’Enter)
(cl-define-primitive-role ’Exit)
(cl-define-primitive-role ’NextDoor :attribute T)

; Concept definitions
(cl-define-disjoint-primitive-concept ’Corridor ’classic-thing ’state)
(cl-define-disjoint-primitive-concept ’Room ’classic-thing ’state)
(cl-define-disjoint-primitive-concept ’Door ’classic-thing ’state)
(cl-define-concept ’CloseToDoor ’(AND Corridor (FILLS NextDoor xDoor)))

; Dynamic axioms
(cl-add-rule ’rl @CloseToDoor ’(ALL Enter Room)
(cl-add-rule ’sl @CloseToDoor ’(FILLS Enter xRoom)

(cl-add-rule ’r2 @Corridor ’(ALL Followcorr CloseToDoor)
(cl-add-rule ’s2 @Corridor ’(FILLS Followcorr xCloseToDoor)
(cl-add-rule ’r3 @Room ’(ALL Exit CloseToDoor)
(cl-add-rule ’s3 @Room ’(FILLS Exit xCloseToDoor)

; Individuals

(cl-create-ind ’xDoor ’Door)
(cl-ind-add-fillers @xRoom @NextDoor (list @xDoor))

; Initial state
(cl-create-ind ’xCorridor ’Corridor)

Figure 3: The Classic knowledge base

@i{XRoom} ->
primitives: (@c{Room} @c{CLASSIC-THING})

@c{Room} : PRDPAGATION: from individual: @i{XCloseToDoor};
through role: @r{Enter}.

@i{XCloseToDoor} ->
primitives: (@c{CloseToDoor} @c{Corridor} @c{CLASSIC-THING})

@c{Corridor} : PROPAGATION: from individual: @i{XCorridor};
through role: @r{FollowCORR}.
Information propagated:

@c{CloseToDoor}.
PROPAGATION: from individual: @i{XRoom};

through role: @r{Exit}.
Information propagated:

@c{CloseToDoor}.
PROPAGATION: from individual: @i{XCloseToDoor};

through role: @r{FollowCORR}.
Information propagated:

@c{CloseToDoor}.
@c{CloseToDoor} : PROPAGATION: from individual: @i{XCorridor};

through role: @r{FollowCORR}.
PROPAGATION: from individual: @i{XRoom};

through role: @r{Exit}.

PROPAGATIDN: from individual: @i{XCloseToDoor}:
through role: @r{FollowCORR}.

@i{XCorridor} ->
primitives: (@c{Corridor} @c{CLASSIC-THING})

@c{Corridor} : TOLD-INFO

Figure 4: The Classic explanation

63

FollowCorr

Figure 5: The action graph

64

