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Abstract

AI planners typically use a set of generalized operator
descriptions as a representation of the possible domain
actions. These operators are then selected and instan-
tiated to accomplish particular task goals. However, in
complex domains it may be difficult to enumerate all of
the operators, many of which may contain redundant
information. Adapting the planner to related domains
or to changes in the domain properties may require ex-
tensive modifications to update and maintain the oper-
ator descriptions. A more maintainable representation
is required for complex domains. This paper proposes
a technique called Operator Construction which can
be applied to physical planning domains. In this ap-
proach, instead of representing the possible domain
actions as a set of generalized operators, knowledge
about domain objects that generate actions is used to
generate operators. The result is better suited for com-
plex domains because Operator Construction offers the
advantage of ease of maintenance, and a more direct
link between domain properties and possible actions.
This teclmique has been used in a complex manufac-
turing planning domain.

Introduction
In this paper we present an alternative method for gen-
erating operator instantiations and representing the set
of possible actions in physical domains, called operator
construction. The advantages of this method are that
it makes a direct connection between the properties of
the domain objects that produce actions and the res-
ulting possible operations. The result is a more main-
tainable and modifiable representation, which is partic-
ularly critical when constructing planners for complex,
practical domains.

Many planners represent actions that can be taken in
a particular domain as a set of generalized operators.
These operators list a set of preconditions that must
be true before the operator can be applied, and a set of
effects that become true after its application. The plan-
ner’s task is to find operators to accomplish a given set
of goals, this is usually done by matching goals against

the operators’ listed effects. Specific operator instanti-
ations are created by substituting values from the goal
for the generalized operator’s parameters.

However, there are many difficulties with this type of
action representation. Problems of particular concern
to this work are that:

1. The set of operators included in the planner may
not actually cover the full range of actions that it is
possible to take in the domain. In very large domains
is very difficult for knowledge engineers to think of
all the possible operators and to produce an adequate
list of preconditions and effects.

2. Much redundant information may be repeated in
many operators.

3. It may be very difficult to update and maintain such
an operator description in complex domains. The
same change may need to be made to many oper-
ators, and it is difficult to translate the effect of a
change in the domain capabilities into generalized
operator representations.

We address these problems with an alternate method
for representing the information in generalized operat-
ors and generating operator instantiations called Oper-
ator Construction. Operator Construction is most ap-
plicable to complex, physical domains, such as building,
transport or manufacturing. It may also be applicable
to non-physical domains, but we have not yet investig-
ated this issue. The main idea behind Operator Con-
struction is that instead of using a set of generalized
operator descriptions and matching goals to effects, an
operator construction engine is given a set of descrip-
tions of the action producing objects in the domain,
and a specific plan goal. The operator generating en-
gine combines the action producing objects to produce
a set of operator instantiations that can satisfy the goal.
These operator instantiations can then be passed on to
a planner (Hayes 1996) which must select which oper-
ator instantiation is the most appropriate in the context
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of the plan as a whole, look for interactions between
operators, and sequence them in to a plan (but not
necessarily in that order).

The Operator Construction technique provides a
means for representing and reasoning about knowledge
that produces actions. The reasoning behind this is that
actions that can be taken in a physical1 domain result
directly from the properties of the domain objects used
to perform actions. For example, one’s ability to create
a set of decorative door moldings for one’s house may
depend on having the correct type of router bits to cut
curved and beveled edges, and proper guides that al-
low the router to be driven in a straight line along the
edge of the wood. Without the proper tools, the task
may not be impossible, but it may become impractic-
able. For convenience, we will divide the domain ob-
jects into those that make actions possible (such as the
router, router bits and guides) to be the action generat-
ing objects and acted-upon objects (such as the wood).
Some objects may fall into both categories.

Work that is most closely related to the Oper-
ator Construction technique includes MOLGEN (Stefik
1981b, Stefik 1981a) and SIPE (Wilkins 1984). Fig-
ure 1 shows the distinction between operator construc-
tion and these related systems. Figure 1 (a) depicts
the operator selection and instantiation process used
by SIPE and MOLGEN. Like these techniques, Oper-
ator Construction uses hierarchies of domain objects
and operators are produced by a process of successive
refnement.

The difference lies in the fact that MOLGEN and
SIPE represent operators explicitly in the form of an
operator refinement hierarchy which lists all the pos-
sible operators at varying levels of detail, while Oper-
ator Construction is an operator hierarchy generator.
It never explicitly represents this whole operator hier-
archy. Instead, Operator Construction generates only
those portions of the operator hierarchy that are applic-
able to the current goal. The property that makes oper-
ator construction easy to maintain is that by changing
the object descriptions fed to the operator generator,
the operator hierarchy produced also changes.

For example, if the action producing objects in a do-
main change (for example if your router bits wear out or
you purchase a jig saw) then the possible actions and
the results that can be produced also change. These
changes can be directly represented in the Operator
Construction method by changing the description of the
action generating objects. The operator generator then
does the work of translating those changes into spe-

1 This approach may also be appficable in abstract, non-
physical domains, like algebraic manipulations, but we have
not yet investigated these areas.

cific operator instantiations. This is much simpler and
more direct than attempting to infer the changes ne-
cessitated in a set of generalized operator descriptions
when these physical equipment changes. We have im-
plemented this method successfully in a complex man-
ufacturing domain (Gaines, Castafio, & Hayes 1996),
and have found it to be an effective and maintainable
representation.

Contrast to SIPE and MOLGEN

Throughout this paper, the traveling domain is used
as an example to illustrate our ideas. This section de-
scribes the traveling domain and then contrasts the Op-
erator Construction technique to two planners, MOL-
GEN and SIPE, through the use of this example.

The Traveling Domain. In the traveling domain,
the planner must decide the best means of traveling
between two locations. A plan is represented by a route
and a means of traveling between these two points.
There are usually many ways in which one might travel
given the host of transport vehicles and routes avail-
able. Many options and alternative should be con-
sidered to ensure a quality plan based on the factors of
importance, such as cost, total travel time, safety, etc.

Contrast to Related Work. There are many
properties of the planning methods used by MOL-
GEN (Stefik 1981b) and SIPE (Wilkins 1984, Wilkins
1988) that are closely related to the Operator Construc-
tion method. All use hierarchies of domain objects
(similar to object and sort hierarchies) and operat-
ors are produced by a process of successive refinement.
The difference lies in the fact that MOLGEN an SIPE
explicitly represent operators in an operator refinement
hierarchy which lists all the possible operators at vary-
ing levels of detail, while Operator Construction never
explicitly represents this whole operator hierarchy. In-
stead, Operator Construction generates only those por-
tions of the operator hierarchy that are applicable to the
current goal. Additionally, the end result of the Oper-
ator Construction process is a set of applicable operator
instantiations for a given goal, not just a single oper-
ator instantiation. It is the job of the planner to select
which is the most appropriate operator instantiation.

SIPE uses a hierarchy of operator descriptions to
describe the actions available in a domain at various
levels of abstraction. A separate structure, called the
sort hierarchy, is used to describe properties of objects
which can be used as arguments to the operators. Fig-
ure 2 contains the hierarchy of operators that SIPE
would use to represent the operators in this domain 2

2This figure was adapted by the authors from SIPE
datafiles. The authors have made efforts to accurately
represent the structure. We hope we have not made
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Figure 1: The operator construction vs. operator selection process.

At the highest level is the abstract Transport operator,
which has the effect of moving an object from one loc-
ation to another if a route exists. More detailed op-
erators are provided at the next level which describe
traveling by land, sea or air. Each of these has its own
special requirements in addition to the requirements
for the abstract Transport operator. For example, both
Transport and Land need a route, but the Land operator
requires that route to be a roadway. Again, specialized
versions of these operators are provided at the low-
est level which describe specific means of each form of
transportation. For example, when traveling by land,
one has the choice of driving a car, taking a bus or rid-
ing on a train. Each of these operators has additional
requirements on their applicability, e.g. it is not pos-
sible to take a train between two locations unless there
are train tracks.

Operators are selected based on their ability to
achieve a goal. Once selected, their parameters are
instantiated with the particular objects in the goal.
For example, given the goal of traveling from home
to the grocery store, the Drive-Car operator could be
chosen as its effect is to move from one location to an-
other. The start and destination parameters would be
replaced by home and grocery store, respectively.

MOLGEN uses a similar approach to represent
a hierarchy of laboratory operations and objects. In
MOLGEN, Lab-Operator is used to describe the most

any misinterpretations. The interested reader is referred
to http://www.ai.sri, com/-wilkins/ for the complete
description.

abstract operator. This is refined by a set of MARS
(Merge, Amplify, React, Sort) operators which describe
a class of laboratory operations for conducting experi-
ments in molecular genetics. Just as SIPE has a sort
hierarchy to describe the domain objects, MOLGEN
has a laboratory object hierarchy to describe the ob-
jects that manipulated by the operators.

Of particular importance to the ease of maintenance
issue is the fact that each operator in the hierarchy
of Figure 2 copies information from its ancestors. In
more complex domains, maintaining this structure can
become quite difficult. In the next section, an alternat-
ive approach for representing information is provided.
This approach provides a maintainable, compact struc-
ture which can be used to dynamically generate oper-
ator descriptions based on the objects’ ability to ac-
complish goals.

The Operator Construction Technique
Operator Construction is different from SIPE and
MOLGEN in that it does not use an operator hier-
archy, only an object hierarchy. Furthermore, the ob-
ject hierarchy does not represent all objects in the do-
main, just the objects which will produce actions, like
cutting tools, clamping devices, etc. The object hier-
archy is then used to generate the section of the oper-
ator hierarchy that can satisfy the current goal.

Operator Construction results in a set of instanti-
ated operators, each describing an alternative means of
achieving the goal. The important parts of Operator
Construction are the hierarchy of action-generating ob-
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jects and Operator Construction engine which gen-
erates sets of instantiated operators to achieve given
goals.

Hierarchy of Action-Generating Objects

In the Operator Construction technique, an object re-
finement hierarchy contains action-generating objects
and their important properties such as the requirements
needed to drive a car: roadways and the ability to
drive. Nodes in a hierarchy describe what an object or
class of objects can do, and requirements which must be
true in order to allow the object to be used. The hier-
archical structure reflects abstractions in the domain,
allowing related objects to share common properties.

As an example, Figure 3 shows how the hierarchy for
action producing objects in the traveling domain is rep-
resented. Objects at the top of the hierarchy represent
abstractions of the objects below it. Common proper-
ties and requirements of all objects below are stored
in the abstract objects. The object hierarchy includes
classes of objects: Transport Vehicles, Land Vehicles,
etc, as well as specific objects such as Cars and Com-
muter Planes. In the hierarchy, each transport vehicle
has specific properties which make it distinct from the
other vehicles. Some modes of transportation such as,
such as Drive Car, Self Fly and Paddle, require special
properties for their use. Others, such as Ride Train,
place further restrictions on the type of route which
they can take. All of the objects have different speeds
at which they can travel. For simplicity’s sake, many
details have been left out of the example. One might
wish to consider the cost of using each vehicle, the pref-
erences of the traveler with respect to the quality of
vehicle and other considerations. All of this informa-
tion, pertaining to how to travel, can be added into
the hierarchy. As properties in the domain change, for
example when cars are able to drive themselves, the
hierarchies can be easily updated.

The next section describes how operator hierarchies
are constructed from the object refinement hierarchies.
Following the description, an illustration of these ideas
will be provided with an example from the traveling
domain.

Operator Construction Engine

This section describes how Operator Construction uses
the object refinement hierarchy to generate operator de-
scriptions. Figure 4 shows the system diagram for Op-
erator Construction. Operator Construction takes a
goal, problem description and a set of object hierarch-
ies, and begins constructing a set of operators to satisfy
the goal in the context of the problem description. The
objective is to identify which objects, or combinations

of objects, in the hierarchy can be used to achieve the
goal.

Description~

Operator
Construction

Figure 4: Operator Construction system diagram.

Figure 5 contains an illustration of the Operator
Construction process at work on a generalized object
refinement hierarchy. Operator Construction starts by
applying knowledge at the top level of the object hier-
archy to the problem description. If the top level object
can be used to solve the goal, then an initial abstract
operator description is created to describe how that ob-
ject will be used to accomplish that goal. Several pre-
conditions and post conditions of the operator may be
filled in as well. At each successive level of processing,
the operator is refined: more pre and post conditions
may be added and one abstract operator description
may be split into several refined operators.

Figure 5 (b) shows the Operator Construction pro-
cess at an intermediate stage. The dotted horizontal
line indicates the current refinement level. The solid
lines below this level are the paths still under consider-
ation. The remaining paths have been pruned away.

(defun refine (problem node)
(let ((C (children node)))

(if (null? C)
node

(let ((methods ’0))
(list node

(dolist (child C methods)
(when (applicable? problem child)

(setf methods
(cons (refine problem child)

methods)))))))))

Figure 6: Refinement algorithm.
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Figure 3: The operator construction hierarchy of action-generating objects for the traveling domain.
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Figure 5: A generalized operator refinement hierarchy.

Figure 6 contains the refinement algorithm used
by Operator Construction. Refine takes as input
a node from an object refinement hierarchy and a
problem statement. The algorithm uses the predicate
applicable7 to check the applicability of each child

of the current node towards the given problem. The
decision knowledge at the node is used to determine

if the operator options represented by the current node

apply to the goal. A refined operator is created for each

applicable child. The refined operator may have more

parameters specified or additional constraints placed
on previously constrained parameters.

The result is a hierarchy of operators suitable for car-
rying out the task at each level of abstraction. This
hierarchy is analogous to an instantiated portion of

SIPE’s operator refinement hierarchy, Figure 2, applic-
able towards the given goal. These operators can be
passed back to the planner for consideration. The be-
nefits are that the object refinement hierarchy is easier

to maintain than operator descriptions and the plan-
ner’s actions are not limited to the set of a priori enu-
meration of operator descriptions.

Example: Traveling to Portland
As an example of Operator Construction, consider the
problem of deciding how to travel from Los Angeles to
Portland. The Operator Construction process is given
the object hierarchy in Figure 3 which describes the
available transport objects and their properties. The
problem description is shown in Figure 7.

The Operator Construction process begins at the
Transport level (Figure 3. The object, Transport
Vehicle, is able to achieve the goal of move, but it re-
quires that a route of some type be present between
the start and the destination. A transport operator is
created to show that there is some abstract vehicle de-
scription that can accomplish the goal. The construc-
ted operator description is shown in Figure 8. The
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Destination Portland
has roadway
has airway
no seaway

Origin Los Angeles
has roadway
has airway
no seaway

Can Drive true
Can Fly false

Figure 7: Example problem description.

effect of the operator is that after its application, the
traveler will be at Portland. The operator includes the
precondition that to go from LA to Portland, one must
be in LA.

Transport level

Transport

precondition [ at LA
vehicle

I transporteffect at Portland

Figure 8: Operator hierarchy at level 1.

The Operator Construction process proceeds to the
Route level of the object hierarchy (Figure 3) and
checks the type of routes available for traveling form
LA to Portland in the problem description against the
route requirements of the available vehicle types in the
object hierarchy: Land, Sea, and Air. In this case,
Land and Air are applicable, but since the example
does not include a seaway, Sea vehicles are not applic-
able to the problem description. Figure 9 shows the
result of Operator Construction after the Route level.
The abstract operator of the Transport level is refined
and split into two, slightly less abstract operators at
the route level. No new preconditions or effects have
been added to the generated operators, but the oper-
ator space has been pruned down to include only those
vehicles under the Land and Air nodes.

Each operator is further refined as Operator Con-
struction moves down to the third and final level of the
object hierarchy.

At this level, the requirement of particular vehicles
types, like cars, busses, etc., are tested to see if there
are any which can be used in the given situation.

The Land operator from level 2 is refined by check-
ing which of its children are applicable to this partic-
ular goal. Car is valid because it has no further con-
straints on the land route and the traveler is able to

Transport [

Transport precondition at LA

I vehicle [ transport [
level

~1
[ Land [[ Air ]

vehicle ground vehicle air
level effect at Portland effect at Portland

Figure 9: Operator hierarchy after level 2.

drive. Nothing in the problem description has been
said about the availability of gas, so Operator Con-
struction sirnply adds this as a precondition to using
the generated Car operator in Figure 10. Train is not
valid because there are no train tracks running from
LA to Portland. Bus object is applicable, but the pre-
condition of having a ticket is added to the constructed
operator.

The Air operator is refined in a similar manner. The
traveler in the example is not able to fly a plane, so Own
Plane is not applicable. Commuter Plane is applicable,
but has the added requirement that a ticket is needed.

Figure 10 contains the operators constructed at this
level. The leaf nodes represent several possible altern-
ative instantiated operators. The paths leading to these
nodes represent the decisions made in constructing the
operator.

Each resulting operator contains the required inform-
ation, effects and preconditions, and can be inserted
into more complex plans. The hierarchy generated in
the example is, in fact, a portion of SIPE’s operator re-
finement hierarchy shown in Figure 2, which has been
instantiated for the particular goal of traveling from LA
to Portland. The main difference is that the hierarchy
generated in Figure 10 is instantiated for the particular
problem. Start and destination locations have been re-
placed with LA and Portland. The generated operators
have fewer preconditions than the SIPE operators. For
example, there is no need to add a precondition that a
roadway exists between LA and Portland in order to
use the generated Car operator, since this operator de-
scription was created because there is a roadway con-
necting these two locations. If there had not been a
roadway, this operator would not be created.

The main difference between the Operator Construc-
tion method and other hierarchical planners, is the way
in which the knowledge about actions is stored. The
traditional method is to store this knowledge in terms
of an operator hierarchy. In Operator Construction,
this knowledge is stored in terms of domain objects
that produce actions. The advantage of storing this
knowledge as objects instead of operators is that con-
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Figure 10: Operator refinement hierarchy for the traveling domain.

crete domain objects are much easier to describe and
maintain than operators which are abstract concepts.

Operator Construction’s Impact

on the Planner

Ease of maintenance is an aspect of a planning sys-
tem’s efficiency which is often overlooked. Operator
Construction provides an explicit link between the ac-
tions the planner can take and the objects in the do-
main which produce these actions. This makes Oper-
ator Construction more maintainable than approaches
which use operator selection. With operator selec-
tion approaches such as SIPE and MOLGEN, changes
in the domain may require extensive modifications to
the operator descriptions. Because the operators may
contain knowledge relevant to several domain objects,
it may not always be obvious which modifications to
make. In contrast to the operator selection approach,
in Operator Construction, the knowledge about the
altered objects can be easily updated by modifying the
knowledge-refinement hierarchies. The Operator Con-
struction process will generate operator descriptions
based on this new knowledge.

Conclusions

This paper has presented Operator Construction, a
technique which is especially applicable to complex
physical domains. In this technique, operator instanti-
ations are created by a process of successive refinement
from descriptions of the domain properties. By linking
objects with the constructed operator descriptions, the
approach provides a means for reasoning about domain
knowledge that produces action. It differs from closely
related techniques, like those used in MOLGEN (Stefik
1981b) and SIPE (Wilkins 1984) in that Operator Con-
struction does not contain any explicit representations

of generalized operators, or operator refinement hier-
archies. Instead, it generates only tile instantiated por-
tions of the operator hierarchy that are applicable to the
given goal.

The reasoning behind the Operator Construction
technique is that the actions and results that can be
produced in a physical domain are a direct result of
the properties of the objects that produce those actions.
For example, the wooden shapes that can be generated
in a particular wood shop are a direct result of the
characteristics of the wood-cutting tools and machines
in the shop. We feel a natural and maintainable way to
represent actions is to represent the important proper-
ties of the domain objects that produce those actions
and to use those descriptions to generate operator in-
stantiations. This type of representation is very main-
tainable because it is easier to describe the change to
the action producing objects, than it is to describe the
changes to possible actions that result from changing
the action producing objects. Instead of representing
abstract operators, we have constructed an operator
generator.

Advantages of this method include a maintainable
representation, and a more direct link between domain
properties and possible domain actions. This technique
has been successfully implemented in a complex manu-
facturing domain. In ongoing work on a systems called
MEDIATOR (Gaines, Castafio, & Hayes 1996) we are
using a related technique to identify abstract problem
goals embedded in a problem description.
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