
GTD-POP: Bridging the Gap between
Soundness and Efficiency in Practical Planners

Daniel M. Gaines
dmgaines@cs.uiuc.edu

Computer Science Department
University of Illinois at Urbana-Champaign

Abstract

This paper presents GTD-POP, a planning methodo-
logy based on the Generate, Test and Debug paradigm.
GTD-POP’s goal is to achieve a compromise between
planning efficiency and soundness by using associ-
ational knowledge to guide its search for interaction
checks in a partially-ordered plan. This paper de-
scribes the GTD-POP and discusses issues involved
in evaluating the behavior of practical planners.

Introduction
As AI planners leave the realm of toy domains and are
brought to bear on complex planning problems, lim-
itations of existing formalisms have become apparent.
Designing a domain-independent, sound planner which
can work efficiently in complex domains is an infeasible
goal. Previous planners have given priority to a few
of these characteristics at the expense of others. This
paper proposes a model of planning which provides a
compromise between soundness and efficiency, allowing
a tradeoff between these properties to meet the needs
of a given problem.

The proposed framework, GTD-POP (Generate,
Test and Debug - Partial Order Planner), uses a com-
bination of heuristic and causal domain knowledge to
construct partially-ordered plans for practical prob-
lems. GTD-POP follows the philosophy of GOR-
DIUS (Simmons 1988), which presented the Generate,
Test and Debug paradigm as a means of incorporat-
ing associational and causal knowledge to create an ef-
ficient and robust planner. GTD-POP extends these
ideas by allowing this knowledge to direct the search for
interactions in a partially-ordered plan. GTD-POP has
applications for human-computer collaborative prob-
lems, by allowing the user to suggest areas of the plan
to explore more deeply.

The paper begins by outlining some metrics for eval-
uating the behavior of a planner. These metrics de-
scribe tradeoffs to be made when designing a plan-
ning system. Related work is described in terms of

the choices made with respect to these metrics. Next,
the GTD-POP model is described in followed by a dis-
cussion on how the performance of this type of system
can be evaluated.

Characterizing the Behavior

of a Planner
This section presents 5 metrics for describing the beha-
vior of a planner. The list is not intended as a complete
characterization of planners, but to provide some use-
ful terminology for discussing the tradeoffs involved in
moving AI planners to real world domains.

Completeness: Given a problem to be solved, a com-
plete planner will generate a solution to the problem,
if one exists, or determine that no solution is possible.

Soundness: Any plan created to solve a problem by
a sound planner is a correct solution.

Generality: The generality of a planner refers to the
family of domains in which it can solve problems.
A general planner can work in a large number of
domains, whereas, a less general planner may be ap-
plicable to only a small family of closely related do-
mains.

Expressiveness: The expressiveness of a planner
refers to its ability to represent the intricacies of
the dynamics of a given domain. For example, an
expressive planner would be able to reason about
actions with context-dependent effects.

Efficiency: The efficiency of a planner can be de-
scribed in terms of how long it takes to produce
a plan relative to the number of steps in the plan.
A planner which takes an exponential or greater
amount of time with respect to the number of plan
steps is considered inefficient.

Ideally we would like a complete and sound planner
with an expressive representation and capable of plan-
ning efficiently in a large variety of domains. However,

74

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



this is not reasonable. These characteristics describe
a set of tradeoffs to be made in designing a planner.
One must decide which of these properties should be
relaxed so that others can be achieved.

Chapman has already shown that a complete
domain-independent planner is unrealistic (Chapman
1987). How far should the scope of the planner be re-
stricted in order to obtain a complete planner? Decid-
ability can only be obtained in a trivial domain. Semi-
decidability may be more likely, but at what cost to
generality and expressiveness?

Clearly, it is desirable that our planner produce cor-
rect plans, but which of these properties are we willing
to sacrifice to achieve it? Does it make sense to have
a sound but inefficient planner? How useful will such
a system be on large-scale planning tasks? As express-
iveness is gained, it becomes more expensive to produce
sound plans. An increase in planning efficiency often
comes with the price of decreased generality.

Related Work

This section briefly summarizes related planners in
terms of the tradeoffs made with respect to the met-
rics of the previous section.

Early total-order planners, such as STRIPS (Fikes
&5 Nilsson 1971) and HACKER (Sussman 1974) were
designed to be general and sound, but were not very
expressive or efficient as the search space of total-order
planners is very large.

Sacerdoti’s NOAH (Sacerdoti 1975), provided a rep-
resentation of plans in the form of partially-ordered
plan steps which drastically reduced the size of a plan-
ner’s search space, but poses a challenge for efficiently
reasoning about these plans. In order to efficiently de-
tect interactions, both NOAH and TWEAK (Chap-
man 1987) restrict their representation to context-
independent actions. Thus, these planners gain sound-
ness, generality and efficiency, but are not expressive
enough to handle complex domains.

Pednault presents a truth criterion which is capable
of detecting interactions in an expressive, sound plan-
ner (Pednault 1991). Secondary preconditions are ad-
ded to an action which describe the situation in which
the action will have the intended effect. However, as
Pednault points out, a single set of secondary precon-
ditions cannot, in general, cover all possible execu-
tion sequences in a partially-ordered plan. For these
cases, the plan is "decomposed" into multiple alternat-
ive plans. In the worst case, this will result in the same
search space as in total-order planning.

SIPE (Wilkins 1984; Wilkins 1988) extends the ex-
pressiveness of STRIPS-style operator descriptions to
include operators with conditional effects in order to

account for practical problems. As Chapman, (Chap-
man 1987), points out, SIPE’s treatment of conditional
effects is not sound in general. Furthermore, to achieve
efficiency, SIPE does not fully exploit the expressive-
ness offered by its representation of conditional effects.

GORDIUS (Simmons 1988) presents the Generate,
Test and Debug (GTD) paradigm for planning and uses
an interesting combination of associational and causal
knowledge for achieving efficiency and robustness. A
total-ordering is selected from a plan as the hypothesis
for the final solution and tested and debugged with
causal knowledge.

The proposed model of planning presented in the fol-
lowing section, continues along the lines of SIPE and
GORDIUS. However, instead of strictly preferring ef-
ficiency over soundness, or vice versa, the framework
provides a tradeoff between these two metrics, allowing
the degree to which efficiency is preferred to soundness
to be adjusted.

GTD-POP: A Compromise between

Soundness and Efficiency

GTD-POP (Generate, Test, Debug - Partial Order
Planner) is intended for use in planning domains in
which there are complex interactions among plan ac-
tions. In domains such as these, a large amount of
the planning time is spent in checking for interactions
among plan steps. Testing for interactions is not ne-
cessarily a matter of matching effects of one actions
with preconditions of another. Actions may have con-
ditional effects and extensive computational effort may
be required to detect interferences. A simulation with
a totally ordered action sequence may be needed. The
goal of GTD-POP is to use associational knowledge,
derived from causal relations among domain objects, to
guide the search for interactions, and reduce the num-
ber of interactions actually checked.

GTD-POP uses domain knowledge to guide the
search for interactions among plan steps in a partially-
ordered plan. Borrowing ideas from GORDIUS, GTD-
POP makes use of a combination of associational and
causal domain knowledge. Associational knowledge is
used to suggest areas of the plan in which a search
for interactions would be beneficial and to generate se-
quences of actions to be tested, causal knowledge is
used to simulate these actions and debug the results.

Figure 1 shows the architecture of the system. A
partially-ordered plan represents multiple possible ac-
tion sequences for achieving goals. Because the ef-
fects of actions may be dependent upon the situation in
which they are executed, interaction detection cannot
simply check the preconditions of the action against the
effects of the other actions, as in the case of the modal

75



truth criterion. Instead, the Generator identifies seg-
ments of the partially-ordered plan as potentially inter-
acting. Interesting total-orderings of this segment are
selected and passed to the Simulator. Problems with
the simulation are detected and resolved by imposing
constraints on the partially-ordered plan, by the De-
bugger.

~planplan nstraints

(Generator) (Debugger).

ac,ion 
sequences ~ ~ results

(Simulator)

Figure 1: GTD-POP architecture.

Figure 2 describes the algorithm which GTD-POP
will use in a bit more detail. The main cycle of plan
construction consists of selecting a subgoal to achieve
and an action for achieving it.

1. Select a subgoal, g, to achieve.

2. Choose an action, a, to achieve it.

3. Test plan soundness:

(a) Identify candidate actions, al...aN, possibly
interacting with a.

(b) Generate total orderings of actions.

(c) Test these total orderings through simulation.

(d) Debug any problems with results by constrain-
ing the actions.

Figure 2: GTD-POP algorithm.

Next, the planner must check to see if the newly ad-
ded action interacts with other steps in the plan. To be
completely sound, the planner would need to check the
new action in every possible totally-ordered sequence
represented by the partially-ordered plan. Unfortu-
nately, this is computationally prohibitive as there are,
in general, an exponential number of total orderings in
a partially-ordered plan.

To avoid an exhaustive search for interactions, GTD-
POP makes use of heuristic knowledge about how ob-
jects in the domain are likely to interact. Each action in
the plan describes the use of domain objects for achiev-
ing goals. The Generator uses heuristics based on the
way objects are likely to interact with one another to
identify other actions in the plan which might cause
an interaction with the newly added action. A set of
total orderings are selected to test for these possible
interactions. The architecture allows for user input in
these two steps. If the user feels that some portion of
the plan merits deeper investigation, this portion can
be pointed out to the Generator.

In summary, the idea is to gain efficiency by only
considering a limited set of totally-ordered action se-
quences. Associational domain knowledge is used in
step 3a as an inexpensive means of identifying likely
candidates for interactions and in step 3b to create
interesting total orderings of the plan. Causal know-
ledge is used to simulate the total orderings and debug
any problems. The user will be able to control the
extent to which efficiency is preferred over soundness.
This makes GTD-POP an effective solution for human-
computer collaborative tasks.

GTD-POP and Planning Efficiency
Efficiency in GTD-POP is gained by using heuristic
knowledge about how objects in the domain are likely
to interact to avoid checks for interactions in a plan
which seem unlikely to cause problems. This efficiency
comes at the cost of the plan’s soundness. The planner
may overlook interactions which will lead to problems
when a certain total ordering of the plan is carried out.

However, the degree to which soundness is preferred
over efficiency can be controlled with steps 3a and 3b
in Figure 2. By considering interactions among more
of the planning actions, step 3a, or more of the total
orderings in the plan, step 3b, the soundness of the plan
will increase as the efficiency of the planner decreases.

This approach has many similarities to the incre-
mental reasoning technique proposed by Chien (Chien
1991). In his thesis, Chien suggests overlooking condi-
tional interaction checks until more time is available to
the planner. Chien has shown that incremental reason-
ing will converge on a sound plan.

There are some interesting distinctions between
GTD-POP and incremental reasoning. First, incre-
mental reasoning requires a sound and complete do-
main theory. The intended use of GTD-POP is in
domains in which it is not easy, or even possible, to
construct a sound and complete domain theory. In this
case, the best GTD-POP could do is achieve the sound-
ness of the domain as described by the represented do-

76



main theory.
A further distinction between these approaches is

GTD-POP’s use of domain knowledge to guide the
search for likely interactions. This knowledge allows
GTD-POP to focus its search for interactions on areas
of the plan which are most likely to cause troubles.
This has the potential of making more effective use of
planning time.

Discussion
As has been discussed, insisting on a complete and
sound planner able to perform efficiently in a large
number of domains is unrealistic. Some of these char-
acteristics will need to be relaxed so that others can be
achieved. A planning model has been described which
allows a tradeoff between two of these properties: effi-
ciency and soundness.

This raises the question about the appropriate means
of evaluating the performance of this type of planner.
Describing a planner as sound or unsound is too coarse
of a discritization. It is necessary to give up some
amount of soundness in order to perform efficiently in a
practical domain. However, labeling such planner’s as
unsound does not adequately describe its planning be-
havior. Perhaps, for the majority of planning problems
it sees, the planner produces reliable plans.

A theory of planning analogous to PAC (Probably
Approximately Correct) learning (Valiant 1984) 
be in order. With PAC planning one could refer to the
expected correctness of a solution in relation to how
much time was spent in planning. For example, one
could say something about the expected correctness of
plans a system could produce in polynomial time, or
the soundness of a plan with a polynomial number of
interaction checks with respect to the number of steps
in the plan.

This brings up the need for a means of describe the
soundness of a plan. The classification of a plan as
either correct or incorrect is, again, too coarse. A plan
which is close to a correct solution may still be use-
ful, for example as a means of communication (Agre
& Chapman 1990). A way to describe the "closeness"
of a plan to a correct solution would provide a more
representative evaluations.

Conclusion
This paper has proposed GTD-POP, a partial or-
der planner which uses the Generate, Test and De-
bug paradigm to apply domain knowledge to the con-
struction of plans for complex domains. Rather than
strictly preferring soundness to efficiency, GTD-POP
uses a combination of heuristic and causal knowledge to
achieve a compromise between these properties. GTD-

POP provides the ability for a user to direct the ap-
plication of causal reasoning as needed for a particular
problem.

This paper has discussed how the GTD-POP archi-
tecture will use domain knowledge to gain efficiency in
planning. Future work will concentrate on the exact
form this knowledge will take for a particular domain.
This work will include developing an implementation of
GTD-POP in the domain of manufacturing planning.
Ideas on PAC planning will be explored to develop a
formalism for evaluating the performance of practical
planners.

Acknowledgments
Discussions with Caroline Hayes provided helpful com-
ments for this paper.

References
[1] Agre, P. E., and Chapman, D. 1990. What are plans

for? Robotics and Autonomous Systems 6:17-34.

[2] Chapman, D. 1987. Planning for conjunctive goals.
Artificial Intelligence 32.

[3] Chien, S. 1991. An Explanation-Based Learn-
ing Approach to Incremental Planning. Ph.D.
Dissertation, University of Illinois at Urbana-
Champaign.

[4] Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence 5(2).

[5] Pednault, E. P. D. 1991. Generalizing nonlinear
planning to handle complex goals and actions
with context-dependent effects. In IJCA 91, 240-
245.

[6] Sacerdoti, E. D. 1975. The nonlinear nature of
plans. In IJCAI 1975, 206-214.

[7] Simmons, R. G. 1988. Using associational and
causal reasoning to acheive efficiency and robust-
ness in problem solving. In IMA CS Transactions
on Scientific Computing.

[8] Sussman, G. J. 1974. The virtuous nature of bugs.
In The First Conference of the Society for the
Study of AI and the Simulation of Behaviour.

[9] Valiant, L. 1984. A theory of the learnable. Commu-
nications of the Association for Computing Ma-
chinery 27:1134-1142.

[10] Wilkins, D. E. 1984. Domain-independent plan-
ning: Representation and plan generation. Arti-
ficial Intelligence 22(3).

[11] Wilkins, D. E. 1988. Practical Planning: Extend-
ing the Classical AI Paradigm. Morgan Kauf-
man.




