From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.
Planning with Observations and Knowledge

Robert P. Goldman and Mark S. Boddy and Louise Pryor
{goldman,boddy }@src.honeywell.com
louisep@aisb.ed.ac.uk

Introduction

We are concerned with increasing the expressiveness
of planning methods to handle observations and con-
ditional execution. In previous work, two of us have
argued that one cannot correctly construct such a plan-
ner without an explicit distinction between what is true
in the world and what the agent knows (believes) to
be true (Goldman & Boddy 1994b)!. Also in previous
work, one of us has created a planner, Cassandra, that
appears to construct flexible plans with conditional ex-
ecution and knowledge-gathering without such a repre-
sentation (Pryor & Collins 1995). The work described
here was done to address the tension between these two
results.

To address these issues, we have developed a formal-
ization of action, WCPL, based on propositional dy-
namic logic (PDL). We have chosen dynamic logic as a
framework because it already has constructs we need,
like conditionals and nondeterministic actions. PDL is
also closer to the kinds of action representation (e.g.,
STRIPS, ADL) used by implemented planners than are
competing languages like the situation calculus. We
have used WCPL to give a semantics to Cassandra’s
plan and have shown that the Cassandra algorithm is
sound with respect to this semantics.

Cassandra

Cassandra? is a contingency planner whose design is
based on the notion of deferred decisions. A major
problem with planning in the real world is that the
information that is needed to decide on a course of ac-
tion may not be available when the plan is constructed.
For example, you may not know if a road is blocked
by snow without going to look at it. Under these
circumstances Cassandra will construct plans that in-
clude provision for making the decisions that cannot
be made during plan construction. Such plans must

!without making substantial simplifying assumptions as
in CNLP (Peot & Smith 1992) or PLINTH (Goldman & Boddy
1994a).

2Cassandra was a Trojan prophet who was fated not to
be believed when she accurately predicted future disasters.

78

provide for the acquisition of the information that will
be needed to make the deferred decisions. The pres-
ence of knowledge goals in these plans is thus due to
the presence of deferred decisions.

Cassandra

Cassandra is a partial order planner based on
Penberthy and Weld’s ucpop which extends the
SNLP (McAllester & Rosenblitt 1991) algorithm to han-
dle context-dependent effects and a limited form of uni-
versal quantification (Penberthy & Weld 1992). Cas-
sandra, like UCPOP, represents actions using modified
STRIPS operators, each defined by the preconditions for
executing an action and the effects that may become
true as a result of executing it (Fikes & Nilsson 1971).
For each possible effect there is in addition an associ-
ated set of secondary preconditions, which specify the
conditions under which the action will have that ef-
fect (Pednault 1988).

The use of secondary preconditions is critical to Cas-
sandra’s ability to represent uncertain effects. It does
so by assigning them unknowable preconditions, con-
structed using the pseudo-predicate :unknown. Un-
knowable preconditions carry two parameters, one des-
ignating a particular source of uncertainty (e.g., an
instance of a coin toss), the other a particular possi-
ble outcome of that uncertainty (“heads”). One must
specify a set of mutually exclusive and exhaustive out-
comes for each source of uncertainty. Cassandrauses
this information to perform two types of reasoning that
are needed in contingency planning: (1) that two ac-
tions or effects may not co-occur because they depend
upon different outcomes of the same uncertainty, and
(2) that a goal will necessarily be achieved by a plan,
because it will be achieved for every possible outcome
of every relevant uncertainty.

Cassandra does not construct a contingency plan un-
til it encounters an uncertainty. Until this point, it
proceeds in much the same manner as other planners
in the SNLP family, using a means-ends analysis in-
volving the alternation of two processes: planning for
open subgoals and avoiding bad inileractions. An un-
certainty is introduced into a plan when a subgoal in

the plan is achieved by an effect with an unknowable
precondition.

When an uncertainty has been introduced, the plan
depends on a particular outcome of that uncertainty
and the plan so far is effectively a contingency plan
for that outcome. If the plan is to be sound, contin-
gency plans must be constructed for all other possible
outcomes of the uncertainty as well. Cassandra does
this by splitting the plan into a set of branches, one
for each possible outcome of the uncertainty. Cassan-
dra labels the components in the existing plan to show
that they depend on a particular outcome of the un-
certainty, and introduces a new set of goals for each
other possible outcome. The plan is not complete un-
til all the goals are achieved in every possible outcome
of every uncertainty.

Each plan component is relevant only to certain
branches of the plan and is labeled accordingly. Cas-
sandra propagates labels through the plan to indicate
both the contingencies in which elements play a role,
and the contingencies with which they are compatible.
Note that these are two different issues: a plan ele-
ment may be compatible with a contingency, in that it
does not nterfere with the achievement of any goals in
that contingency, without actually helping to establish
them. Positive labels, indicating the branches in which
a component is required for goal achievement, propa-
gate backwards from goals to the steps that achieve
them.

Negative labels are introduced when an unsafe link
is detected: a causal link that is threatened by another
effect (the clobberer) in the plan. There are two stan-
dard methods for resolving an unsafe link in planners
in the sNLP family: separate the clobberer and the un-
safe link by adding codesignation constraints ensuring
that they don’t unify; or reorder the actions in the plan
to ensure that the clobberer occurs outside the range
of the link. The first of these methods is extended
in Cassandra: another method of separating the clob-
berer from the unsafe link is to ensure that they only
occur in different contingencies. This method of re-
solving unsafe links results in plan components being
labeled with contingencies in which they may not oc-
cur. Negative labels are propagated forwards from the
problematic effect to the subgoals it establishes.

Decisions in Cassandra

When an agent executes a branching plan, it must at
some point decide which branch to take. Rather than
treating this decision as an explicit part of the plan,
previous work has in effect simply assumed that the
agent will execute those steps that are consistent with
the contingency that actually obtains (Warren 1976;
Peot & Smith 1992). However, in order to know
which contingency holds during execution, an arbi-
trarily large amount of work may be necessary in or-
der to gather the information on which the decision
is based (Pryor 1994). For the plan to be viable the

79

planner must be able to ensure that it will be in a
position to make the decision and to guarantee that
the steps required to gather information do not con-
flict with those required to carry out the rest of the
plan. The approach taken in the design of Cassandra
to this problem is to treat decisions as explicit plan
steps. By doing this Cassandra can make use of its
existing mechanisms for achieving preconditions and
avoiding conflicts.

Cassandra adds an explicit decision step each time it
introduces a new branch into a plan. The decision step
is added to the plan along with ordering constraints
ensuring that it occurs after the step with which the
uncertainty is associated and before any step with a
subgoal the achievement of which depends upon a par-
ticular outcome of the uncertainty.

For a decision step to be operational, there must be
an effective procedure by which the agent executing
the plan can determine which decision to make. In
Cassandra, each decision step has associated with it
a set of rules, derived from an analysis of the uncer-
tainty that led to the introduction of the new branch.
The action of deciding which contingency to execute
is modeled in Cassandra as the evaluation of a set of
condition—action rules of the form:

If conditionl then conlingencyl
If condition2 then contingency?2

The executing agent can decide which branch to pur-
sue by evaluating these rules when it comes to the de-
cision step. Since the intended effect of evaluating the
decision-rules is to choose an appropriate contingency
for each outcome of a particular uncertainty, the condi-
tions are meant to be diagnostic of particular outcomes
of the uncertainty. The agent cannot directly deter-
mine the outcome of an uncertainty, so it must infer
it from the presence or absence of effects that depend
upon that outcome.

Cassandra constructs its decision rules by checking
for the effects of a given outcome that are used to estab-
lish preconditions in the contingency associated with
that outcome. For example, in one of the two out-
comes of the act of selecting a soft drink from a faulty
soda machine, the machine dispenses a drink and takes
the agent’s money. Let us assume that this action was
done as part of a plan that requires the agent to have
a drink despensed to it. Cassandra would generate a
plan containing an observation action to verify that the
soda was, in fact, dispensed.

Cassandra does not need to analyze the plan oper-
ators to identify all the effects that could be expected
to result from a given outcome of the uncertainty, and
make the antecedent be the conjunction of these ef-
fects, as the important issue is to verify only that the
contingency plan can actually succeed.® To return to

3This has the interesting consequence that the executing
agent might, in principle, end up selecting a contingency

the soft-drink machine, Cassandra’s plan would not
contain an observation action to verify that the soda
machine had taken the agent’s money.

The antecedent condition of the decision-rule con-
structed by Cassandra is thus simply a conjunction of
all the direct effects of a particular outcome that are
used to establish preconditions in the contingency plan
for that outcome. Decision-rules are constructed incre-
mentally as the plan is elaborated and effects are used
to establish preconditions (Pryor & Collins 1993).

In order to evaluate a decision-rule, the executing
agent must be able to determine whether the rule’s
antecedent holds. The preconditions for the decision
step must thus include goals to know the current status
of each condition that appears as an antecedent of a
rule in this condition. The preconditions of a decision
step become open subgoals in the plan in the same
way as do the preconditions of any other step. In other
words, Cassandra generates a set of goals to acquire the
knowledge necessary to evaluate the decision-rules.

WCPL

WCPL is an action representation created to sup-
port the development and analysis of contingency plan-
ning systems (Goldman & Boddy 1996). WCPL is
based on propositional dynamic logic. WCPL has
constructs for STRIPS-like actions, augmented with
context-dependent effects and uncertain outcomes. A
modality for knowledge permits plans with observation
actions. Using the above machinery, plans for both ver-
sions of the “bomb in the toilet” (McDermott 1987)
problem can be provided.

PDL

Propositional dynamic logic (PDL) is a modal proposi-
tional logic designed to support reasoning about simple
programs (Harel 1984). In PDL, propositions are in-
terpreted in the usual way. The modality corresponds
to the execution of programs; we speak of propositions
that possibly or necessarily hold after a program halts.
PDL has constructs for sequences, repetition (which
is not used in WCPL) and nondeterministic choice.
These constructs can be used to compose programs
(complex modalities).

Syntax of PDL Given a set of atomic propositions,
®, and a set of atomic actions, R, we define the wffs,
P, and programs, A, over ® and R as follows:

l.ifoeR, thenaoe A
2. if € @, then ¢ € P
3. if P,Q € P, then -P,PVQcEP

plan even though the outcome of the uncertainty were not
the one with which that plan was associated. Notice that
this would not cause a problem in the execution of the plan,
since it would only occur if all the conditions for the plan’s
success were met.

80

4. if P€P,and A€ A, then (A) Pe P

ceN

6. if P € P and P contains no sub-formula of the form
(A) P, then P? € A.

IfA,Be A, then A;Be A

8. If A,B€ A, then AUB € A

A literal is an atomic proposition or its negation—if
¢ € @, then ¢ and —¢ are literals. € is the null action.
We provide the conventional extensions of notation,
e.g. A for conjunction, as syntactic sugar. We also
provide [] as a dual for the () modality (see discussion
of semantics, below).

(<3

™

Semantics of PDL The semantics of PDL is defined
in terms of Kripke structures, S, written (W, r, m). W
is a non-empty set of world states. 7 is an interpreta-
tion of ®, mapping each proposition to those states in
W in which that proposition is satisfied. 7 is extended
to expressions using the propositional connectives in
the conventional way. m is an interpretation of the sin-
gleton programs (those consisting of a single action),
mapping each action « to a set of pairs of world states
denoting permitted state transitions for «. The inter-
pretation of programs is defined recursively as follows,
based on the relations in m:

Definition 1 (Semantics of programs)

m(e) = {(s,s)|seW} (1)
m(P?) = {(s,5) | s € 7(P)} (2)
m(A;B) = m(A)om(B) (3)
m(AUB) = m(A)Um(B) (4)

‘?” can be read as ‘test.” P7 limits the possible subse-
quent world states to the set of worlds where P holds.
‘;” denotes sequential composition of programs. We will
omit the ‘;” operator when doing so does not obscure
the meaning. o denotes composition of relations.

(A) P is satisfied in those worlds w for which there
exists another world w' and a program A such that P
is satisfied in w’ and (w, w') € m{A). Intuitively, P is
a possible outcome of A. The dual of (), corresponding
to necessity, [A] P may be read as P necessarily holds
after A.

WCPL

WCPL provides a representation for sTRIPs-style ac-
tions, augmented with context-dependent effects and
uncertain outcomes. WCPL also has a modality for
knowledge, that permits us to represent and reason
about action with incomplete information and about
information-gathering actions. The syntax and seman-
tics of WCPL are drawn from PDL, of which it is a
dialect.

A simple STRIPS operator has a set of preconditions,
v, and a set of postconditions, 6, where both v and
¢ are conjunctions of literals. Preconditions represent

limits on the situations in which an action can be ap-
plied. The effects of performing an action in a state in
which its preconditions are not satisfied are undefined.

PDL cannot conveniently represent this state of af-
fairs, because of the nature of the necessity modal-
ity. Since this is the dual of possibility, [A] P will hold
for any P if A cannot be executed successfully. Ac-
cordingly, WCPL has a distinguished atomic proposi-
tion planfail ¢ ®. WCPL constrains the accessibil-
ity relation over possible worlds such that executing
an action when one of its preconditions fails to hold
causes planfail to become true (in the initial condi-
tions planfail will always be false), and once true,
planfail persists through all subsequent actions. Fur-
thermore, we require that every action be regarded as
executable in any situation — although now the effect
may be to cause planfail. More formally:

[A] planfail = planfail vV —y(4)

Actions in WCPL may have context-dependent ef-
fects and there may be uncertainty about their out-
comes. WOCPL represents context-dependent effects
by associating with each action a set of mutually exclu-
sive and exhaustive postcondition specifications (prim-
itive outcomes), each associated with one of a set of
triggers. WCPL permits actions whose outcomes are
in principle not predictable by the planner, such as
coin tosses. To handle such actions, each trigger is
permitted to have not just one outcome, but a set of
mutually-exclusive and exhaustive outcomes. We do
not have space to present them here, but elsewhere we
present a formalization of sTRiPs-style actions, aug-
mented by nondeterminism and context-dependent ac-
tions (Goldman & Boddy 1996).

In order to reason about the executing agent’s state
of knowledge, WCPL provides a second modality. The
PDL semantics is augmented by a second accessibility
relation, k£, and an interpretation k over the worlds
(the interpretation is defined as 7, mutatis mutandis):

The accessibility relationship is intended to hold be-
tween worlds that are consistent with the agent’s be-
liefs. The agent’s beliefs are founded on knowledge
of the initial state and a correct understanding of the
outcomes of actions.

Planning is the process, given a description of an
initial state, and a goal, of finding a plan that will
achieve the goal when executed in the initial state. In
the PDL framework, the classical planning problem is
posed as follows: given a goal G and an initial state
description, D, find a program, A, such that:

D — [A] G A D, -planfail — [A] ~planfail
The first condition enforces that the plan achieve the

goal, the second that actions only be attempted when
their preconditions hold.

Cassandra plans in WCPL

The first step in our analysis of the Cassandra algo-
rithm is to provide an independent semantics for Cas-

81

sandra’s plans, using WCPL. To do so, we must trans-
late Cassandra’s actions into WCPL equivalents. ac-
tions. We then translate Cassandra’s plans into sets
of WCPL programs. The first step is complicated by
a number of factors: Cassandra and WCPL differ in
their representations of context-dependent effects and
uncertain outcomes; Cassandra’s observation actions
need explication; and there is no direct counterpart in
WCPL for Cassandra’s decision nodes. A single Cas-
sandra plan corresponds to a set of WCPL programs
both because Cassandra’s plans are partially-ordered
and because Cassandra uses labels as a compact rep-
resentation for branching plans. In this section, we
address these issues in turn, concluding with the trans-
lation of a Cassandra plan into WCPL.

We would like to emphasize that providing a seman-
tics for Cassandra actions in WCPL is not a super-
fluous exercise. This is not a matter of providing an
alternate semantics for Cassandra’s actions: there is
no previously-existing semantics.

Cassandra’s actions

In this section we discuss a number of issues related to
translating Cassandra’s actions into the WCPL rep-
resentation, including the representation of context-
dependent effects and uncertain outcomes. We also
discuss how Cassandra’s method of simplifying rea-
soning about knowledge and information-gathering ac-
tions may be reflected in WCPL. We conclude with the
translation of a sample Cassandra action.

Context-dependent effects are represented differ-
ently in Cassandra and WCPL. Cassandra’s represen-
tation is an extension of that used in UCPOP(see Sec-
tion). This representation is well-suited to use in do-
mains where there is no uncertainty, since it supports
the planner in identifying a minimal set of proposi-
tions that must be established in order to bring about
a desired effect. It does not, however, support a plan-
ner in reasoning about the correlations between differ-
ent effects.* WCPL’s representation, using triggers,
is designed to support this kind of reasoning. In a
propositional setting, the expressive power of the two
representations does not differ: from a set of effects
and secondary preconditions, we may generate a set of
mutually exclusive and exhaustive triggers.

Cassandra extends UCPOP’s secondary precondition
mechanism to represent actions with uncertain out-
comes. An action whose outcomes have some irre-
ducible uncertainty, will have effects whose secondary
preconditions include a special :unknown proposition.
An advantage of this mechanism is that it facilitates
the extension of UCPOP into Cassandra.

These unknowable propositions are not propositions
like others. Rather, they provide a method of encoding
nondeterministic disjunction: the same state of affairs

*We conjecture that this representational choice con-
tributes to the kind of incompleteness we discuss in the
following section.

Definition 2 (Accessibility relation)

k(o) =
MO = {(59) s W)
k(P?) = {(s,s)|s €r(P)}
K(A;B) = k(A)ok(B)
K(AUB) = k(A)Uk(B)

{(s,8) | s,t € W A[((s",1) € m(e)) sts=3s At=1]}

Definition 3 (Knowledge) The knowledge modality is defined in terms of quantification over belief-accessible

worlds.

[A] KnowP

A
(A) KnowP é

as is encoded by WCPL’s alternative outcomes. In our
semantics for Cassandra, we will introduce disjunction
directly.

Although it is acceptable semantically to replace
Cassandra’s representation of uncertainty with the dis-
junction provided by WCPL, doing so does not cap-
ture the pragmatic effect of the :unknown precondi-
tions. These preconditions serve to partition the space
of primitive outcomes into pragmatically useful equiv-
alence classes, based on predictions of likely uses of an
action. This prevents Cassandra’s plans from unnec-
essary branching. This function of :unknown precon-
ditions is the same as that of other secondary precon-
ditions. Accordingly, for each :unknown precondition,
we construct a partition of the primitive outcomes of
the action.

Cassandra introduces a special kind of proposi-
tion, Knowif, to represent the effects of information-
gathering actions. The semantics of KnowifP are
KnowP V Know-P. Cassandra does not explicitly
represent an agent’s knowledge state. Instead, Cassan-
dra can assume that agents will know the truth value
of a proposition except when this knowledge is threat-
ened by the introduction of an action with uncertain
outcomes that can affect the proposition in question.
Doing so requires that Cassandra be able to conjoin
the outcomes of uncertain actions with appropriate
Knowif propositions. We will see in the next section
that Cassandra’s decision nodes provide this mecha-
nism.

Pryor and Collins give an example involving the op-
eration of a faulty soft-drink machine: one that may or
may not actually dispense a soft drink. Their represen-
tation of a simplified version of this action is given in
Figure 1 (adapted from (Pryor & Collins 1995)). The
corresponding WCPL formalism is given in Figure 2.

Cassandra’s plans

A single Cassandra plan data structure corresponds to
a set of WCPL plans, because Cassandra plans impose

82

{seW |Vt e W,(st)€k(A) —ter(P)}
{Fs e W |Vt € W, (5,t) € k(A) = t € k(P)}

only a partial order over operators and decision nodes.
Given the classical assumption of sequential execution
by a single agent, any partially-ordered (“nonlinear”)
plan can be treated as dencting the set of totally-
ordered action sequences consistent with that partial
order. We have developed an algorithm that charac-
terizes the set of totally-ordered WCPL programs that
correspond to a given Cassandra plan.

The understanding of Cassandra’s decision nodes is
complicated by the fact that these nodes serve two
purposes. First, they introduce branching into Cas-
sandra’s plans. Second, they provide the mechanism
ensuring the appropriate introduction of observation
actions.

Decision nodes indicate branch-points in a contin-
gent plan; their ordering determines the structure of
the resulting totally-ordered plan. Propagation of la-
bels determines which actions are executed along a
given branch. Our algorithm provides a unique totally-
ordered plan for any given sequence of decisions by re-
stricting the actions executed to those whose positive
labels subsume the current context.

Decision nodes serve to “marshal” knowledge pre-
conditions for Cassandra’s plans. Recall that Cas-
sandra behaves almost everywhere as a conventional
STRIPS planner, i.e., one with complete knowledge.
The only time when Cassandra behaves differently is
when it tries to use an uncertain outcome as an estab-
lisher. At this point the Cassandra algorithm calls for
the introduction of a decision node, which has Knowif
subgoals. The decision node acts as a point of con-
junction between the uncertainty-introducing action
and the knowledge-restoring action. Protections en-
sure that the action and the observation are not sepa-
rated, so that the observation will function correctly.

Proof of soundness

In this section we prove the soundness of Cassandra’s
plans with respect to the semantics presented in the
previous section. To do so, we adapt the proof of

Action: (enter-selection ?machine)

Preconditions: (:and (money-entered 7machine)

(plugged-in 7machine))

Effects:
(:unknown 7ok T))

(:when (:and (available 7machine ?selection)

reffect (dispensed 7selection)) uncertain effect
(:when (:and (available 7machine 7selection)

(:unknown 7ok F))

reffect (:not (dispensed ?selection))) uncertain effect

(:when (available ?machine ?selection)

teffect (:not (money-entered 7machine)))
(:when (:not (available ?machine 7selection))
teffect (another-selection-indicator-on Tmachine))

Figure 1: Cassandra and a faulty soft-drink machine.

enter-selection
money-entered, plugged-in

operator:

preconditions(¥y):

postconditions:
available

—

— selection-indicator-on

— available

dispensed, — money-entered (1)
- dispensed, — money-entered (2)

Figure 2: Cassandra and a faulty soft-drink machine, WCPL version.

soundness for UCPOP (Penberthy & Weld 1992), from
which Cassandra was derived. The proof proceeds by
defining a loop invariant such that when the planner
halts, it will have a well-formed plan that will achieve
the goal. In service of this proof we characterize two
transformations that Cassandra can perform that are
outside the realm of ucroP.

For ucPoP, the necessary and sufficient conditions
for achieving ¢ for step o are as follows:

1. ¢ holds in the initial conditions and for each inter-
vening action, 8, the preservation preconditions for

that action for ¢ (Hg) hold when it is performed; or

2. At some time prior to «, some other action S is exe-
cuted, and the causation preconditions for ¢ for that
action hold just prior to the execution of 5. For each
intervening action ¢ between B and o the preserva-
tion preconditions for that action for ¢ hold when it
is performed.

These conditions are sufficient to establish ¢ in a Cas-
sandra plan as well, but they are not necessary as they
do not cover the establishment of ¢ using a nondeter-
ministic effect of an action.

We need to establish a Cassandra Loop invariant as
follows: ‘

Definition 4 (Cassandra Loop Invariant) If the
subgoals in the goal agenda, Ag, are met by A, and
—planfail — — (A) planfail, then A will be a solution
to the planning problem.

We do not have the space to give the full proof of

83

soundness here (sec the full paper). We prove that
the Cassandra loop invariant holds initially and then,
by induction, throughout the planning process. The
induction step relies on two propositions that show
that the loop invariant is maintained when we in-
sert a branch into the plan and when we insert ad-
ditional steps into branches of the plan. The key to
goal achievement is that when new steps are added
to branches, additional knowledge acquisition goals
are also added, to observe each consumed proposition
whose value may be affected by a previously-occuring
uncertain action.

Completeness

We show that Cassandra is not complete with respect
to its WCPL semantics. We do so by presenting a sim-
ple plan in WCPL that Cassandra cannot find. This
incompleteness should not be surprising: completeness
with respect to the semantics would require that Cas-
sandra solve the test problem in the course of gener-
ating its plans. We conjecture that Cassandra has a
more limited form of completeness, but have yet to
prove this.

One reason for Cassandra to be incomplete is that
it cannot reason about interdependencies between its
outcomes, except in a very limited way. For example,
consider what would happen if Cassandra wanted to go
water-skiing at a mountain resort. Let us further sup-
pose that in order to successfully water ski, Cassandra
must get to the resort and the lake must be unruffled.

Cassandra can only get to the resort through the moun-
tain pass when it is not snowing, which depends on an
uncertainty, whether or not the weather is windy. The
lake is unruffled iff it is not windy. Finally, Cassandra
can observe the condition of the mountain pass.

This scenario leaves Cassandra in the tantalizing sit-
uation of being able to get to the resort, but unable to
enjoy her favorite sport.” Even after observing that
the pass is clear, Cassandra cannot determine that the
lake will be unruffled. However, if we axiomatize the
above situation as suggested in Section , it is a theorem
that the lake is known to be unruffled after the agent
gets to the lake.

We believe that part of the reason for this in-
completeness is the action representation chosen by
Pryor and Collins. The ADL-based representation does
not support reasoning about such correlations. How-
ever, we do not believe that a complete planner for
WCPL will prove practical. Verifying the correctness
of WCPL programs requires us to reason about a pos-
sibly exponential number of branches. Ergo, we believe
that restricted systems like Cassandra will be a prac-
tical necessity.

We conjecture that Cassandra is complete in a more
restricted sense. We believe that Cassandra is com-
plete with respect to the two plan expansion opera-
tions discussed in the proof of soundness: the addi-
tion of new branches and the addition of new steps
to branches. Recall that when new steps are added
to branches, additional knowledge acquisition goals
are also added, to observe each consumed proposition
whose value may be affected by a previously-occuring
uncertain action. These correspond to a kind of “show-
me” concept of knowledge® that may turn out to have
practical advantages in environments that are less than
perfectly modeled. We have yet to construct a proof,
but are actively working in that direction.

Discussion

In this paper, we have presented a formal description
and analysis of Cassandra’s planning algorithm and
the resulting plans, with particular attention to the
implications of some of the representational and algo-
rithmic choices made in the design of Cassandra. The
restriction on reasoning about knowledge to the appli-
cation of Knowif tests on uncertain outcomes simplify
the planning model and the inference that must be
performed to determine whether a plan is well-formed,
but complicates the semantics and limits the plans that
Cassandra will find. In particular, propositions whose
truth value is entailed rather than directly observable
will never be known.

It may not be immediately obvious, and is thus
worth pointing out, that Cassandra’s operators encode
in :unknown propositions not only sources of uncer-

®No doubt learned from Laocoon.
€ Perhaps Cassandra is from Troy, Mo.?

84

tainty, but heuristic choices about what partitions of
the possible outcomes of an action are most suited for
planning within a given domain. These secondary pre-
conditions serve both to encode the physics of the do-
main, and heuristic knowledge about planning within
that domain.

Finally, the structural freedom allowed in the deci-
sion rules applicable at a given decision node compli-
cates both the execution model and any attempt to an-
alyze the space of plans generated by Cassandra. The
problem is that the decision rules are not guaranteed
to be mutually exclusive, so that more than one may
be applicable. Modification of this structure to ensure
mutual exclusion should be straightforward, but would
substantially alter the semantics of the plans that are
generated.

We are pleased with the experience of applying
WCPL to formalizing Cassandra. We have provided a
clear execution model for Cassandra’s plans, that can
be taken as a point of departure for future develop-
ments. The two propositions in our proof of soundness
also provide a precise characterization of the extension
Cassandra makes to ucPoP. Having a language that
provided facilities for reasoning about program execu-
tion and for the knowledge of the executing agent was
a material assistance to us in this task.

We believe it to be both possible and fruitful to show
that Cassandra is complete, in the restricted sense that
Cassandra will find any plan in the set of those plans
recognized as well-formed by Cassandra. This is a sig-
nificant restriction from the set of all plans that are
well-formed in the WCPL translation of Cassandra’s
planning language, given the traditional semantics for
knowledge.

References

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A
new approach to the application of theorem proving
to problem solving. Ariificial Intelligence 2:189-208.

Goldman, R. P., and Boddy, M. S. 1994a. Condi-
tional linear planning. In Hammond, K. J., ed., Ar-
tificial Intelligence Planning Systems: Proceedings of
the Second International Conference. Los Altos, CA:
Morgan Kaufmann Publishers, Inc.

Goldman, R. P., and Boddy, M. S. 1994b. Repre-
senting uncertainty in simple planners. In Doyle, J.;
Sandewall, E.; and Torasso, P., eds., Principles of
Knowledge Representation and Reasoning: Proceed-
ings of the Fourth International Conference (KR94).
San Mateo, CA: Morgan Kaufmann Publishers, Inc.

Goldman, R. P, and Boddy, M. S. 1996. Expressive
planning and explicit knowledge. In AIPS-96.

Harel, D. 1984. Dynamic logic. In Gabbay, D., and
Guenther, F., eds., Handbook of Philosophical Logic,
volume II. D. Reidel Publishing Company. chapter
I1.10, 497-604.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proceedings of the Ninth Na-
tional Conference on Artificial Intelligence, 634-639.
Cambridge, MA: MIT Press.

McDermott, D. V. 1987. A critique of pure reason.
Computational Intelligence 3:151-160.

Pednault, E. 1988. Synthesizing plans that con-
tain actions with context-dependent effects. Compu-
tational Intelligence 4(4):356-372.

Penberthy, J. S., and Weld, D. S. 1992. UCPOP:
a sound, complete, partial order planner for ADL.
In Nebel, B.; Rich, C.; and Swartout, W., eds.,
Principles of Knowledge Representation and Reason-
ing:Proceedings of the Third International Confer-
ence, 103-114. Los Altos, CA: Morgan Kaufmann
Publishers, Inc.

Peot, M. A., and Smith, D. E. 1992. Conditional
nonlinear planning. In Hendler, J., ed., Artificial In-
telligence Planning Systems: Proceedings of the First
International Conference, 189-197. Los Altos, CA:
Morgan Kaufmann Publishers, Inc.

Pryor, L., and Collins, G. 1993. Cassandra: Planning
for contingencies. Technical Report 41, The Institute
for the Learning Sciences, Northwestern University.

Pryor, L., and Collins, G. 1995. Planning for con-
tingencies: A decision-based approach. Unpublished
manuscript.

Pryor, L. 1994. Opportunities and planning in an un-
predictable world. Technical Report 53, The Institute
for the Learning Sciences, Northwestern University.
Warren, D. H. 1976. Generating conditional plans
and programs. In Proceedings of the AISB Summer
Conference, 344-354.

85

