From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

On the Synthesis of Situation Control Rules
under Exogenous Events*

Froduald Kabanza
Université de Sherbrooke, Faculté des Sciences/DMI
Sherbrooke, Québec J1K 2R1 Canada
Email:kabanza@dmi.usherb.ca

Abstract

One approach for computing plans for reactive agents
is is to check goal statements over state trajectories
modeling predicted behaviors of an agent. This pa-
per describes a powerful extension of this approach to
handle time, safety, and liveness goals that are spec-
ified by Metric Temporal Logic formulas. Our plan-
ning method is based on an incremental planning al-
gorithm that generates a reactive plan by computing
a sequence of partially satisfactory reactive plans con-
verging towards a completely satisfactory one. Par-
tial satisfaction means that an agent controlled by the
plan accomplishes its goal only for some environment
events. Complete satisfaction means that the agent
accomplishes its goal whatever the environment event
occur during the execution of the plan. As such, our
planner can be stopped at any time to yield a useful
plan.

Keywords: Planning, control, reactive agents, tem-
poral goals.

Introduction

Reactive agents play an increasingly important role in
many computer applications ranging from robotics and
manufacturing to process control and software inter-
faces. One key component for such agents is a planner
that generates a reactive plan for a given goal and en-
vironment. A reactive plan specifies the actions to be
executed by a reactive agent in different situations that
can likely be encountered in order to satisfy a given
goal. This paper addresses the problem of generating
reactive plans for discrete-event reactive agents. By
discrete-event, it is meant that the behaviors of the
agent in a given environment can be modeled by a state
transition system.

A reactive plan is comparable to a strategy for an
agent playing a game (like chess) against an environ-
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ment. Such an agent chooses the move to make at
every instant according to a game strategy (i.e., a reac-
tive plan) that takes into account the moves played by
the environment. However, for most of the applications
we are interested in, the agent and the environment do
not politely take turns as do players in a game. In
contrast, the time instants at which the environment
actions occur are generally unpredictable. The goal
might also be more complex than simply reaching a
winning state.

One approach for generating reactive plans is to
project forwards actions, enumerating state sequences,
pruning those falsifying the goal and enabling those
satisfying the goal (Drummond and Bresina 1990).
This paper discusses an extension of this approach
to handle more complex goal types, deal with ex-
ogenous events, and reason about infinite behaviors.
Our approach builds on a previous controller synthesis
framework that uses Metric Temporal Logic (MTL)
goals (Barbeau et al. 1995). We propose a sim-
pler planning algorithm based on a model of uncon-
trollable actions by nondeterminism. Exogenous, un-
controllable actions are specified by using ADL opera-
tors; the planner translates them into nondeterministic
transitions to generate state sequences. This yields a
simpler mechanism for implementing control-directed
backtracking. We also explain how to deal with live-
ness goals.

Our work is also related to the synthesis of clas-
sic plans with temporally extended goals (Bacchus and
Kabanza 1996). In classic plans, there is no exogenous
actions and no infinite behaviors. As such, classic plans
are seen as a particular case of reactive plans.

Forward-chaining planning is natural for the manip-
ulation of complex temporal goals using modal tem-
poral logics, because such logics have models that are
sequences of states. The main limitation of this ap-
proach is the state explosion problem. Search con-
trol mechanisms are necessary in order to implement
an efficient forward-chaining planner. Some authors



use state transition probabilities to enumerate only
the states that can most likely occur during the ex-
ecution (Drummond and Bresina 1990). Partial-order
search techniques have also been proposed to limit
the state explosion due to interleaving independent ac-
tions (Godefroid and Kabanza 1991). The experiments
reported herein relies on the use of search control for-
mulas to prune irrelevant state sequences (Bacchus and
Kabanza 1995).

The remainder of this paper is organized as follows.
The next section Section discusses the action represen-
tation. Section presents the logic used to specify goal
statements. Section describes the plan representation.
Section describes the planner algorithm. Finally, we
conclude with an the evaluation of the planner on a
simulated problem.

Specifying Actions

The reactive plan synthesis problem is understood as
a particular case of multi-agent planning problem, in
which there is one reactive agent executing controllable
actions to react to events generated by other agents in
the environment executing uncontrollable actions. The
problem is to generate a reactive plan for the reactive
agent to achieve a given goal whatever action is exe-
cuted by an environment agent.

Primitive actions for all the agents are specified
by using ADL (Action Description Language) opera-
tors (Pednault 1989). An operator describes the pre-
condition, effects, duration, and controllability status
for a schema of actions. Examples of ADL operators
are shown in Figure 1 for a reactive system consisting
of a scheduler, processes and resources. The sched-
uler must allocate resources to processes according to
a given goal. Each time the scheduler has deallocated
the resource, it enters a busy state in which the only
possible action is to wait. The scheduler represents a
reactive agent for which one wants to generate a reac-
tive plan, while the processes compose its environment.

Variables are terms starting with a “?”. An action
is obtained from an operator by replacing free occur-
rences of variables by constants. The delete list of an
action consists of literals ¢ such that p = ¢ is in the
delete list and p holds; the add list is obtained likewise.
As usual, an action is enabled in a state if its precondi-
tion holds in the state. In this case, the application of
the action to the state yields a successor state obtained
by removing the delete list and adding the add list.

Two actions can be executed simultaneously if they
belong to two different agents. The transitions from
a state represent all possible ways of simultaneously
executing actions that are enabled in this state; it is
assumed that all the actions enabled in a state have the
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same time duration. The states that result from the
simultaneous execution of a set of actions are leafs of
the tree obtained by interleaving the actions. As noted
by Emerson ((Emerson 1990), page 1017), by picking
a sufficiently fine level of granularity for the primitive
actions, any behavior produced by true concurrency
(i.e., true simultaneity of actions) can be simulated by
interleaving.

To consider an example, let us assume that there
are two processes (p; and p»), and one resource (7). In
state {}, the following sets of simultaneous actions are
possible:

{wait(s), wait(p1), wait(p2)},

{wait(s), request(py,r), wait(pz)},
{wait(s), wait(p1), request(pz, )}, and
{wait(s), request(p1,7), request(pa, )}

Uncontrollable actions are removed from transition
labels to obtain nondeterministic transitions, as in Fig-
ure 2. Each transition from state {} in this figure cor-
responds to one of the previous sets of actions. The
correspondence can be easily established by compar-
ing states and action effects.

As far as the planner is concerned, the only re-
quirement is to be able to compute the successors
of a state under the application of an action. Thus,
henceforth we will assume that the primitive actions
are specified by a state transition function succ re-
turning the list of actions that are possible in each
world state and their corresponding durations and
successors. More specifically, succ(w) returns a list
{(a1,t1,11),...,(@n,tn,ln)}, where a; is an action pos-
sible in w, t; its time duration, and [; its set of nonde-
terministic successors.

As explained above, succ is specified via ADL oper-
ators. Of course, one could specify it more explicitly
by using a state transition system or nondeterministic
operators. This can be, however, cumbersome and er-
ror prone when there are many interacting agents. It
is more practical to specify the effects of each action
taken isolately, so that the planner automatically de-
rives the effects of simultaneous executions by using a
theory of interaction; in our case, the theory of inter-
action models simultaneous executions by interleaving
actions.

Goals

Since the behaviors of a reactive system are described
by sequences of states, it seems natural to specify
goals using formulas that are interpreted over state se-
quences. Modal temporal logics have been proven use-
ful for specifying temporal properties of concurrent sys-
tems modeled by state sequences (Manna and Pnueli



Actions for the scheduler

allocate(s,r,?p)
PRECOND: requesting(?r, 7p) A ~busy(s)
ADD: true = using(?p, 7r)
DELETE: true = requesting(?p, 7r)
DURATION: 1 CONTROLLABLE: true
deallocate (s,?r,?p)
PRECOND: using(?r, ?p) A ~busy(s)
DELETE: true = using(?r, 7p)
ADD: true = busy(s)
DURATION: 1
wait(S)
DELETE: busy(s) = busy(s)
DURATION: 1 CONTROLLABLE: true

CONTROLLABLE: true

Actions for processes

request(?p,r)

PRECOND: Is-process(?p) A is-resource(?r)A
—(requesting (?p, 7r) A using(?p, ?r))

ADD: true = requesting(?p, ’r)

DURATION: 1 CONTROLLABLE: false

release(?p,r)

PRECOND: using(?p, 7r)
_ADD: using(?p, ?r) = using(7p, 7r)
DURATION: 1 CONTROLLABLE: false

wait(?pro)

PRECOND: is-process(?p)
DURATION: 1 CONTROLLABLE: false

Figure 1: ADL operators for a scheduler and processes
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requesting(pi,r)
using(pa,r)

Figure 2: Some state transitions for a scheduler and two processes

1991). To fix a context, we use Metric Temporal Logic
(MTL) (Koymans 1990).

Syntax

MTL formulas are constructed from an enumerable col-
lection of propositional symbols; the Boolean connec-
tives A (and) and — (not); and the temporal modalities
Ot (next), O (always), and U~ (until), where ~
denotes < or > and ¢ is a real number. The formula
formation rules are:

e every propositional symbol p is a formula and

o if fi and fy are formulas, then so are —f;, fi A fo,
O~t fl’ O.t fl and fl Un~t f2'

In addition to these basic rules, we use the standard ab-
breviations fiV fo = < (= fiA=f2) (fior f2), fi = fo =
=f1V fa (fi implies f3), and Ony f = true Un: f (even-
tually f).

The intuitive meaning of MTL formulas is captured
by using the natural language interpretation for logi-
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cal connectives and by noting that when the time con-
straint “< t” or “> ¢” is associated to a modal connec-
tive, the modal formula must hold before or after the
time period ¢ has expired. For example, fi; — fo is read
as “f1 implies fp,” O«; f as “the next state is in the
time interval [0,¢] and satisfies f,” O<; f as “always f
on the time interval [0,],” O<; f as “eventually f on
the time interval [0,2],” and f1 U>: fa as “fy until fo
on the time interval [¢, co[”.

Semantics
MTL formulas are interpreted over models of the form
M = (W, r, D), where

e W is an
wo ... We ...y

infinite sequence of world states
e 7 is a function that evaluates propositional symbols
in a world state: m(p, w) = true if proposition p holds

in world state w;! and

'Usually, 7(p, w) is true if p € w. However, propositions
can also be interpreted by invoking a function specified by



¢ D is a time transition function: D{w;, w;4) returns
a real number, which is the time duration for the
transition (w;, w;41):

As usual, we write (M, w) |= f if state w in model M
satisfies formula f. When the model is understood,
we simply write w = f. In addition to the standard
rules for Boolean connectives, we have the following
rules for temporal connectives. For a state w; in a
model M, a real number d = D(w;, w;+1) the duration
of the transition (w;, w;+1), a propositional symbol p,
formulas f; and fs:

o w; = piff m(p,w;) = true;

o wi =EOc fu, iff t—d>0and wiyg = fi;

o w; |E Oy f1, iff t—d <0 and wiys |= fi

e wi =0 f1, iff t—d>0and w; = fi and wiy; =
DO<-ay fr;0rt—d=0and w; |= fi;0ort —d <0

o w; EOs; f1,iff t—d>0and wiy E O t—a) f1;
ort—d<0and w; = fi and wigy | Oy f1;

o w; = fiU<t foiff t—d > 0and (w; = foor (w; = fi
and wiy1 | f1 Ug(t-a) f2)); ort—d = 0 and w; |= fo;

cwi E fHUsih, iff t—d > 0 and wiyy E
JiUs(t—a) fo;ort —d < 0and (w; |E fo or (w; E fi
and w1 = fi Uso f2));

Finally, we say that model M (or sequence W) satisfies
a formula f if wy = f.

For example, the formula ¢5¢O5qp states that p
must eventually be made true and then maintained
true thereafter. The formula

O>o(—(using(p1,7) A using(pa, 7)) A (1)
(requesting(p1,r) = C<a using(p1, 7)) A (2)
(requesting (p2, ) = O<4 using(pa, r))) (3)

states that p; and p, must never use resource r at the
same time (subformula 1) and each process requesting
resource r must obtain the right to use it within 4 time
units (subformulas 2 and 3).

A goal of the form O5¢(g — O<¢ p) is satisfied by an
agent that continuously senses the current world state,
checking if ¢ holds, to execute actions making p true
within ¢ time units. There is no single final state in
which we can consider that the goal has been satis-
fied. Instead, we have final cycles representing infinite
behaviors that satisfy the goal.

Reactive Plans

A reactive plan is represented as a set of situation
control rules (SCR) (Drummond 1989). In the orig-
inal definition, an SCR maps a world state to a set of

the user taking a world state as argument.
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actions that can be executed simultaneously. In our
case, only one reactive agent executes controllable ac-
tions in reaction to actions executed by environment
agents; there is only one action for each scr. The
original definition of SCRs was extended by adding la-
bels and sequencing to allow the interpretation process
to be biased by the recommendation from the previ-
ously executed scr (Kabanza 1992). Other authors
experimented with this extension in telescope control
applications (Drummond et al. 1994).

An scr is a tuple [s, w, a, S], where s is a plan state,
w is a world state, a is an action, and S is a set of plan
states. An agent executes a reactive plan by finding an
SCR [s, w, a, S] such that w holds in the current situa-
tion. Then, the action a is executed and the resulting
situation is determined from S by finding a plan state
associated with a world state holding in the new sit-
uation. If many states hold, one with the largest set
of propositional symbols is selected. If this still leaves
many candidates, any of them is selected. In practice,
the evaluation of the truth value of a proposition might
involve sensing operations as well as internal compu-
tations.

The execution of a reactive plan never terminates, so
that it produces an infinite sequence of states. Never-
theless, finite executions can be simulated by using an
SCR with a wait action. A reactive plan is satisfactory
if each sequence of states resulting from its execution
satisfies the goal in the sense of MTL semantics, what-
ever nondeterministic successor is selected for each ac-
tion.

Figure 3 shows a reactive plan for the scheduler, two
processes (p; and p3), and one resource (r). Proposi-
tions and action names are written in a Lisp-like no-
tation. As illustrated by this example, a reactive plan
can contain different sCRs with the same world state
(see states 9 and 12).

Planner

The basic operations in the planning process are to
check safety goals, liveness goals, and controllability,
and to generate sCRs that enable only actions on sat-
isfactory sequences.

A safety goal states that something bad must never
happen on a sequence of world states (Manna and
Pnueli 1991). It is characterized by the fact that, when
it is violated by a sequence, the violation always occurs
on a finite prefix of the sequence. Safety goals are of
the form O<; g1, O>¢ g1, and g; U<t g2. Indeed, a vi-
olation of such a formula always occurs on a finite se-
quence. Specifically, the violation occurs when a state
not satisfying g1 is met. For the formula g U<; g2, the
violation also occurs when a number of transitions for



STATE 0 WORLD () ACTION (wait s) SUCCESSORS (0 1 5 13)]

STATE 1 WORLD ((requesting p2 r)) ACTION (allocate s r p2) SUCCESSORS (2 10)]

STATE 2 WORLD ((using p2 r)) ACTION (wait s) SUCCESSORS (2 3)]

STATE 3 WORLD ((requesting pl r) (using p2 r)) ACTION (deallocate s r p2) SUCCESSORS (4)]
STATE 4 WORLD ((busy s) (requesting pl r)) ACTION (wait s) SUCCESSORs (5 12)]

STATE 5 WORLD ((requesting pl r)) ACTION (allocate s r pl) SUCCESSORs (6 11)]

STATE 6 WORLD ((using pl r)) ACTION (wait s) SUCCESSORS (6 7)]

STATE 7 WORLD ((requesting p2 r) (using pl r)) ACTION (deallocate s r pl) SUCCESSORS (8)]
STATE 8 WORLD ((busy s) (requesting p2 r)) ACTION (wait s) SUCCESSORS (1 9)]

STATE 9 WORLD ((requesting pl r) (requesting p2 r)) ACTION (allocate s T p2) SUCCESSORS (10)]
STATE 10 WORLD ((requesting pl r) (using p2 r)) ACTION (wait s) SUCCESSORS (3)]

STATE 11 WORLD ((requesting p2 r) (using pl r)) ACTION (wait s) SUCCESSORS (7)]

STATE 12 WORLD ((requesting pl r) (requesting p2 r)) ACTION (allocate s r pl) SUCCESSORS (11)]
STATE 13 WORLD ((requesting pl r) (requesting p2 r)) ACTION (allocate s r p1) SUCCESSORS (7)]

Figure 3: A reactive plan for a process scheduler

which the sum of durations is greater than ¢ has been
traversed. The violation of a safety goal leads to dead
ends during the enumeration of state sequences.

A liveness goal states that something good must
eventually happen (Manna and Pnueli 1991). It is
characterized by the fact that it can only be violated
by an infinite sequence of states (i.e., a cycle of states
in our case). Liveness goals are of the form 91 U>¢ g2.
Indeed, for such a formula, there is no bound on the
time when g5 should occur after ¢ time units. In other
words, it must be checked over the infinite time inter-
val [t,00[. The violation of a liveness goal leads to a
bad cycle.

Controllability is checked by ensuring that, for each
action of an SCR matching a given state, every nonde-
terministic successor is on a satisfactory sequence (i.e.,
a sequence satisfying the safety and liveness conditions
involved in the goal).

Note that a goal can involve interconnected safety
and liveness subgoals. They are syntactically deter-
mined by checking their main temporal connectives
as indicated above. However, one must take into ac-
count the fact that the negation connective changes
the temporal modalities. Indeed, —(O~;g) is equiv-
alent to O.;—g, while =(g1 Unt g2) is equivalent to
(O~t—g2) V (g2 U~t —g1). To avoid checking these
equivalences, our planner automatically transforms the
goal into an equivalent formula in which only propo-
sitional symbols are negated. This is done by using
the above two temporal equivalences, usual De Mor-
gan laws, and equivalences for the connectives A,V,
and —.

Checking Safety Goals

The procedure for checking safety goals relies on two
observations on MTL interpretation rules. First, the
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truth value of an MTL formula on a sequence of states
depends on the durations of transitions rather than on
the time stamps of states. Second, the truth value of
an MTL formula on a sequence w;w;4 ... is estab-
lished by evaluating a present requirement in w; and
postponing a future requirement to be checked in w;,.

Thus, an MTL formula is checked on a sequence of
states by labeling each state with the goal to be val-
idated on sequences outgoing from it. The process of
computing the goal labeling a state from that of a par-
ent is called to progress the goal from the parent state
through the successor state (see Figure 4). The input
consists of an MTL goal g, a successor world state w,
a real number ¢, and a function 7 that evaluates the
truth value of a proposition in a world state. Formula
g labels a state w', which is a parent of w. The real
number d is the duration of the action executed in w’
to produce w. The output is a formula representing
the future requirement of g with respect to w, that is,
the goal to label w.

The goal progression algorithm is merely an imple-
mentation of MTL interpretation rules. The violation
of a maintenance requirement is detected by return-
ing false when evaluating a proposition that is in the
scope of an always modal connective (case 2 in the pro-
gression algorithm). The violation of a time bound for
an eventuality is also detected by returning false when
the time bound decreases to 0 before the eventuality
is satisfied (case 8 in the progression algorithm). Since
states labeled false are dead ends, it can be shown that
it is impossible to form a cycle that does not satisfy a
bounded-time eventuality (Barbeau et al. 1995).

Checking Liveness Goals

If the goal involves unbounded-time eventualities, cy-
cles that do not satisfy the goal can be formed because



Progress-goal(g,w,d, )

1. case g

2. p (p a proposition): w(p, w);

3.  —g1: —Progress-goal(g1,w,d, );
4.

5.

6.

g1 A g2: Progress-goal(g:,w,d, w) A Progress-goal(g2, w,d, r);
g1V g2: Progress-goal(g1, w,d, ) V Progress-goal(g2, w,d, 7);
O<tg1: case t —d > 0: Progress-goal(g1, w,0,7) A Og(_a) g1

t —d = 0: Progress-goal(g,,w, 0, w);
otherwsise: true;

7 Oyig1: case t —d > 0: Ox_g) g1

otherwise: Progress-goal(g1,w,0,7) A O>0 g1;
8. 91U<: go: case t —d > 0: Progress-goal(gz, w,0, 7)V
- (Progress-goal(g1,w, 0, ®)A g1 U (t—a) 92)
t — d = 0 Progress-goal(gz, w, 0, 7);

otherwise: false;

9. ¢ Ustg2: case t —t > 0: ¢y Us(t-a) 92
otherwise: Progress-goal(g2,w,0, m)V
(Progress-goal(g1, w,0,7) A g1 Uso g2)

Figure 4: Goal progression algorithm

when the progression of a formula of the form ¢, Ust 92
has decreased ¢ to 0, the progression keeps the formula
invariant provided that g; is not violated. Hence, the
state in which g, must be achieved can be postponed
forever within a cycle, without causing a state labeled
false.

This problem is solved by adding a mechanism
for propagating unbounded-time eventualities to check
that they are eventually satisfied. However, due to
space limitations, the eventuality propagation process
is not detailed in this paper. In fact, it basically
simulates the eventuality automaton construction in a
standard decision procedure for Linear Temporal Logic
(LTL) (Wolper 1989). The only difference is that here
we do that incrementally, simultaneously with the goal
progression. From this perspective, formula progres-
sion procedure simulates the construction of a local
automaton for the LTL decision procedure (of course,
we do that by taking into account time constraints,
which are absent in LTL).

The expansion of a state s is graphically illustrated
by Figure 5. Figure 5(a) shows the successors of
s.world as given in the input specification for the plan-
ner. Figure 5(b) shows the expansion of s computed
by the planner. The decomposition of goals into dis-
Junctive normal form introduces an additional level of
nondeterminism. Each successor of s under the ap-
plication of an action a; is labeled by a goal g;;x and
a set of eventualities Ej;k, where j corresponds to the
Jth nondeterministic successor of the action as given in
the world transition system and k corresponds to the
kth disjunct of the decomposition of the progression of
s.goal through the ith world state.
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The set of transitions labeled with the same action
from a state is called a link. The set of states corre-
sponding to the same world state in a link, but labeled
with a different goal and set of eventualities, is called
a split.

Checking Controllability

The basic idea behind our planner is better explained
by considering Figure 5 again. Roughly, the planner
input consists of a goal and a state transition function
specifying world-state successors as in Figure 5(a). The
planner must find scrs for the initial state and for
each state that can be reached thereafter. Thus, SCRs
are not required for all possible states in the domain,
but rather only the states that can be reached due to
nondeterministic effects have to be considered. When
a state contains many different satisfactory scRrs, only
one of them need be produced. Ideally, it should be
the optimal one.

For instance, if an SCR specifies that the agent must
execute action a; in w, then there must exist an SCR
for each nondeterministic successor of a;. No SCR is re-
quired for successors of actions other than a; that are
possible in the current state. All nondeterministic suc-
cessors of a; must be covered because the environment
decides which of them occurs. The agent has no con-
trol over this choice, but it can sense to observe which
of them occurs. In return, whatever state w;; results
in the execution of a;, the agent has the freedom to
select the goal to satisfy among the g; ;.

From another perspective, the action selection repre-
sents an or-joint for the planner in the sense that only
one action needs to be proven satisfactory in each state
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Figure 5: Expansion of a state s

likely to be encountered. In contrast, nondeterministic
successors for an action represent an and-joint in the
sense that the planner must find a successful action
for each of them. Finally, goal-decomposition repre-
sents an or-joint because only one disjunct needs to be
satisfied for each state.

Planner Algorithm

Our planner explores the and-or state space by expand-
ing each state using the goal progression and eventual-
ity propagation procedures to generate a set of SCRs en-
abling only actions that are on satisfactory sequences.

The planner input consists of an initial world state,
a function succ that yields the transitions from each
world state, a goal formula, and a function 7 that eval-
uates propositional symbols in world states. The plan-
ner computes a set of initial states from the world state
and the goal (there can be many initial states due to
goal decomposition); then the planner repeatedly calls
the search process on each of these initial states until
finding a satisfactory set of scRs.

The set of initial states is determined as follows:
the goal formula is put into normalized-negation form,
by pushing the negation connective inwards next to
propositional symbols (this form is preserved by the
goal progression algorithm); then, the obtained for-
mula is progressed into the initial world state using
the time duration 0 to check that no safety condition
is initially violated; finally, the resulting formula is put
into disjunctive normal form and an initial state is cre-
ated for each disjunct.

The search process explores the and-or state as illus-
trated by Figure 5 starting from a given initial state.
A depth-first strategy is used with a stack to detect on
the fly satisfactory cycles: a cycle is formed when the
state on the top of stack is equal to another state in
the stack; the cycle is satisfactory if some state between
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them is labeled with an empty set of eventualities.

An SCR is generated from each expanded link as fol-
lows. Given the current link under expansion, an inte-
ger is associated to the state origin of the link (i.e., the
state being expanded), such that all expanded states
are associated with different integers. This integer rep-
resents a plan state, labeled with the world state of
the extended state, which is origin of the link; this
plan state is the antecedent of the SCR, whose con-
sequent contains the action labeling the current link;
the successors are the plan states corresponding the
the first states in the slits of the link. However, these
states might be later changed when search discovers
(after backtracking) that they are not on satisfactory
sequences (see below).

The expansion of a split fails when none of its states
can be completed by a satisfactory cycle. In this case,
the link containing the split also fails, so that the search
process removes the corresponding SCR, backtracks to
consider a sibling link, and generates a new SCR cor-
responding to this link. The search process terminates
successfully after a backtracking phase to the initial
state, with a satisfactory link.

It can be shown that the sequence of partially sat-
isfactory plans computed by the search process con-
verges towards a completely satisfactory one, when-
ever it exists.? By partially satisfactory, it is meant
that the sCRs in the plan do not match all the states
that can likely occur during the execution or might
map wrong actions from some states. Complete sat-
isfaction is understood in the sense given in Section .
The convergence is not monotonic since SCRs can be
removed and added until a solution is obtained.

Figure 6 shows a partial description of a graph ob-

2A detailed description of the planner algorithm and
proofs of correctness and completeness will be given in the
extended version of this paper.
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Eo={} Ei ={Oxousing(p1,r), O>o using(pz,r)}

By = {Oxo using(pz,r)}  Bs = {O>o using(p1, 1)}

Figure 6: An extension of a state transition system with liveness goals

tained with the goal gy for the process scheduling ex-
ample, assuming two processes (p; and p2) and one
resource (r). The initial state is labeled with the goal
9o (the disjunctive normal form for g is go) and the set
of unbounded-time eventualities that are conjuncts of
go- 'The goals labeling the other states are obtained as
follows: for each transition (w;, wiy1), the goal g;41 la-
beling w;41 is obtained from g; labeling w; by the equa-
tion g;41 = Progress-goal(g;, wi+1,1, 7). The eventual-
ity set of a state s’ that is a successor of s is obtained by
Propagate-eventualities(s, s'). It can be checked that
any cycle containing a state labeled with an empty set
of eventualities (i.e., Eg) is satisfactory. The plan of
Figure 3 was obtained from the graph partially repre-
sented by this figure.

Conclusion

Robustness and reliability of reactive agents depend,
in part, on their ability to reason about their envi-
ronments to plan. This paper presented a planning
method for reactive agents that handles complex safety
and liveness goals with time constraints. A plan gen-
erated by our planner is, by construction, proven to
satisfy the goal whatever action the environment takes

among those specified.

A protype planner was implemented in Common
Lisp and experimented in a robot domain consisting
of connected rooms, objects in the rooms, and a robot
that moves objects to indicated rooms (see Figure 7).
The objects are labeled from a to e; the robot (labeled
7) is holding object a. Rooms are indicated by the let-
ter r followed by a number. There is also a corridor;
doors between rooms are indicated by shaded regions.
The primitive actions for the robot are to grasp an
object in the room, release an object being grasped,
open a door, close a door, and move from a room to
an adjacent one when the connecting door is opened.

Three other agents operate concurrently with the
robot to form a multi-agent scenario. These are a kid
process that moves between rooms to close doors ar-
bitrarily; a producer that generates objects in given
rooms (producer rooms) at any time; and a consumer
that removes from the domain every object released in
given rooms (consumer rooms). The number of objects
that can be generated by the consumer is finite, but an
object that has been consumed can be reproduced, so
that we have infinite behaviors. The concurrent execu-
tions cause nondeterminism about the outcome of ac-
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Figure 7: A simulated factory delivery domain

tions. However, our current implementation does not
support probabilities yet; it assumes that all nondeter-
ministic transitions have an equal likelihood.

We experimented goals of delivering produced ob-
Jjects to the consumer, using conjunctions of subformu-
las of the form in(obj, proom) — &xo(in(obj, croom) A
—holding(robot, obj)), where obj is a producer object,
proom is a producer room, and croom is a consumer
room. We define the size of a given problem as the
sum of different rooms involved in the goal and the
number of doors affected by the kid-process. Using
the search control formula given in the appendix and
a blind depth-first search (without any heuristic), we
obtained the results in Figure 8: The time is in cpu
seconds on a Sun SPACRstation LX. The reported re-
sult for each size is an average of 10 iterations such
that, at each iteration, the producer rooms, consumer
rooms, and kid-doors are chosen randomly.

Search control formulas are useful not only for prun-
ing irrelevant sequences from the search space, but also
for pruning inefficient sequences. This strategy is ap-
plicable for inefficient behaviors that are easily identifi-
able. For example, the fact that opening and closing a
door is not an efficient behavior can be easily captured
by a search control formula. This strategy does not
allow us, however, to generate plans that are construc-
tively proven optimal. It is the user that must make
sure that he has specified sufficient formulas to prune
nonoptimal sequences. One future research direction
will be to investigate mechanisms allowing computa-
tion of plans that are constructively proven optimal.
Another future research topic deals with the use of
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abstractions to group together many states that have
common properties,
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Search Control Formula Used in the
Experiment

By convention, variable names start with “?” and
comment lines start with “”. Formulas are writ-
ten in Lisp notation. The form if-then-else has the
usual intuitive meaning, which is defined as an abbre-
viation of an implies construct. The procedure that
propagates search-control formula also accepts first-
order quantification over predicate variables. More
specifically, we use a form of bounded quantification,
which is borrowed from the TLPLAN system (Bac-
chus 1995): the construct V[z : fi(z)]f2(z) (ice.,
(forall (x) (£_1 x) (£f_2 x)) in Lisp notation) is
equivalent to Yz (fi(z) = fa(z)).

We do not except that the reader will completely
understand the formula below at the first glance; this
might require familiarity with the formula notation
used by in the implementation, which is the same as in
the TLPLAN system (see (Bacchus 1995)). The formula
is provided here only to give an idea of how a realistic
search control formula looks like.

(always
(forall (7room) (in robot ?room)
(and
;3 grasp only relevant objects only
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(forall (7object) (in ?object ?room)
(implies
(and
(not (holding robot 7object))
(not (goal (holding robot ?7object)))
(not (exists (?room?2)
(goal (in 7object 7room2))
(not (= 7room2 7room)))))
(next (not (holding robot Zobject)))))
;; keep held object until in its room and
;3 don’t come back until having released it
(forall (?object ?room2)
(goal (in ?object ?room2))
(implies
(holding robot 7object)
(and
(if-then-else (= ?room ?room2)
(next (not (holding robot ?object)))
(next (holding robot 7object)))
(next (implies
(not (in robot ?room))
(until
(not (in robot ?room))
(in 7object ?room2)))))))
(forall (?door 7room2) (door/room ?room)
(and
;3 keep non kid-doors opened.
(implies
(and (opened ?door)
(or (not (exists (?door2)
(kid-doors)
= ?door 7door2)))
(not (exists (7t)
(clock kid 0 7t)))))
(next (opened ?door)))
; sopen doors only when there exist
;sobjects to move.
(implies
(and
(not
(not
(not

(opened ?door))

(goal (opened ?door)))
(exists (7object 7room)
(in 7object 7room)
(exists (?room2)

(goal (in 7object ?room2))
(not (= ?room2 ?7room))))))

(next (not (opened 7door)))))))))





