From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.
Modeling Complex Systems in the Situation Calculus: A Case Study
Using the Dagstuhl Steam Boiler Problem

T. G. Kelley

Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4
email: tgk@cs.toronto.edu

Abstract

We take advantage of the results of (Rei9) to show
that the situation calculus is a powerful and practi-
cal modeling language. The paper provides a brief
overview of the concurrent temporal situation calcu-
lus and how it is used to specify physical behavior. It
then presents the Dagstuhl steam boiler problem as an
example of a complex physical system of interest in the
real world. The problem was the focus of the Dagstuhl
meeting, “Methods for Semantics and Specification”,
whose goal was to develop criteria by which to com-
pare advantages and drawbacks of formal methods for
practical applications. The paper presents the situ-
ation calculus specification of the focus of the prob-
lem, the steam boiler controller. It then discusses the
theoretical foundation of a PROLOG technology sim-
ulator, which, together with the specification, form an
implementation of the controller. The paper concludes
with an evaluation of the situation calculus solution to
the problem, using the criteria which emanated from
the Dagstuhl meeting.

Introduction

The situation calculus language (MH69) has received
much attention from the Cognitive Robotics Group
at the University of Toronto in recent years. The
language is showing tremendous promise as a formal
framework for modeling the dynamical worlds encoun-
tered in real life.

The challenges facing such a framework are numer-
ous. For example, it must facilitate the representa-
tion of time, continuous processes, actions performed
by agents with “free will”, actions performed by Na-
ture, non-deterministic actions of chance, knowledge-
producing actions and the mental state of agents, con-
current or simultaneous actions, etc. The framework
must also be conducive to various types of reasoning,
including prediction, planning, diagnosis, and hypo-
thetical reasoning. A single formal theory of action
and time that satisfies these conditions is the ongoing
objective of the Cognitive Robotics Group.

Encouraging progress towards this long-range ob-
jective using the situation calculus as the framework
has been achieved (Rei91; Pin94; LRL*96; LLL*96;

103

SL93). This paper concentrates specifically on the re-
sults of (Rei96) which make it possible to formally
model the behavior of physical systems as complex
as a steam boiler controller. These physical systems
(the toilet of (Kel96) is another example) involve time,
continuous processes, and simultaneous natural actions
(those dictated by the laws of physics). The situation
calculus of (Rei96) provides a knowledge representa-
tion framework that is conducive to the specification
and simulation of such systems, while explicitly em-
bodying a solution to the frame and qualification prob-
lems.

As a specification language, the situation calculus
boasts many desirable properties. For example, a sit-
uation calculus model of a physical system is a truly
logical specification of that system. Hence, items of in-
terest, such as behaviors of parameters, are logical con-
sequences of the specification. This feature of the situa-
tion calculus is clearly conducive to formal verification.
Furthermore, the foundational axioms of the situation
calculus provide a firm theoretical foundation for a sit-
uation calculus-based PROLOG simulator of situation
calculus specifications. The behavioral properties of a
situation calculus specification can be obtained auto-
matically by directly executing the specification on the
simulator. Hence, a specification in situation calculus
form is also an implementation whose behavioral prop-
erties are automatically formally verified against the
specification.

To illustrate that the situation calculus is a practical
modeling language, we have formalized the controller
specification for the Dagstuhl steam boiler (Abr94).
The original text from which the specification is de-
rived was written by LtCol. J. C. Bauer for the In-
stitute for Risk Research of the University of Water-
loo, and submitted as a competition problem to be
solved by the participants of the International Soft-
ware Safety Symposium organized by the Institute for
Risk Research. The Dagstuhl steam boiler problem,
solved in this paper, stems from that original text.
The problem was the focus of the Dagstuhl meeting,
“Methods for Semantics and Specification” , whose goal
was to develop criteria by which to compare advan-

tages and drawbacks of formal methods for practical
applications. Hence, the problem is ideal for exhibit-
ing the features of the situation calculus. In this paper,
I present an evaluation of the situation calculus solu-
tion to the problem, using the criteria which emanated
from the Dagstuhl meeting (ABL95).

Situation Calculus Ontology

The situation calculus is designed to formalize the be-
havior of dynamically changing worlds. Intuitively
there are two facets to the ontology itself: 1) distin-
guishing between different courses of action, and 2) de-
termining the state of the world after different courses
of action. There are two additional facets of the situ-
ation calculus: 3) axioms which specify which courses
of action can happen, and 4) axioms which specify the
results of courses of action.

Naming Courses of Action

The mechanism for all change in such worlds is one
or more agents, perhaps including Nature, performing
named, instantaneous, actions. Situations are histo-
ries of concurrent action occurrences, each denoting a
different possible evolution of the world. A concurrent
action is a set of simultaneous simple actions. The con-
stant symbol Sy denotes the initial situation in which
no actions have yet occurred. Other than Sy, all sit-
uations have names of the form, do(e,), intuitively
meaning the result of doing action « in situation o.
Actions are denoted by functions, with time ¢ being
the last parameter. For example, consider the situa-
tion

do({stop_talking(Ty)},
do({begin_walking(T}), begin_talking(T1)}, Sy),

which denotes the world history in which an agent
begins walking and talking at time 73, and then
stops talking at time 7. The agent would not
be talking in this situation, but she would still be
walking. The first concurrent action performed is
{begin_walking(Ty), begin_talking(T1)}, which is the
set consisting of two simple actions begin_walking(T}),
and begin_talking(T}). Given any situation, the order
of action occurrences is obtained by scanning the sit-
uation from right to left. So, this situation denotes a
world history corresponding to the action sequence

[{begin_walking(T1), begin_talking(T1)},
{stop_talking(Ty)}].

The State of the World

The state of a world resulting from a certain course of
action is determined by the values of fluents.
Relational fluents are denoted by predicate symbols
taking a situation term as their last argument. These
relations represent what is true about the world after
carrying out the course of action specified by their sit-
uation argument. For example, the fluent, happy(p, s)

104

might mean that person p is happy in s. Note that
technically a situation is not a state, but a history of
action occurrences; so in this context, we should take
“p is true in s” to mean, “p is true after carrying out,
in order, all and only the actions specified by s”.

Functional fluents are functions whose value
varies from situation to situation. For example,
constant_position(ball, s) might denote the real-valued
constant position of a ball in situation s.

Continuous processes are represented using func-
tional fluents. The important idea, due to Pinto
(Pin94), is that although a continuous process involves
continuous change in the values of one or more param-
eters, the values of the parameters can be modeled by
equations which do not change in a particular situa-
tion. We say that the behavior of the parameter is
constant.

Consider a ball’s position, which varies with time in
5. The position(ball, s) fluent has as its value a func-
tion of time. Also consider the function,! val(f,t),
which takes as arguments a function of time, f, and
a time, ¢, and whose value is the value of f at t. We
take f(t) to be an abbreviation for val(f,t), and we
could write? position(ball, s)(t) = zo — 1/2gt?, mean-
ing that the value of the position function of the ball
at time ¢ in situation s is zg — 1/2gt2. The posi-
tion function in a certain situation might be defined
on the entire real line, as it is in this case, but it is
only relevant to the model on some half-open inter-
val: [start(s), 00), or [start(s), start(do(c, s))) for some
¢, where start(do(c,s)) is defined to be time(c), and
time(c) denotes the time at which ¢ occurs.

In the situation calculus, all change must be the re-
sult of some action occurrence, and functional fluents
are consistent with this. In the case of the ball, al-
though the ball’s position varies in s, its position fol-
lows a single function in s. The behavior represented
by the position(z,s) fluent remains unchanged until
some action, perhaps catch(z,t), takes place to change
it.

Specifying Which Courses of Action Can
Happen

Precondition azioms determine the conditions under
which an action is possible. A formalization of a world
includes one precondition axiom for each action. For
example, the precondition axiom for the bounce(ball, t)
action states that the ball bounces if it is falling and it
is at the floor.

Consider the function,® 4.(f), which takes a function
of time, f, as its argument and has as its value the
function which is the time rate of change of f. We

'In principle, this function could be axiomatized.

%In this paper, lower case Roman characters denote vari-
ables. Also, free variables are implicitly universally prenex
quantified.

3In principle, this function could be axiomatized.

write 4 (position(ball, s))(t) < 0 to say that the value
of the time rate of change of the position function of
the ball at time ¢ in s is less than 0. In other words,
the ball is falling at time ¢. Hence, the precondition
axiom for the bounce(ball,t) action is

Poss(bounce(ball, t), s) =
t > start(s) A position(ball, s)(t) = 0 A

dit(position(ball,s))(t) <0 (1)
where Poss(a,s) means that action a is possible in
situation s.

Natural actions, such as bounce(ball,t), are a spe-
cial case: when a natural action can possibly occur at
time ¢, it does occur, unless some other action, perhaps
catch(ball, t), occurs sooner. In worlds where no agent
has “free will”, all actions are natural. Intuitively, an
agent has “free will” if it is impossible to predict what
actions the agent will perform, or, at least, when the
agent will perform some action. Nature is taken to be
characterized by all of the scientific laws that scientists
strive to know, and to the extent that those laws exist
and do not change, Nature has no “free will”.

In worlds where all actions are natural, if certain
conditions are met, it is possible to simulate the evo-
lution of the world. Simulation is possible when in
every situation it is possible to determine whether and
when actions will occur. In effect, the world evolves
deterministically according to the laws of Nature (e.g.
Newton’s laws). When this is the case, there is only
one legal path through the tree of situations.

The Results of Courses of Action

The ways in which the values of fluents are affected by
action occurrences are determined by successor state
arioms. A formalization of a world includes one suc-
cessor state axiom for each fluent. The axiom specifies
all individual conditions under which the fluent will
change, and how the fluent changes under those con-
ditions.

Consider a world where a ball can bounce, and it
can be caught, and no other actions can affect it. The
successor state axiom for the position(ball,s) fluent
would state that if the concurrent action c is possible
in s, then the value of position(ball, do(c, s)) depends
upon what simple actions are in ¢. If ¢ contains a
bounce and not a catch, the ball’s velocity reverses. If
¢ contains a catch, the ball’s position becomes constant
where it is caught. If ¢ contains neither a bounce nor
a catch, the behavior of the ball’s position remains
unchanged.

The axiom is

Poss(c, s) D position(ball, do(c,s)) = f =
[(3t")bounce(ball, t') € ¢ A catch(ball, t') ¢ ¢ A
(V) f(t) =0 - dit(position(ball, 8)) (')t — gt?]
\%

105

[(3t')catch(ball, t') € c A

(Y2) f(t) = position(ball, s)(t')]

V

[(Vt)bounce(ball,t) ¢ c A catch(ball,t) & c A

f = position(ball, 5)] (2)

where the surface on which the ball bounces is taken
to be at position 0, and g > 0 is the acceleration due
to gravity.

Successor state axioms such as this embody
Reiter’s (Rei91) solution to the frame problem.

The Dagstuhl Steam Boiler

In this section, we attempt merely to introduce the
Dagstuhl steam boiler problem in enough detail for
the purposes of this paper, rather than reproduce the
specification. See (Abr94) for the complete specifica-
tion.

The Dagstuhl steam boiler system consists of the
following units:

o the steam boiler with a water level which is kept
preferably within the normal operating range, but
certainly must be kept within the safe range,

e a device to measure the quantity of water in the
steam boiler (denoted by water level),

o four pumps which are either off or on to provide the
steam boiler with water (we use pump(i) to denote
the ith pump),

o one controller to supervise each pump (four in all},
reporting on its water flow (we use pump_control(7)
to denote the ith pump controller),

¢ a device to measure the quantity of steam exiting
the steam boiler (denoted by steam-_rate),

e an operator desk, from which a STOP message can
be sent to the controller,

e a message transmission system used for all commu-
nication between the controller and the steam boiler
components.

We attempt to keep our notation consistent with the
original problem description (Abr94). Messages are
denoted by functions and constants with upper case
names. Mandatory messages must be present in every
transmission. There are roughly four classes of mes-
sages:

Control messages : The controller sends messages
to the physical units to direct their actions, and the
physical units send messages to the controller to in-
dicate the actual state of the steam boiler.

The control messages sent by the controller to the
physical units are

o VALV E: sent in initialization mode to request
the opening and then the closure of the valve for
evacuation of water from the steam-boiler,

e OPEN_PUM P(n): sent to activate pump(n),
o CLOSE_PUMP(n): sent to deactivate pump(n).

The control messages sent by the physical units to
the controller are

e PUMP_STATE(n,b): sent to indicate that the
state of pump(n) is b, which may be 0 or 1, mean-
ing open or closed, mandatory,

e PUMP CNTL.STATE(n,b): sent to indicate
that the flow of water from pump(n) is b, which
may be 0 or 1, meaning there is flow or there is no
flow, mandatory,

e LEV EL(v): sent to indicate that the level of wa-
ter in the boiler is v, mandatory,

o STEAM (v): sent to indicate that steam is exiting
the boiler at rate v, mandatory.

Fault Detection and Repair messages : When
the controller infers that a component is defective (a
pump claims to be operating, but there is no water
flow, for example), the controller sends a fault de-
tection message. When the a defective component
has been repaired, a repair message is sent to the
controller.

The controller sends the following fault detection
messages:

o PUMP_FAIL_DETN (n): sent (until acknowl-
edgement is received) to indicate that the con-
troller has detected the failure of pump(n).

¢ PUMP.CNTL.FAIL.DETN(n): sent (un-
til acknowledgement is received) to indicate
that the controller has detected the failure of
pump_control(n),

e LEVEL_FAIL: sent (until acknowledgement is
received) to indicate that the controller has de-
tected the failure of the water level measuring
unit,

o STEAM FAIL: sent (until acknowledgement is
received) to indicate that the controller has de-
tected the failure of the unit that measures the
rate of steam exiting the boiler.

The controller receives the following repair messages:

¢ PUMP_REPD(n): sent (until acknowledgement
is received) to indicate that pump(n) has been re-
paired,

e PUMP CNTL_.REPD(n): sent (until acknowl-
edgement is received) to indicate that
pump_control(n) has been repaired,

o LEVEL_REPD: sent (until acknowledgement is
received) to indicate that the water level measur-
ing unit has been repaired,

o STEAM _REPD: sent (until acknowledgement is
received) to indicate that the unit that measures
the rate of steam exiting the boiler has been re-
paired.

106

Acknowledgement messages : The physical units
send the controller a corresponding acknowledge-
ment message for each fault detection message.
For example, PUMP_FAIL_ACK(n) is sent to
the controller to acknowledge the receipt of a
PUMP_FAIL_DETN (n) message. Similarly, the
controller sends the physical units a corresponding
acknowledgement message for each repair message.
For example, PUM P_REPD_ACK (n) is sent to the
physical units to acknowledge a PUM P_RE P D(n)
message.

Other messages : There are also messages that have
somewhat administrative purposes.

The controller sends the following administrative
messages to the physical units:

e PROGRAM_READY: sent (until acknowledge-
ment is received) in initialization mode to indi-
cate that the controller is ready to assume control
of the steam boiler, .

e MODE(m): sent to to indicate that the pro-
gram’s current mode of operation is m (see below
for the modes of operation), mandatory,

o EMERGENCY_STOP: sent to immediately
transfer control of the steam boiler to the oper-
ators.

The physical units send the following administrative
messages to the controller:

e STOP: when the controller receives this mes-
sage three times in a row, the program goes into
emergency._stop mode,

o STEAM _BOILER.WAITING:
sent in indtialization mode to trigger the start
of the program,

e PHYSICALUNITS_READY:
sent in indtialization mode to acknowledge a
PROGRAM_READY. message.

A solution to the steam boiler problem is an im-
plementation of a controller program that will keep
the water level in the boiler within the normal operat-
ing range by receiving and sending messages through
the message system. If for some reason the water
level threatens to go outside of the safe operating
range, the controller should immediately transmit an
EMERGENCY _STOP message, and halt.

The operation of the program is cyclic. Every five
seconds, the program receives the incoming messages
from the steam boiler components. It then computes
the set of messages that should be sent out to the com-
ponents, and transmits those messages. In each cycle,
all messages are assumed to be received or transmitted
simultaneously.

Components of the steam boiler can become defec-
tive. Defective components determine (for the most
part) the operation mode of the controller. The
operation modes and their corresponding conditions
(mostly) are:

initialization : the steam boiler is not yet operating;
normal : no component is defective;

degraded : any component except the water level
monitor is defective;

rescue : the water level monitor is defective, but the
steam monitor is not. In rescue mode, the controller
estimates upper and lower bounds on the water level,
based on the dynamics of the boiler. If the controller
calculates that either bound will be outside the safe
operating range at the next cycle, then the water
level is considered to be outside the safe range.

emergency_stop : the water level and steam monitors
are both defective, or the water level is threatening
to go outside the safe range.

When the program detects that a component is
faulty, it sends an appropriate message to the operator
desk. After the component is repaired, an appropriate
message is sent to the controller to inform it of the
repair.

The Situation Calculus Language

The instantiation of McCarthy’s (MH69) situation cal-
culus language used in this paper to formalize the
steam boiler controller is due to Reiter (Rei96), largely
influenced by Pinto’s (Pin94) work on concurrency and
continuous processes. The language has the following
ontology:

® a sort situation, and a distinguished situation con-
stant symbol Sy.

e a sort {1me ranging over the reals.

e a sort action of simple actions. All actions are in-
stantaneous, and are denoted by a family of func-
tions that take a parameter in the last argument po-
sition denoting the time of the action’s occurrence.
Variables a, @', etc. are used for simple actions.

e a sort concurrent of concurrent actions which are
sets of simple actions. Variables c, ¢/, etc. are used
for concurrent actions.

e a function symbol time : action — R, where time(a)
denotes the time of the action a.

e a function symbol start : situation — R, where
start(s) denotes the start time of the situation s.

e a function symbol do action X situation —

situation.

¢ The predicate symbol Poss, where Poss(a, s) means
that the simple action a is possible in situation s
(and similarly for any concurrent action c).

o The predicate symbol <, where s < s’ means that
s’ is reachable from s through the execution of a

sequence of possible actions (simple or concurrent).

o The foundational axioms for the concurrent tempo-
ral situation calculus, provided in (Rei96), which
are generalizations of those provided in (LR94) and

107

(Rei93) for the nonconcurrent situation calculus.
These axioms include unique names axioms for sit-
uations, a definition for <, a coherency criterion for
concurrent actions, and an induction axiom.

Axiomatizing Application Domains
Levesque et al. (LRL196) list the general types of ax-
ioms required to formalize an application domain in
the situation calculus. In particular, our axiomatiza-
tion consists of the following axioms:

o For each simple action A, a single action precondi-
tion axiom of the form

Poss(A(%,t), s) = start(s) <t A®(&,t,s)

where ®(Z,t,s) is any first order formula with free
variables among &, ¢, and s whose only term of sort
situation is s.

o For each fluent f (except for defined fluents, which
are defined in terms of other fluents), a single suc-
cessor state axiom. The form of a successor state
axiom for a relational fluent is

Poss(c,s) D f(Z,do(c, s)) =
vf (&,¢,8) V [(F,8) A7 (F,¢,5)

where 'y}*(i’, ¢,s) and 'yf“(a':',c,s) denote the condi-
tions under which ¢, if performed in s, results in
f(&,do(e, 8)) becoming true and false, respectively.
For a functional fluent, the form of the successor
state axiom is

Poss(c,s) D f(Z,do(c,s)) =y =
Y (‘IE) y,c S) Vy= f('i:) S) A _'(ayl)7f (1-3‘, yl) c, S)
Here, v¢ (&, y, ¢, s) is a first order formula whose free

variables are among £, y, ¢, 5. In the case of Succes-
sor State Axiom 2, Yposition (F, f, ¢, 8) i8

[(3¢")bounce(ball,t') € c A catch(ball,t’) & cA
(V) £(t) = 0 — & (position(ball, 5))(t')t — gt?]
\%

[(3t')catch(ball, t') € cA

(Vt) f(t) = position(ball, s)(t')]

o Unique names axioms for the primitive actions.
o Axioms describing the initial situation.

o The foundational axioms mentioned in the previous
section.

Formalizing the Steam Boiler
Specification

The first step in implementing a steam boiler controller
with the situation calculus is to reconcile the inherently
procedural operation of a steam boiler controller with
the inherently declarative nature of the situation cal-
culus.

The issue is the following. The axiomatizer cannot
completely specify what the behavior of the controller
will be after it is put into service, because the infor-
mation comprising the incoming messages that will be
received at run-time is not available to her at the time
of specification. She cannot write down, for example,
that at time ¢, the controller will receive message m,
and do z.

Knowledge-producing actions are required to han-
dle this issue properly (see, for example, (LLL*96;
SL93)). The receipt of a message would be represented
by the execution of a knowledge-producing action. The
axiomatizer would be able to write down that at time
t, the controller will receive a message, and if the mes-
sage 1s my, the controller will do «1, but if the message
is my, the controller will do 4, etc.

In order to keep the particular implementation pre-
sented in this paper as simple as possible, we do not
use knowledge producing actions. We deal with the is-
sue of incoming messages non-logically, and in order to
not completely betray one of the main benefits of the
situation calculus approach to the steam boiler prob-
lem, namely, that the the approach is logical, we must
be careful about these non-logical properties.

We define a predicate input(m,t), which asserts that
message m is ready to be received by the controller at
time ¢. We handle incoming messages with a PROLOG
assert statement, which updates the definition of the
input(m,t) predicate as messages are received. When
executing a specification that is continually updated in
this way, using the assert statement, the logical conse-
quences actually used by the controller are all and only
those logical consequences that would be used by the
controller if all knowledge about future incoming mes-
sages were known and specified before the controller is
put into service.

Another procedural aspect of a steam-boiler con-
troller that conflicts with a purely declarative approach
is the issue of outgoing messages. A situation calcu-
lus specification does not do anything, and it certainly
does not send messages to a steam boiler. However, a
situation calculus specification can be used by a theo-
rem prover to derive logical consequences of the spec-
ification. The theorem prover would use the logical
consequences of the specification to determine what
messages should be transmitted to the steam boiler.
We arrange things such that the theorem prover trans-
mits to the steam boiler all and only those messages
whose transmission is a logical consequence of the spec-
ification.

With these issues addressed, a situation calculus
specification can be used to control a steam-boiler. The
general operation of the situation calculus implemen-
tation is as follows:

1. Every five seconds, a set of messages are received
from the steam boiler. For each of these messages,
m, Poss(receive(m,t), s) is now true at the current
time ¢ in the current situation s.

2. The concurrent action consisting of the complete set
of receive(m,t) actions is performed, and the values
of the fluents are affected accordingly.

3. The new values of the fluents make more actions pos-
sible immediately. Since all the actions are natural,
any action that is possible (and not prevented by an
earlier action) is carried out.

4. The first actions to become possible are those that
change the mode of operation of the controller, if
any.

5. After the mode has stabilized, a complex action con-
sisting of a set of transmit(m,t) actions will be pos-
sible, and carried out.

6. The situation resulting from transmitting messages
is stable, and the next actions to be possible are the
actions to receive the messages in the next cycle.

In the following sections, we show what such a speci-
fication looks like. Rather than present the entire spec-
ification, we present enough of the specification to show
the reader how such a specification can be constructed.

Actions

The following actions are sufficient to model the steam
boiler:

o receive(m,t): receive message m at time ¢
e transmit(m,t): transmit message m at time ¢

o switch_to.mode(m,t): switch to operation mode m
at time ¢.

These are all natural actions.

Fluents

The fluents described in this section comprise a suf-
ficient notion of the state of the system. The names
of fluents are chosen to be consistent with the original
steam boiler specification. The various quantities (e.g.
the water throughput of a pump) are considered to be
within an upper and lower bound, and each bound has
three values associated with 1t: a claimed value, which
is the corresponding sensor reading, a calculated value,
which is calculated by the controller using its knowl-
edge of the dynamics of the boiler, and a best estimate,
which is the same as the claimed value if the sensor is
not defective, and the same as the calculated value if
the sensor is defective. Note that the upper and lower
bounds on a quantity are both equal to the sensor read-
ing of that quantity if the corresponding sensor is not
defective. The fluents are

mode(s) = z : the controller’s mode of operation is z,
one of {initialization, normal, degraded, rescue,
emergency.stop}

g(s) = z : the last transmission contained a message
claiming the quantity of water in the boiler was z

gcl(s) = z : z, a function of time, is the calculated
lower bound (gc2(s): upper bound) on the quantity
of water in the boiler

qal(s) = z : z is the best estimate of the lower bound
(ga2(s): upper bound) on the quantity of water in
the boiler at the start of s

v(s) = z : the last transmission contained a message
claiming the quantity of steam exiting the boiler was
z

vel(s) = z ¢ z, a function of time, is the calculated
minimum (vcl(s): maximum) rate of steam leaving
the boiler

val(s) = z : z is the best estimate of the lower bound
(va2(s): upper bound) on the

pcl(s) = z : z is the calculated lower bound (pc2(s):
upper bound) on the (constant) throughput of the
pumps.

pal(s) = z : z is the best estimate of the lower bound
(pa2(s): upper bound) on the (constant) throughput
of the pumps. rate of steam leaving the boiler at the
start of s

transmitted(m, s)
start of s

: message m was transmitted at the

received(m,t,s) : message m was received at time ¢

waiting begin_flow(n,s) =z : z is the number of
transmissions received since pump n was turned on,
and pump controller n has not yet confirmed the
flow starting (if the pump has not been turned on,
z = —1), similarly for waiting_stop_flow(n, s)

transmission_error(s) : a transmission error oc-
curred at the start of s (e.g. a mandatory message
was missing from a transmission)

defective(z, s)
steam_boiler _waiting(s) : the steam boiler is waiting

for the controller to indicate it is ready to come on-
line

: component z is defective

program_ready(s) : program is ready to come on line

physical _units_ready(s) : the steam boiler is ready

for control to begin

pump_state(n, b, s) : pump(n) has been shut off (b =
0), or turned on (b= 1)

pump_control _state(n,b,s) : the last transmission

contained a message claiming that water from
pump{n) was (b = 1) or was not (b = 0) flowing

valve_open(s) : the valve to let water drain out of the
steam boiler is open

waiting_ack(m, s) : the controller is waiting for ac-
knowledgement message m

send_ack(z,s) : the controller should send acknowl-
edgement message m in the next transmission

Initial Situation

The situation is Sy when the controller is turned on:
mode(So) = initialization, ¢(So) = 0, pal(So)(t) = 0,
pa2(So)(t) = 0, v(So)(t) = 0, ~de fective(z, Sp), etc.

109

Precondition Axioms

In practice, it is possible to receive a message when that
message arrives, and we know that messages will arrive
approximately every five seconds. The PROLOG sim-
ulator that executes the situation calculus specification
is responsible for controlling the timing of the trans-
mit/receive cycle.

In theory, messages are received exactly when they
arrive, and they arrive every five seconds (when t,
which ranges over the reals, is equal to some integer
that is a multiple of five). To ensure the program de-
tects the absence of a transmission, we invent a mes-
sage, tick, which is guaranteed to be received every five
seconds. The value of the transmission_error(s) flu-
ent is determined by considering what messages were
received with each tick. The theorem prover (we use
PROLOG) updates the definition of the input(m,t)
predicate (using the PROLOG assert statement) as
messages arrive. The input(m,t) predicate asserts that
message m is ready to be received at time £.

The following axiom characterizes when messages
are actually received (rather than only ready to be re-
ceived):

Poss(receive(m,t),s) =
t > start(s) A (Fijt = 5i A

~received(m, t, s) A [input(m,t) V m = tick]

(3)

The precondition axiom for the transmit(m,t) ac-
tion is such that messages are transmitted exactly
when they are appropriate for proper operation of the
controller. The axiom ensures that the controller’s
mode has stabilized before any messages are trans-
mitted. If the controller is in emergency_stop mode,
only the message M ODE(emergency_stop) should be
transmitted. Also, is not possible to transmit a mes-
sage that was just transmitted. These conditions are
dictated by the following defined fluent:

transmit_cond(m,t,s) =
t > start(s) A mode(s) # emergency._stop A
[(Vm')=Poss(switch_to_mode(m',t), s)] A
—transmitted(m, s)

In addition, the decision to switch the pumps on or off
is characterized by the following defined fluent:

need_pumps(s)
[gal(s) < N1 A qa2(s) < Ni]v
[gal(s) < N1 A N1 < qa2(s) A qa2(s) < Na],

where Ny and No are the upper and lower limits, re-
spectively, of the normal operating range for the wa-
ter level in the boiler. Control strategies other than
this one are possible; however, this one is proposed in
(Abr94) as a reasonable candidate.

Given these two defined fluents, the precondition ax-
iom for the transmit(m,t) action is:

Poss(transmit(m,t), s) =

m = MODE(emergency._stop) At > start(s) A
mode(s) = emergency_stop A ~transmitted(m, s)
\%

m = PROGRAM_READY A
transmit_cond(m, s,t) A

mode(s) = initialization A program_ready(s)
\Y

(In)[m = OPEN_PUMP(n) A
transmit_cond(m, s,t) A need_pumps(s) A
[p=1Vn=2Vn=3Vvn=4]A

—de fective(pump(n), s) A pump_state(n, 0, s)]
\

m=STEAM _REPD_ACK A
transmit_cond(m, s, t) A

send_ack(STEAM _REPD_ACK) (4)

Successor State Axioms

We present just the most interesting, representative
successor state axioms.

The successor state axiom for the mode(s) = m flu-
ent is straightforward. The only action that can affect
the mode of the program is a switch_to_mode(m,1) ac-
tion:

Poss(c, s) D mode(do(c, s)) = m =
(3t)switch_to.mode(m,t) € ¢V
switch_to_mode(m/,t) ¢ c A mode(s) = m (5)

The successor state axiom for defective(z, s) char-
acterizes the conditions under which a component is
considered defective. It says,

o pump(n)
is defective if it changes state spontaneously, or if
an OPEN_PUM P(n) or CLOSE_PUM P(n) mes-
sage were sent in the previous cycle, but the flow has
not yet started or stopped, respectively.

e pump_control(n) is defective if it changes state
spontaneously, or if an OPEN_PUMP(n) or
CLOSE_PUM P(n) message were sent in the pre-
vious cycle, but the flow has not yet started or
stopped, respectively, and pump(n) is not defective.

e water evel, the water level measuring unit, is de-
fective if it indicates a value that is outside the valid
static limits (i.e. 0 and C), or if it indicates a value
which is incompatible with the dynamics of the sys-
tem.

e steam_rate, the unit measuring the exit rate of
steam, is defective if it indicates a value that is out-
side the valid static limits (i.e. 0 and W), or if it
indicates a value which is incompatible with the dy-
namics of the system.

110

Poss(c, s) D defective(z,do(c, s)) =
(In)z = pump(n) A
([(3b,t)receive(PUM P_STATE(n,b),t) € ¢ A
(Ja)pump_state(n,a,s) Aa # bV
pump_state(n, 0, s) A
waiting begin_flow(n,s) =1V
pump_state(n, 1,s) A
waiting_stop_flow(n, s) = 1]
V
(3n)x = pump_conirol(n) A
—de fective(pump(n), s) A
[[pump_control_state(n, 0, s) A
waiting begin_flow(n,s) > 1V
pump_control_state(n, 1, s) A
waiting _stop_flow(n, s) > 1] vV
(Ja)pump_control_state(n, a, s) A
waiting begin_flow(n,s) = —1 A
waiting _stop_flow(n,s) = —1 A
(Ib)pump_state(n, b, s) A a # b]
V
x = water level A[g(s) < 0V g(s) > C]Vv
q(s) < gel(s)(time(c)) V ¢(s) > gc2(s)(time(c))]
\%
z = steam_rate A [v(s) <OV u(s) > W]V (6)
v(s) < wel(s)(time(c)) V v(s) > ve2(s)(time(c))]

Defined Fluents

Defined fluents are fluents that are defined in terms of
other fluents. We could write down a successor state
axiom for any defined fluent. It would be a compila-
tion of the successor state axioms of the fluents in the
definition of the defined fluent that have a situation
argument of the form do(c, s). However, the resulting
successor state axiom would be larger and more com-
plicated than the defined fluent.

The fluent qa2(s) = z means that z is the best esti-
mate of the upper bound on the quantity of water in
the boiler. If the water level detection equipment is
not defective, the program accepts the value given by
that equipment as the best estimate; otherwise, it uses
the value calculated by gc2(s)(t) at the time of the ac-
tion which started the situation. The formula for qal
is similar to this one for qa2:

ga2(do(c,s)) = z =
de fective(water_level, s) A z = qc2(s)(time(c)) V
(7)

~de fective(water level, s) A z = q(do(c, s))

The Situation Calculus Simulator

In this section we discuss a PROLOG technology sim-
ulator. The simulator can simulate a concurrent situa-

tion calculus specification like the steam boiler formal-
ization presented in the previous section.

The PROLOG Simulator

A situation calculus model defines a tree of situations
emanating from the distinguished situation Sp. Some
of the situations in the tree correspond to legal situ-
ations, and some do not. A legal situation is consis-
tent with the laws of Nature, in that a natural action
must occur at the time dictated by natural laws gov-
erning the behavior of the system, unless the action
is prevented from occurring by an earlier natural ac-
tion. Reiter (Rei96) defines the legal(s) predicate to
formalize this principle:

legal(s) =
So <sA
(Ya, c,s').natural(a) A Poss(a,s') A
do(c,s') < s Aa & ¢ D time(c) < time(a). (8)

Here, < is the ordering relation defined by the founda-
tional axioms mentioned earlier. The legal predicate
is instrumental in the implementation of a simulator,
as will become clear.

A domain of discourse in which all actions are nat-
ural is said to comply with Reiter’s (Rei96) Natural
World Condition (NWC). This condition assures a
deterministic simulation.

Another concept crucial to the implementation of a
simulator is the notion of Reiter’s (Rei96) Least Nat-
ural Time Points:

Intp(s,t) =
(Ja)[natural(a) A Poss(a, s) Atime(a) =t A
(Va')(natural(a’) A Poss(a’,s) D
time(a’) > t]. (9)

Informally, the least natural time point is the earliest
time at which any natural action can possibly occur in
a situation. The Least Natural Time Point Condition
(LNTPC) is the following:

(Vs).(3a)[natural(a) A Poss(a, s)] D (3t)Intp(s,t). (10)

This condition states that every situation in which
there is a possible natural action has a least natural
time point. An example of a world where this condi-
tion fails is one in which we have (Va).natural(a) =
(3z,t)a = B(x,t), where & ranges over the non-zero
n7tural numbers, and Poss(B(z,t),s) =t = start(s)+
1/x.

Reiter (Rei96) puts this all together with his foun-
dational axioms for the concurrent temporal situation
calculus and proves:

LNTPCANWC D legal(do(c,s)) =
legal(s) A Poss(c,s) A (11)
(Va)[a € ¢ = Poss(a, s) Alntp(s, time(a))].

111

Formula 11 is the engine for the simulator. The sim-
ulator is a PROLOG procedure that takes a situation
term s as an argument (initially Sp), prints its argu-
ment, constructs a set of actions ¢ such that

(Va)[a € ¢ = Poss(a, s) A lntp(s,time(a))],

and recursively calls itself with do(c,s). In so doing,
the simulator follows the path of legal situations (there
is only one path of legal situations when all actions are
natural), simulating the evolution of the system.

Here is the PROLOG code:

simulate(S) :-
nl,nl,print(S),
setof (A,1ntp(S,A),C),
simulate(do(C,S)).

1ntp(S,A):-

natural(A)),

poss(4,S),

time(A,T),

not (natural(A_prime),
poss(A_prime,S),
time(A_prime,T_prime),
T>T_prime).

The steam boiler controller version of this code needs
to transmit outgoing messages and add information
about incoming messages as the simulation proceeds,
so the simulate(S) procedure becomes:

simulate(S) :-
(setof(A,lntp(s,4),C),
transmit_messages(C),
simulate(do(C,S))

read(Incoming_messages),
assert_input (Incoming_messages),
simulate(S)).

Translating a Model to PROLOG

Clark’s completion semantics for logic programming
(Cla78) admit a translation from the situation calcu-
lus axioms to PROLOG clauses. The procedure is to
simply make the implication in the axioms go only one
way, and write down the clausal form. For example,
the PROLOG equivalent of Axiom 5 is

mode(do(C,S) ,M):-
poss(C,S),
(member (switch_to_mode(M,T),C),

not member(switch_to_mode(M_prime,T,C),
mode (S,M)).

Evaluation of the Solution

In this section, we attempt to apply the evaluation cri-
teria given in (ABL95) to this formalization and simu-
lation. These criteria were formulated by participants
at the Dagstuhl meeting to evaluate various solutions

to the steam boiler problem and to compare the spe-
cific merits and drawbacks of the formal methods used
in those solutions.

The criteria consist of a series of questions about the
solution. The following is a sample of the questions,
and my own proposed answers.

o Does the solution comprise a requirements specifica-
tion? Yes, since it is a translation of the informal
requirements specification into first-order logic.

o Is the requirements specification of the solution for-
mal and rigorous? Yes.

¢ Does the solution comprise a functional design? Yes.

e Has the functional design of the solution been verified
against the requirements specification? The func-
tional design of the solution is the requirements spec-
ification.

e Does the solution comprise an architectural design?
Yes.

o Has the architectural design of the solution been ver-
ified against the requirements specification? The ar-
chitectural design of the solution is the requirements
specification.

¢ Does the solution comprise an implementation of a
control program? Yes.

o What are the comparable other solutions? This is
planned future work.

e How much time has been spent on producing the so-
lution? Approximately four weeks.

e How much preparation is need to become sufficiently
ezpert of the used specification framework in order
to be able to produce a solution to such a problem in
that framework? Unknown. A course on first-order
logic is probably necessary, as well as some reading
on the situation calculus.

e What are the premises for a good understanding of
the proposed solution? Again, a course on first-order
logic is probably necessary, as well as some reading
on the situation calculus.

Acknowledgements

Ray Reiter provided useful comments and important
corrections. I have also benefited from discussions with
Javier Pinto.

References

Jean-Raymond Abrial, Egon Boerger, and Hans
Langmaack. Preliminary report for the Dagstuhl-
seminar 9523: Methods for semantics and specifica-
tion,

Available via WWW at http://www.informatik.uni-
kiel.de/~procos/dag9523/dag9523.html, 1995.

Jean-Raymond Abrial. Steam-boiler control spec-

tfication problem. Distributed to the participants
of the Dagstuhl Meeting, “Methods for Semantics

112

and Specification”, June 4-9, 1995. This paper, and
its companion, “Additional information concerning
the physical behavior of the steam boiler”, are
available via WWW at http://www.informatik.uni-
kiel.de/~procos/dag9523/dag9523.html, August
1994.

K. L. Clark. Negation as failure. In Hervé Gal-
laire and Jack Minker, editors, Logic and Data Bases,
pages 293-322. Plenum Press, New York, 1978.

T. G. Kelley. Reasoning about physical systems with
the situation calculus. In COMMON SENSE ’96: the
third symposium on logical formalizations of common-
sense reasoning, Stanford University, January 1996,

Yves Lespérance, Hector J. Levesque, Fangzhen Lin,
Daniel Marcu, Raymond Reiter, and Richard B.
Scherl. Foundations of a logical approach to agent
programming. In M. Wooldridge, J. P. Miiller, and
M. Tambe, editors, Intelligent Agents Volume II—
Proceedings of the 1995 Workshop on Agent Theo-
ries, Architectures, and Languages (ATAL-95), pages
331-346. Springer-Verlag, Lecture Notes in Artificial
Intelligence, 1996. To Appear.

F. Lin and R. Reiter. State constraints revisited.
Journal of Logic and Computation, 4(5):655-678,
1994.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming,
Special Issue on Reasoning about Action and Change,
1996. To appear.

John McCarthy and Patrick Hayes. Some philosoph-
ical problems from the standpoint of artificial intelli-
gence. In B, Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463-502. Edinburgh University
Press, Edinburgh, Scotland, 1969.

Javier Andrés Pinto. Temporal Reasoning in the Sit-
uation Calculus. PhD thesis, University of Toronto,
Toronto, Ontario, Canada, February 1994.

R. Reiter. The frame problem in the situation calcu-
lus: asimple solution (sometimes) and a completeness
result for goal regression. In Vladimir Lifschitz, ed-
itor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy,
pages 359-380. Academic Press, San Diego, CA, 1991.

R. Reiter. Proving properties of states in the situation
calculus. Artificial Intelligence, 64:337-351, 1993.

R. Reiter. Natural actions, concurrency and contin-
uous time in the situation calculus. In COMMON
SENSE ’96: the third symposium on logical formaliza-
tions of commonsense reasoning, Stanford University,
January 1996.

Richard B. Scherl and Hector J. Levesque. The frame
problem and knowledge-producing actions. In Pro-
ceedings of the Eleventh National Conference on Ar-
tificial Intelligence, pages 689-695, Washington, DC,
July 1993. AAAT Press/The MIT Press.

