
Richard B. Scherlt

Department of Computer
and

Information Science
New Jersey Institute of Technology

Newark, New Jersey 07102
scherl@vienna.njit.edu

How to Execute a Conditional?*
Yves Lesp~rance

Department of Computer Science
Glendon College
York University

2275 Bayview Ave.
Toronto, ON, Canada M4N 3M6

lesperan@cs.toronto.edu

Hector J. Levesque
Fangzhen Lin

Ray Reiter
Department of Computer Science

University of Toronto
Toronto, Ontario
Canada M5S 1A4

{hector fl reiter}@cs.toronto.edu

Abstract

The execution of a plan containing conditionals
by an agent with incomplete knowledge poses
some difficult problems. In order for the con-
ditional to be meaningful, the agent must know
whether or not the condition is true at execu-
tion time. This paper proposes one solution to
this problem by integrating sensing actions into
GOLOG, a high-level robot programming lan-
guage. At run time, the interpreter perfi)rms
a small amount of planning to ensure that the
agent will know whether or not a condition is true
prior to the point where the test for the truth of
the condition needs to be made.

Introduction
Artificial agents, be they robots or software agents,
need to be designed to adlieve their goals in a world
about which the agents have incomplete knowledge.
Our approach to the design of such agents is to develop
a high level language, called GOLOG (Levesque et al.
1996; Lesp~rance et al. 1995; 1994), to specify such
agents. Programs written in GOLOG can be seen as
schematic plans with the details automatically filled in
at execution time. GOLOG programs are composed
in a way similar to conventional high-level computer
programs, however it has a semantics grounded in the
situation calculus (Reiter 1991). The output of the
GOLOG interpreter is a sequence of primitive actions
expressed in the situation calculus.

Unlike conventional computer programs, GOLOG
programs frequently need to work under incomplete
knowledge. Consider the conditional "if C then a".

This research received financial support from the In-
formation Technology Research Center (Ontario, Canada),
the Institute for Robotics and Intelligent Systems
(Canada), and the Natural Science and Engineering Re-
search Council (Canada)

Most of the work was performed while a National Sci-
ences and Engineering Research Council of Canada Inter-
national Postdoctoral Fellow

Clearly, to execute the command, the agent needs to
know whether C is true. This presents no conceptual
problem if the agent has complete knowledge, which is
tile assumption made by classical planners and compil-
ers for traditional computer programs. Relaxing this
assumption exposes many difficult problems, some of
which have been discussed by Etzioni et al (1992). For
instance, should the agent ask its sensors first or should
it check its knowledge base first? In addition to the
sensory and mental actions, what other actions is the
agent is allowed to do? Levesque(1996) discusses the
limitations of the classical definition of planning and
generalizes the definition to cover cases where the agent
has incomplete knowledge of tile initial situation and
can execute sensing actions.

In this paper we adopt a version of the situ-
ation calculus with a representation of knowledge
and knowledge-producing actions(Scherl and Levesque
1993) as the semantic foundation for GOLOG. Given
the conditional "if C then a" to execute in state s,
the agent strives to achieve a state in which it knows
whether C is true in s. Taken as a planning prob-
lem, this differs from classical planning in the following
ways1:

1. Tile goal is epistemic. (To have the knowledge of
whether something is true.)

2. It involves more than one state. (To achieve a state
where the truth value of something in an earlier state
comes to light.)

Now the output of the GOLOG interpreter is a se-
quence of basic situation calculus actions that may in-
clude sensing actions. There may be many ways to
achieve the goal of knowing whether C is true. The
achieving of the goal of knowing the truth value of

lit is interesting to note here that because of the second
feature, classical plalming fi)rmalisms such as STRIPS are
no longer expressive enough, and we have to take seriously
formalisms that represent states explicitly.

120

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

a condition is an additional element of the high-level
schematic nature of GOLOG plans that are filled in
with the details at execution time, e.g., the particular
sequence of actions (including sensing actions) needed
to ensure that the agent will know whether or not the
condition is true at the time the test needs to be made.

The following problem (based on an example due
originally to Savage and then modified by Poole) will
be used to illustrate the approach taken here2:

The problem is to make a 3 egg omelette from a
set of eggs some of which may be bad. None of
the eggs in the omelette should be bad. We have
two bowls; we can only see if an egg is bad if it is
in a bowl. We can throw out the whole bowl.

We can assume a limited number of eggs (say 5),
and add the statement that there axe at least 3
good eggs. Furthermore, the agent has two meth-
ods of determining whether or not the egg is bad
- visual and olfactory.

The following are the actions available to the agent:

¯ Break an egg into a bowl.

¯ Pour the contents of one bowl into another.

¯ Throw out the contents of one bowl.

¯ Visually inspect a bowl to see if there axe any bad
eggs in it.

¯ Sniff a bowl to see if there are any bad eggs in it.

The goal is to:

Have three eggs in a bowl that are not bad.

In the next two sections, the situation calculus back-
ground and then the GOLOG programming language
are discussed. The addition of knowledge-producing
actions to the situation calculus and the needed re-
visions to the GOLOG interpreter are covered in the
following two sections.

The Situation Calculus: A Language for
Specifying Dynamics

The situation calculus (following the presentation in
(Reiter 1991)) is a first-order language for represent-
ing dynamically changing worlds in which all of the
changes are the result of named actions performed by
some agent. For example:

BREAK_INTO(bowl), VETCH(container),
POuR(bowll, bowl2), THROW_OUT(bawl)

~For a full axiomatization of the omelette prol)lem see
(Scherl 1996b).

Terms are used to represent states of the world-i.e.

situations. If a is an action and s a situation, the re-
sult of performing ~ in s is represented by do (a,s).
The constant So is used to denote the initial situa-
tion. Relations whose truth values vary from situa-
tion to situation, called fluents, are denoted by predi-
cate symbols taking a situation term as the last argu-
ment. For example, BROKEN (X,S) means that object
x is broken in situation s. Functions whose denota-
tions vary from situation to situation are called func-
tional fluents. They are denoted by function symbols
with an extra argument taking a situation term, as
in NUMBER_EGGS(bowl,s), i.e., the number of eggs in
bowl in s.

In the omelette example, the following fluents are
needed:

IN(egg, bowl, s), BAD(egg, s),
BROKEN(egg, S), HOI,DING(Cgg, S),
NUMBER_EGGS(bawl, S)

The following non-fluents are needed:

EGG(x), SMALL_BOWL, LARGE_BOWL, BASKET

It is assumed that the axiomatizer has provided for
each action a(Z), an action precondition axiom of the
form given in 1, where ~ra(s) is a formula specifying
the preconditions for action a(Z).

Action Precondition Axiom

POSS(ot(Z), = ~ra(:Y, s) (1)

An action precondition axiom for the action
BREAK_INTO is given below.

POSS(BREAK_INTO(bowl),

3 egg ~BRoKEN(egg, S) A HOLDING(egg,
(2)

The predicate Poss allows us to define situations
reachable by an executable sequence of actions. Intu-
itively, s _< s~ holds if and only if there is a sequence of
zero or more executable actions which lead from situa-
tion s to s~. An action is executable if the action’s pre-
conditions are true in the situation in which the action
is to be performed. We need the following axioms3:

~s < So (3)
.~ < do(,,, ~’) (Poss(~, ~’A ~ _<s’) (4)

where s _< s’ is shorthand for s < s~ V s = s’.

3The fifll set of foundational axioms for the situation
cah:ulus can be found in (Lin anti Reiter 1994). These are
extended to cover the situation calculus with knowledge in
(Scherl 1996a).

121

Furthermore, it is assumed that the axiomatizer has
provided for each fluent F, two general effect axioms
of the form given in 5 and 6.

General Positive Effect Axiom for Fluent F

Poss(a, s) A "7+F (~, a, s) ---+ F(do(Z, a, (5)

General Negative Effect Axiom for Fluent F

Poss(a,s) 7~(~,a,s) -+ ~F(do(~,a,s)) (6)

Here 7+(a, s) is a formula describing under what condi-
tions doing the action a in situation s leads the fluent
F to become true in the successor situation do(a,s)
and similarly 3’F (a, s) is a formula describing the con-
ditions under which perfornling action a in situation
s results in the fluent F becoming false in situation
do(a, s). Effect axioms provide the "causal laws" for
the domain of application.

Reiter(1991) shows how to derive a set of succes-
sor state axioms of the form given in 7 from the ax-
ioms (positive and negative effect) and a completeness
assumption4.

Successor State Axiom

POSS (a, s) ~ [F(Z, do(a, s)) -
7+(z,a,s) v (F(Z,s) a, s))] (7)

Similar successor state axioms may be written for func-
tional fluents. A successor state axiom is needed for
each fluent F, and an action precondition axiom is
needed for each action a.

The following are successor state axioms for the flu-
ents BROKEN and IN:

Poss(a, s) -~ [BrtoKEN(e, do(a, s))
(HOLDING(e, S) 2ba = BREAK_INTo(b))v

BROKC, N(e, s)]
(S)

Poss(a, s) -+ [IN(e, bl, do(a, s)) ---
(HOLDING(e, s) A a = BREAK_INTO(bl))V
(S b2 a -= POuR(b2, b) A IN(e, b2,
IN(e, bl, s) A ~((a = THROW_OuT(b)

3 b2 a = POuR(b, b2))]
(9)

The axioms specify completely all possible ways that
the truth value of the fluents can change in moving
from situation s to situation do(a, s).

4This then amounts to a solution to the frame prob-
lem under the assumption there axe no rmnifications, i.e.~
indirect effects of actions. In (Lin and Reiter 1994), the
approach discussed in this section is extended to work with
state constraints (ramifications) by compiling the effects
the state constraints into the successor state axioms. Re-
iter(1991) also discusses the need for unique name axioms
for actions and situations.

GOLOG: Adding complex actions to
the situation calculus

Actions in the situation calculus are primitive and de-
terminate. They axe like primitiw’, computer instruc-
tions (e.g. assignment). We need complex actions for
the same reason that we need programs. This set of
complex action expressions forms a programming lan-
guage that we call GOLOG (alGOl in LOGic).

Complex actions could be treated as first class en-
tities, but since the tests that appear in forms like if

then ~1 else (f2 involve formulas ¢, this means that
we must reify fluents and formulas. Moreover, it is
necessary to axiomatize the correspondence between
these reified formulas and the actual situation calculus
formulas. This results in a nmch more complex theory.

Instead we treat complex action expressions as ab-
breviations for expressions in the situation calculus log-
ical language. They may be thought of as macros that
expand into the genuine logical expressions. A particu-
lar execution sequence of a complex action expression
will be a sequence of situation calculus primitive ac-
tions. In this way the solution to the frame problem
(for prinfitive actions) is extended to complex actions
as well, since the complex actions are eliminated by
macro expansion.

This is done by defining a predicate Do as in
Do(5, s, ~) where (f i s acomplex action ex pression.
Do(5, s, ~) i s i ntended to mean that t he agent’s do-
ing action 5 in situation s leads to a (not necessarily
unique) situation s’. The inductive definition of Do
includes the following cases:

* Do(a, s, ~) de f POSS(a, s)A st = do(a, s) -- simple
actions

¯ Do(C?, s, s’) d~__f ¢[s] A s = s’ -- tests

¯ Do([(~I; (~2], S, S’) def -~ ,, = -~s (Vo(~)l, s, s")ADo((~2, s",
-- sequences

¯ Do([JI IJ2], s, .st) de f Do(Jl, 8, t) VDo(¢~2, s,t) --
nondeterministic choice of actions

¯ Do(O-Ix)g, s, sI) de=f 3X Do(~, s, I) --- nondeterminis-
tic choice of parameters

¯ Do(if ¢ then 51 else 52, s, Y) de_f

(¢[s] ~ Do(A, s, s’)) A (-~¢[s] -~ Do(B, s,

¯ Do(5*, s, s’) de~ -- nondeterministic
iteration

VP(Vsl P(sl,Sl) D

Vsl,s2,s3[P(sl,s2) A Do(5, s2,s3) D P(sl,s3)] D P(s,s’)

122

¯ Do(while ¢ do 5, s, s’) de f

vP(
VSl -~¢[sl] -~ p(sl, .91)
Vsl,s2,s3 (¢[.91] A Do(A, sl,s2) A P(.s2,s:3))

P(Sl, s3)
) -+ P(s, s’)

Additionally, the notation ¢[s] means that a situation
argument is added to all ftuents in ¢, if one is missing.
The definition of while loops could be simplified by
utilizing the definition of nondeterministic iteration.

Additionally, there is the following abbreviation:

* ?AC"IEVE(¢)%r[Ai I A~ I’’" I A,,] ;¢.

A possible GOLOG program for the omelette
example’~ is as follows:

while "~(NUMBER_EGGS(LARGE_BOWL) =

(lie) ACHIEVE(HOLDING(e));
BREAK_INTO(SMALL_BOWL);

if BAD(SMALI,_BOWL)

thenTHROW_OUT(SMA I,L_BOWL);

elsePOUR(SMA LI~_BOWL, BIG_BOWl,);

The problem that is being addressed in this paper is
how to ensure that the agent knows the truth value of
BAr)(SMALI,_BOWIJ) each time that the condition needs
to be evaluated.

Adding Knowledge and Perceptual
Actions

To model the effects of perceptual actions, we must
come up with a suitable formalization of knowledge.
The approach we take is to adapt the standard
possible-world model of knowledge to the situation cal-
culus, as first done by Moore(1980). Informally,
think of there being a binary accessibility relation over
situations, where a situation s’ is understood as be-
ing accessible from a situation s if as far as the agent
knows in situation s, he might be in situation s’. So
something is known in s if it is true in every s’ acces-
sible from s, and conversely something is not known if
it is false in some accessible situation.

To treat knowledge as a fluent, we introduce a binary
relation K(.s’, s), read as I is accessible from s" and
treat it the same way we would any other fluent. In
other words, from the point of view of the situation
calculus, the last argument to K is the official situation
argument (expressing what is known in situation s),

~Here ACHIEVE(HOLDING(e)) will be instantiated by the
sequence of actions that enable the agent to pick up some
available egg. These low-level actions have not been defined
in this paper.

and the first argument is just an auxiliary like the y in
BROKEN(y, s).~

We can now introduce the notation Knows(P,s)
(read as P is known in situation s) as an abbreviation
for a formula that uses K. For example

Knows(BROKEN(y), s) de__f I K(s’, s) --~ BROKEN(y, Sl).

Note that this notation supplies tim appropriate situ-
ation argument to the fluent on expansion (and other
conventions are certainly possible). For the case of
equality literals the convention is to supply the situ-
ation argument to each non-variable argument of the
equality predicate. For example:

Knows(NUMBER(mI,I,) = NUMBER(MARY), 8) def=

Vs’ K(s’,s)
NUMBER(BII~I~, s’) = NUMBER(MARY, ~’).

This notation can be generalized inductively to arbi-
trary formulas.

Turning now to knowledge-producing actions, there
are two sorts of actions to consider: actions whose ef-
fect is to make known the truth value of some formula,
and actions to make known the value of some term. A
discussion of the second case may be found in (Scherl
and Levesque 1993). In the first case, we might imagine
a SENSEp action for a fluent P, such that after doing a
SENSEp, the truth value of P is known. We introduce
the notation Kwhether(P, s) as an abbreviation for
formula indicating that the truth value of a fluent P is
known.

Kwhether(P, s) (l~__~f Knows(P, s) V Knows(-~P,

It will follow from our specification that
Kwhether(P,do(SENSEp,s)). The specifications of
both INSPECT and SNIFF are similar to SENSEp.

The approach being developed here rests on the
specification of a successor state axiom for the K rela-
tion. For all situations do(a,s), the K relation will be
completely determined by the K relation at s and the
action a.

For non-knowledge-producing ac-
tions (e.g. BREAK_INTO(p)), the specification (based
on Moore (1980; 1985)) is as follows:

P OSs(BREA K_INTO(p) , S)

[K (s’, do(BREAK-INTO(p), S)
3s’ (K(s’, s) A (s" = dO(BREAK_INTO(p), S’)))]

(10)
The idea here is that as far as the agent at world
s knows, he could be in any of the worlds s’ such

~Note that using this convention means that the argu-
ments to K are reversed from their normal modal logic use.

123

that K(s’,s). At do(BREAK_INTO(p),s) as far as
the agent knows, he can be in any of the worlds
do(BREAK_INTO(p),sI) for any s~ such that K(s’,s).
So the only change in knowledge that occurs in mov-
ing from s to do(BREAK_INTO(p), is theknowledge
that the action BREAK_INTO has been performed.

Now consider the simple case of the knowledge-
producing action INSPECT that determines whether or
not the fluent BAD is true (following Moore (1980;
1985)).

POSS(INSPECT(b),
[K(s", do(INSPECT(b), = 2s’(K(s’, s) A

(s" = do(INSPECT(b), sI) A POSS(INSPECT(b), s’))
A (BAD(b, s) -- BAD(b, s’)))]

(11)
Again, as far as the agent at world s knows, he could
be in any of the worlds s~ such that K(s’,s). At
do(INSPECT(b),s) as far as the agent knows, he can
be in any of the worlds do(wNSeECT(b),s’) for all s’
such that K(s’,s) and BAD(S) ---- BAD(s’). The idea
here is that in moving from s to do(1NSeECT(b),s),
the agent not only knows that the action INSPECT(b)
has been performed (as above), but also the truth
value of the predicate BAD. Observe that, the
successor state axiom for BAD guarantees that
BAD is true at do(INSPECT(b),s) iff BAr) is true
at s, and similarly for s~ and do(lNSeEcT(b),sJ).
Therefore, BAr) has the same truth value in all
worlds s" such that K(s", do(INSPECT(b),s)), and so
Kwhether(BAr), do(INSPECT(b), s)) is true.

The axiomatization for SNIFF(b) is exactly the same.
The two actions would likely differ in their possibil-
ity conditions. For example, the axiomatization of
POSS(INSPECT(b)) may require that the lighting be
equate, while the axiomatization of POSSONSeECT(b))
may require that the agent not have a cold.

In the omelette problem, there are two knowledge-
producing actions. In general, there may be many.
Associated with each knowledge-producing action a~
is a formula ~a~(s, s’). The form of the successor state
axiom for K is then as follows:
Successor State Axiom for K

Vs, s", K(s", do(a,s))
[38’ (K(s’, s) A (s" = do(a, s’)))

=

The relation K at a particular situation do(a, s) is
completely determined by the relation at s and the
action a. In (Scherl and Levesque 1993) it is argued
that this formulation provides a solution to the frame

problem for the situation calculus with knowledge and
knowledge-producing actions.

Achieving epistemic goals
Given the conditional7

if BAD(SMALL_BOWL)

then THROW_OUT(SMALL_BOWL);

else P()UR(SMALL_BOWL, BIG_BOWL);

to execute in the state s, the agent strives to achieve a
state s* so that Kwhether(C(s), s*) and s _< s* holds.
This (:an be ensured by having the interpreter insert
iCHIEVE(Kwhether(Bhr)) complex action before
test. This amounts to performing planning to achieve
the epistemic goals.

Given a background theory /)9, a sequence
of actions m al,...,an is a plan for the goal
Kwhether(~, s) iff the plan is executable:H

/) ~ Pos8([¢~l,..., Cen], 8),

and after the plan is executed, the agent knows the
truth value of ~:

7) ~ Kwhether(~o[s], do([a,,..., an], s*)

In the omelette problem, the GOLOG interpreter
would insert a single sense action (either INSPECT(b)
or SNIFF(b) depending on the physical conditions of
both the location and the agent) prior to the test for
BaD(b). The result of executing the interpreter
Do(5, s, s) where ~istheomelette plangivenearlie r

7Actually the test for -~(NUMBER_EGGS(LARGE-BOWL)
3) poses a similar problem, but in this particular example
it can be shown that no sensing is necessary, i.e. deduction
sui~ices to determine the truth value of the fluent.

8We remark that here we are only allowing the agent
to construct sequential plans to instantiate the ACHIEVE
action. In general one may want to consider producing
plans with conditionals and loops. For example, one way
to find out whether ONTABLE(A) holds is to move one step;
scan the surrounding; if see either the table or the block
A, then sense whether ONTABLE(A), else continue move one
step See (Levesque 1996) for a discussion of the general
case from a different perspective.

9The theory must include unique names axioms for ac-
tions, successor state axioms, axioms about Knows, and
axioms about the initial state

~°In this section, the notation [~1,..., ~,] is used without
formal definition wherever a single action term may occur
to represent the sequential application of each action term
in the list; beginning with 81 and ending with a~.

~It may be argued that we should require the agent to
have a knowledge of this fact:

7) ~ Knows(Poss([(~l , ..., o~,], s), s*).

124

is a binding for s~ the name of a situation resulting
from a successful execution of a sequence of primitive
actions that instantiate ~. This sequence of primitive
actions will have the sense actions spliced in at the
appropriate points so that the agent will always know
the truth value of BAD(b) at the point where it would
need to test the condition.

In general12, the issue of what sorts of actions the
agent may perform arises. Note that in order to sat-
isfy the preconditions of the perceptual acts the agent
may need to alter the state of the world. For some ap-
plications it may be necessary to ensure that the plan
A leave the truth value of the condition C unchanged,
i.e., C(s) ~ C(do(A, s)). For others, this requirement
is unnecessary and therefore may preclude finding a
plan.

A minimal requirement is that the truth value of
C(s) be recoverable. This is addressed by the following
proposition:

Proposition 1 A sequence al,...,~n of actions is a
plan for Kwhether(~(s), s*) iff

1. ch is executable in s: 7) ~- Poss(al,s).

2. There is a sentence ~’(do(al, s)) that does not
tion any state term except do(a1, s) such that
~(s) - ~o’(do(al, s)), and a2,..., an is a plan

Kwhether(~’(do(al, s)),

Related Work and Discussion

The epistemic goals considered here are related
in many ways to the information goals (Etzioni
et al. 1992)). For instance, the informa-
tion goal "determine if the file paper.rex con-
tains the word theorem" in (Etzioni et al. 1992)
can be formalized as the following epistemic goal:
Kwhether(CONTAINS(PAPER.TEX, THEOREM, So),
Etzioni et al address the problem of what the agent
may change in achieving information goals.

The information goals in (Etzioni et al. 1992)
are defined procedurally, and are in many cases
stricter than they need to be. For insta~ce, if
the agent knows that paper.rex contains the string
theorem iff paper.rex* does, then to satisfy the goal
Kwhether (CONTAINS(PAPER.TEX, THEOREM, SO),
the agent is allowed to erase the file paper.rex since
it knows that as long as the goal goes, it is just as well
to use paper.tex*. In contrast, the corresponding in-
formation goal in (Etzioni et al. 1992) will forbid the
agent to delete paper.tex.

~2This issue does not arise in the omelette program and
the condition defined below is trivially satisfied.

We remark that a similar problem (or feature) ex-
ists for classical plamdng. For instance, to satisfy
the goal ON(A,B), the agent is allowed to paint the
blocks, and not only put the block A on the block
B, but also glue them together. There are some pos-
sible solutions. One is to require that plans be jus-
tified (Fink and Yang (1993)) in the sense that
do not contain any unnecessary actions. Another
is to strengthen the goals, for instance, to conjoin
Kwhether(CONTAINS(PAPER.TEX, THEOREM, ~0),

with:

(Vs’).(S0 < s’ < s ~ (Vx).CONTENT(PAPER.TEX,X,

CONTENT(PAPER.TEX, X, S*),

which is really a goal of maintenance: Maintain the
content of the file PAPER.TEX.

References
Etzioni, Oren; Hanks, Steve; Weld, Daniel; Draper,
Denise; Lesh, Neal; and Williamson, Mike 1992. An
approach to planning with incomplete information.
In Nebel, Bernhard; Rich, Charles; and Swartout,
William, editors 1992, Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Third
International Conference, Cambridge, Massachusetts.
115-125.

Fink, E. and Yang, Q. 1993. Planning with primary
effects. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence (IJCAI-
93), Cambridge, Massachusetts. 1374-1379.

Lespdrance, Yves; Levesque, Hector; Lin, Fangzhen;
Marcu, Daniel; Reiter, Ray; and Scherl, Richard 1994.
A logical approach to high-level robot programming
-- a progress report. Appears in Control of the Phys-
ical World by Intelligent Systems, Working Notes of
the 1994 AAAI Fall Symposium, New Orleans, LA.

Lespdrance, Yves; Levesque, Hector J.; Lin, F.;
Marcu, Daniel; Reiter, Raymond; and Scherl,
Richard B. 1995. Foundations of a logical approach
to agent programming. To appear in Proceedings of
the LICAI-95 Workshop on Agent Theories, Architec-
tures, and Languages.

Levesque, Hector; Reiter, Raymond; Lespfirance,
Yves; Lin, Fangzhen; and Scherl, Richard B. 1996.
Golog: A logic programming language for dynamic
domains. Journal of Logic Programming. to appear.

Levesque, Hector 1996. What is planning in the pres-
ence of sensing? In AAAI-96, to appear.

Lin, Fangzhen and Reiter, Raymond 1994. State con-
straints revisited. Journal of Logic and Computation
4(5):655-678.

125

Moore, R.C. 1980. Reasoning about knowledge and
action. Technical Note 191, SRI International.

Moore, R.C. 1985. A formal theory of knowledge and
action. In Hobbs, J.R. and Moore, R.C., editors 1985,
Formal Theories of the Commonsense World. Ablex,
Norwood, NJ. 319-358.

Reiter, Raymond 1991. The frame problem in the sit-
uation calculus: A simple solution (sometimes) and
a completeness result for goal regression. In Lif-
schitz, Vladimir, editor 1991, Artificial Intelligence
and Mathematical Theory of Computation: Papers
in Honor of ,lohn McCarthy. Academic Press, San
Diego, CA. 359-380.

Scherl, Richard B. and Levesque, Hector J. 1993. The
franm problem and knowledge producing actions. In
Proceedings, Eleventh National Conference on Artifi-
cial Intelligence. 689-695.

Scherl, Richard 1996a. Foundational axioms for the
situation calculus with knowledge, unpublished pa-
per.

Scherl, R.ichard 1996b. Omelettes: Kosher and den-
ver. unpublished paper.

126

