
Formal Theories for Reactive Planning Systems:
some considerations raised from

an experimental application
Paolo Traverso Enrico Giunchiglia

IRST - Istituto per la Ricerca Scientifica e Tecnologica DIST, University of Genova
38050 Povo, Trento, Italy viale Causa 13, 16145 Genova, Italy

Luca Spalazzi Fausto Giunchiglia
Istituto di Informatica, University of Ancona DISA, University of Trento

Via Brecce Bianche, 60131 Ancona, Italy Via Inama 5, 38100 Trento, Italy
IRST - Istituto per la Ricerca Scientifica e Tecnologica

38050 Povo, Trento, Italy

Abstract

This paper is a first attempt towards a theory
of actions for reactive planning systems, i.e. sys-
tems able to plan and control execution of plans
in a partially known and unpredictable environ-
ment. We start from a real world application de-
veloped at resT, discuss some of the fundamental
requirements and propose a formal theory based
on these requirements. The theory takes into
account the following facts: (1) actions may fail,
since they correspond to complex programs con-
trolling sensors and actuators which have to work
in an unpredictable environment; (2) actions ac-
quire information from the real world by activat-
ing sensors and actuators; (3) actions generate
and execute plans of actions, since the planner
needs to activate different special purpose plan-
ners and to execute the resulting plans.

Introduction
A lot of recent research in planning is more
and more focusing on reactive planning sys-
tems, i.e. planning systems which are able to
plan and control execution of plans in a par-
tially known and unpredictable environment (see
for instance (Beetz and McDermott 1994; Firby
1987; Georgeff and Lansky 1986; Simmons 1990)).
While formalizations of classical planners have
been proposed (see for instance (Lifschitz 1986)
for STRIPS (Fikes and Nilsson 1971)), this is
the case for reactive planning systems. There
actually seems to be a big gap between the ap-
proaches followed and the issues faced in the im-
plementation of reactive planning systems and
theories of actions and planning. For instance,
the literature in reactive planning does not men-
tion at all some main theoretical problems, e.g.
the frame problem and the ramification prob-

lem. Moreover, while most of the theoretical
work focus on the problem of "reasoning about ac-
tions" at planning time, most of the literature on
reactive planning systems is actually concerned
with "control of action execution", e.g. execution
monitoring, sensors control, interleaving of plan-
ning/execution/perception, failure recovering.

This paper should be considered a very pre-
liminary attempt to achieve two main goals
(both goals are still far from being completely
achieved!). The first goal is to investigate the rea-
sons for this gap, to understand when the gap is
only apparent and when it is real, and in the lat-
ter case, to understand the requirements in order
to bridge it. The second obvious goal is to pro-
pose how to bridge this gap with a formal theory
which meets the requirements.

The approach we are following in this attempt
is somehow unusual. We do not start from a
formal theory and explain how it extends exist-
ing ones in order to bridge the gap. We go the
other way around. First, we start from an ex-
perimental application developed at IRsT (Anto-
niol et al. 1994b; 1994a; Cimatti et al. 1992)
(briefly described in Section "The Application").
This application is essentially a reactive system
which controls a robot navigating in an in-door
environment (e.g. a hospital). A planner deals
with actions which have to be executed by real
sensor/actuator robot controllers.

Second, we propose a formal theory which takes
into account the lessons learned from this appli-
cation (Section "From the application to the the-
ory"). We sketch only the intuitions behind this
theory. This is done by explaining actions be-
haviours in terms of state transitions. This can
be the basis for a formal semantics of different
formal languages, e.g. languages based on the

127

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

situation calculus (McCarthy and Hayes 1969),
dynamic and temporal logics (Rosenschein 1981;
Harel 1984; Harel et al. 1982), action description
languages (Gelfond and V.Lifschitz 1993). This
allows us to keep the discussion general and inde-
pendent of the particular formalism which might
be chosen. The theory takes into account the fol-
lowing facts: (1) actions may fail, since they cor-
respond to complex programs controlling sensors
and actuators which have to work in an unpre-
dictable environment; (2) actions acquire infor-
mation from the real world by activating sensors
and actuators; (3) actions generate and execute
plans of actions, since the planner needs to ac-
tivate different special purpose planners and to
execute the resulting plans.

Third, we discuss the relations and differences,
in focus, approaches and contents, with respect
to existing theories of actions and theoretical ap-
proaches to planning (Section "Final considera-
tions and related work").

This work is still limited in at least two re-
spects. First, the theory we propose is strongly
motivated by the problems raised in the partic-
ular application. Even if we believe that a sig-
nificant amount of these problems could be gen-
eralized, this has not been investigated yet and
different applications might raise issues we have
not considered. Second, even if we describe ac-
tions semantically (as state transitions), we
not provide a formal account of how reasoning
about these actions should be performed. See
Traverso and Spalazzi [1995] for a logic (based on
Process Logic (Harel et al. 1982), an extension
of Dynamic Logic (Harel 1984)) which deals with
the same problems faced in this paper. While
Traverso and Spalazzi [1995] focuses on the for-
mal framework, here we focus on the requirements
raised from the application and on how actions
should be described in terms of state transitions.
The formal theory proposed here does not rely on
Process Logic.

The Application
We focus on an experimental real world and
large scale application developed at resT by a
large team. In this paper, it is described only
to the extent needed to explain the motivations
for our theory of actions (for a more detailed
description see (Antoniol et al. 1994b; 1994a;
Cimatti et al. 1992)). The application aims
the development of a system able to control and
coordinate a mobile robot, navigating in unpre-
dictable environments and performing high level
tasks, like transportation in hospitals and offices.
A simplified version of the architecture is depicted
in Figure 1. In the application, users can request

the mobile robot to perform desired tasks (see the
"user level" in Figure 1). The planner (see the
"planning level") is encharged to plan activities
in order to perform the requested tasks and to
control their execution. Execution is performed
by means of modules controlling robot’s sensors
and actuators (the "sensing and acting level").
Consider the following example. The user re-
quests to transport loads (e.g. food) to a given
department (e.g. a food storage). This is a goal
for the planner. First, the planner extracts from
the "goal-tactic table" (see Section "The plan-
ning level") a program (called "tactic"). Second,
the program gets executed and activates a "path
planner" and a "mission scheduler". The path
planner, given a target location, the current po-
sition of the robot (contained in the "database
of facts") and a topological map of the building,
returns a path plan (e.g. the shortest path)
reach the target location. The mission sched-
uler allocates time for the current task. Third,
the planner activates systems at the "sensing and
acting level" (see Section "The sensing and act-
ing level"). These systems execute the plan by
means of a set of programs, called "behaviours",
which activate and control actuators and sensors.
A behaviour is for instance the program called
"follow-wall(landmark)", which moves the robot
along (the wall of) a corridor of the building till
"landmark" (e.g. the end of the corridor, a partic-
ular sign on the wall) is reached. This behaviour
makes use of data acquired through a sonar and
a camera to keep the robot along the wall while it
is moving and to detect and avoid obstacles (e.g.
trolleys, people) along the way.

In the remaining of this section we describe
some of the fundamental characteristics of the
sensing and acting level (Section "The sensing
and acting level") and of the planning level (Sec-
tion "The planning level").

The sensing and acting level

The set of behaviours at the sensing and acting
level are complex programs. As a matter of fact,
in our application behaviours are implemented by
thousands of lines of C and assembler code. They
are encharged with all the low level control of sen-
sors’ and actuators’ commands and data. Most
operations (e.g. checking the side distance from
the wall, checking the presence of an obstacle in
front of the robot and moving the robot forward)
are executed in parallel. Information is countinu-
ously acquired through sensors in order to decide
the commands to be sent to actuators.

Some of the existing behaviours are executed
with the main purpose to acquire information
from the external environment. We call these

128

User Level

....................
Planning Level Special PurpoJe Planner~

Sensing and Aclmg ~ Reactive Sermors/Aetuators Controller

Figure 1: The system architecture

behaviours, sensing behaviours. In most cases,
sensing behaviours activate actuators in order to
put sensors in the position to acquire information.
For instance, the behaviour "calibrate(position)"
is a complex program which moves the robot and
a camera around till the camera can detect a
landmark which makes it possible to compute the
robot position. This behaviour is necessary in
practice. The robot gets often "lost", since the
position computed by the actuators controlling
the wheels is not reliable when the robot is mov-
ing on certain surfaces of the floor.

Behaviours are highly "reactive", i.e. they al-
low the robot to cope with some of the (many and
frequent) unpredictable situations. In our appli-
cation, it is impossible to predict all possible sit-
uations which might arise during execution. For
instance, it is impossible to predict whether peo-
ple moving within the building or trolleys moved
around will obstacle the robot’s navigation. For
this reason, for instance, the behaviour "follow-
wall(landmark)" is programmed to avoid unpre-
dictable obstacles along the way.

Nevertheless, behaviours cannot guarantee that
their execution will end as expected. Most
often, behaviours do not manage to perform
their task. For instance, the behaviour "follow-
wall(landmark)" might find a not avoidable ob-
stacle along its way. The same behaviour may fail
to detect a landmark and get stuck at the end of
the corridor. The behaviour "calibrate(position)"
may move the camera against an obstacle. All
these situations are mainly due to the intrinsic

complexity of reality, to the fact that the applica-
tion domain is unpredictable and highly dynamic
and to the fact that actuators and sensors are
not perfect (e.g. sonars are not precise enough,
wheels cannot follow desired paths precisely). In
all these cases, the behaviour is programmed to
interrupt execution and report an exception mes-
sage to the planner. We may think of this as
a kind of abort of the program implementing the
behaviour. When a behaviour aborts, we say that
it fails or that there has been a failure of the be-
haviour.

The planning level

The planner processes user requests from the user
level. Each user request corresponds to a goal for
the planner. For each goal, the planner has a cor-
responding program which can be executed. We
call this kind of programs, tactics. Given a goal,
the corresponding tactic is retrieved immediately
by means of a look-up table (the "goal-tactic ta-
ble" in Figure 1). At this level, tactics may be
thought as "precompiled plans". Actually, tac-
tics are programs which can activate and control
the execution of (see Figure 1):

* behaviours at the sensing and acting level, and

¯ special purpose planners at the planning level.

When a tactic executes a behaviour at the sens-
ing and acting level, it must take into account
possible behaviour failures. The tactic traps the
abort and reacts to failure. For instance, we
have tactics that activate the behaviour "follow-

129

wall(landmark)" and, when it fails, activate sens-
ing behaviours (e.g. "calibrate(position)") in
der to get information about the cause of failure.
The behaviour "calibrate(position)" may reveal
that the robot is along the expected path. A
further sensing behaviour is therefore activated
which may detect a not avoidable obstacle along
the way. In this case, the tactic activates the
path planner to get an alternative path. If "cal-
ibrate(position)" reveals the fact that the robot
is not along the expected path, the behaviour
"follow-wall(landmark)" may have missed to de-
tect the landmark. In this case the tactic lets
the robot follow the wall back to the landmark.
Notice that tactics manage to "take into account
possible failures", but the planner does not try to
build plans by "predicting (and thus avoiding) all
possible failures". As a matter of fact, in this kind
of application domains, behaviour failures cannot
always be predicted. In other words, it is impos-
sible that the conditions under which a behaviour
may fail can be a priori stated. Notice also that
tactics must execute sensing behaviours in order
to acquire information about possible causes of
failures. A further reason for the need of execu-
tion of sensing behaviours is the fact that tac-
tics may need to acquire information which is not
available a priori of execution. For instance, most
often we cannot predict whether doors are open
or closed. The only way to get to know this is to
activate sensing behaviours which acquire infor-
mation at execution time.

The execution of behaviours at the sens-
ing and acting level causes the updating of
a database of facts (see Figure 1). In prac-
tice, facts are pairs variable-value, expressible
by means of atomic propositions. For instance,
after that "calibrate(position)" has been exe-
cuted with success, the database contains the fact
At(position), which states the current position
of the robot; the successful execution of "follow-
wall(landmark)" updates the database by chang-
ing the fact At(position) with At(landmark).

The system described so far does not do rea-
soning at all. But some reasoning is actually re-
quired. For instance, it is not realistic to hard-
code (in a tactic) all the possible paths to reach
all the possible target locations. For this reason,
tactics can activate "special purpose planners" at
the planning level. Special purpose planners gen-
erate plans. They are modules which, given in in-
put a goal and some facts, return a tactic. They
are constructed to generate plans efficiently and
effectively. For instance, the path planner is a
dedicated algorithm to search for optimal paths
in a topological map. The topological map is a
graph whose nodes correspond to locations in the

building. Paths are sequences of nodes the robot
has to go through. The path planner takes in
input particular kinds of goals, i.e. target posi-
tions, and information contained in the database
of facts about the current position of the robot. It
computes a path which gets then translated into
a tactic which activates behaviours (at the sens-
ing and acting level) which move the robot along
the path. The planning level of the actual ap-
plication is equipped with a set of very different
special purpose planners (the mission scheduler is
one of them, see Figure 1).

Some final remarks are in order. First, a tactic
can easily interleave the execution of behaviours
at the sensing and acting level and of planning
activities at the planning level. This is highly
required in our application, where it is often nec-
essary to postpone planning activities after some
execution is performed which acquires informa-
tion from the external environment. Second, most
often the best way to find the proper plan is sim-
ply to ask the user. In our application, the sys-
tem operator (see Figure 1, user level) can be re-
quested to provide a plan. For instance, when a
load is particularly critical or dangerous, the sys-
tem asks the operator for a path. Finally, the op-
erator might request the planner to give informa-
tion about the activities of the systems, e.g. the
status of the task being performed, the reasons for
failures, the information acquired through sensing
behaviours, the tasks which have been scheduled
and the paths which have been planned.

From the application to the theory

Given the application described so far, we are in-
terested in providing a formal theory for the plan-
ner component of the system architecture shown
in Figure 1. As an ultimate goal, we aim at a
theory of actions which can be used by the plan-
ner to reason about actions and thus, to generate
plans.

Actions which fail
The theory of actions we aim to must comprise ac-
tions which correspond (at the planning level)
behaviours implemented at the sensing and act-
ing level. The activity performed by the plan-
ner highly depends on behaviour failures. We
have therefore to provide a notion of action failure
which corresponds to that of behaviour failure.
Notice that a behaviour that fails may modify the
world. For instance, "follow-wall(landmark)" and
"calibrate(position)" may abort after some navi-
gation has been performed and, as a consequence,
the position of the robot (or of the camera) has
changed. Even more, if the behaviour is not reli-
able enough, it may move (or even break) objects

130

around the robot. As an example independent
of our application, think of an action (behaviour)
which, while moving a block a from the table on
a block b, does not manage to keep the block in
hands and the block drops on c. The action has
failed, but the action has changed the position of
the block.

We consider therefore an action as a transition
from an initial state to a final state, where the
final state might be "different" from the initial
state even in the case the action fails. We call final
states where an action a has failed (succeeded),
failure (success) states (of the action a). Failure
and success of an action a can be formalized with
a (kind of) propositional fluent whose argument
is the action itself, say Fail(a) and Succ(a). For
instance, the action follow-wall(landmark) may
lead to a state where Fail(follow-wall(landmark))
(Succ(follow-wall(landmark))) holds (see Fig-
ure 2). Indeed Fail(follow-wall(landmark))

~c~c(follow-wallClandmark)

Charged~c~,~d~

Fail(follow -wall(landmark))

Figure 2: Success and Failure states

and Succ(follow-wall(landmark)) are two atomic
propositions which can be contained in the
database of facts in Figure 1. This makes the no-
tion of failure very different from that of not exe-
cutability, which captures the fact that actions are
not executable in certain states. Let us suppose
that the preconditions for executability of the ac-
tion follow-wall(landmark) are that the battery of
the robot is charged, say Charged(battery) (see
Figure 2). In state 1, the action is executable,
nevertheless it may fail, i.e. end up in state
3, where Fail(follow-wall(landmark)) holds. On
the other hand, follow-wall(landmark) causes no
transitions from states where -,Charged(battery)
holds. From the point of view of failure, be-
haviours at the sensing and acting level can end
up only in two possible ways. Either they termi-
nate without an abort or they abort. We have
therefore that in all the "reachable" states of an
action c~, i.e. the final states of the transition
caused by a, either Fail(a) or Success(a) holds.
The propositional fluent Ex(a) is defined by

Ex(a) ~ (Succ(a) ~ ~Fail(a))

and holds therefore in any state which is "reach-

fol~

Figure 3: Example of a

$ucc(follow-wall(landmark))
Ex(follow-wall(landmark)

Picked_up(b)
"1 Ex(follow-wall(landraark))

Fail(follow-wall(landmark))

Ex(follow-wall(landmark)

"not reachable" state

able" by the action a. We have of course states
which are not reachable by an action a. For ex-
ample the state where the block b is picked up is
not reachable by the action follow-wall(landmark)
which is implemented by a behaviour which does
not control the robot’s manipulator (see Figure
3). As a consequence of this fact, the set of fail-
ure states of an action a cannot be defined as the
complement of the set of success states of the ac-
tion a. In other words, Succ(a) +4 -,Fail(a) does
not hold in general for any action a.

Two further remarks are in order. First, the
same state may be a success state for an action a
and a failure state for a different action ft. This
is shown in the example of Figure 4, where we
suppose that landmark1 and landmark2 are two
different landmarks in two different positions of
the building.
Second, notice that success/failure of an ac-
tion does not coincide necessarily with the
achievement/not-achievement of a related goal.
Intuitively, the former is a property of actions,
while the latter is a relation between actions
and goals. An action may fail and, nevertheless,
achieve the goal the action has been executed for.
Indeed, failure of an action corresponds to the fact
that the corresponding behaviour aborts. Even if
the behaviour aborts, its effects may achieve a de-
sired goal. For example, consider the simple block
world example in Figure 5. Let us suppose the
planner is given the goal Clear(c) and, in order
to achieve the goal, the planner generates the plan
composed of the single action put-on(a, b) which
moves the block a on the block b. Let us sup-

follow-wall(landmark1

~ At(landmarkl
-1 At(landmark2)

Succ(follow-wall(landmarkl
Fail(follow-wall(landmark2))

follow-wall(landmark2)

Figure 4: Success state for follow-wall(landmarkl)
and failure state for follow-wall(landmark2)

131

Figure 5: Action which fails [succeeds] and achieves [does not achieve] the goal

pose that the action fails and the block a drops
on the table. The action fails and nevertheless
achieves the goal Clear(c). Vice versa, an ac-
tion may succeed and may not achieve the goal.
Indeed, success of an action corresponds to the
fact that the corresponding behaviour does not
abort. This does not guarantee that its effects
achieve the desired goal. For example, consider
again the example in Figure 5. Assume that we
have the goal Far-from(a,c) for which we plan
the action put-on (a, table). The action succeeds
but it does not achieve the goal for which it has
been planned. This is actually what happens in
the real application, where sometimes the planner
has no choice other than executing actions which
may (but are not guaranteed to) achieve desired
goals even when they succeed.

The notion of failure described so far allows us
to express plans which take into account possi-
ble failures and to build a planner able to reason
about these plans. The following is a possible ex-
ample of a plan taking into account failure:

put-on(a, b);
if Fail(put-on(a, b))

then {put-on(a, table); put-on(a, b)}.

In the example, ";" is the usual construct for se-
quences of actions. The term if proposition then
action can be regarded as a conditional plan. A
tentative formulation in situation calculus of a law
of motion and inertia which takes into account
failure may be the following:

Clear(a, s)
Succ(put-on(a, b), re uU(put-on(a, b),

On(a,b, result(put-on(a, b), s)

Actions which sense the world

Notice that all the considerations in Section "Ac-
tions which fail" hold for behaviours in gen-
eral and, in particular, for sensing behaviours.
We call actions corresponding to sensing be-
haviours, sensing actions. Thus, for instance, cal-
ibrate(position) is a sensing action which is exe-
cuted in order to acquire information, i.e. the
position of the robot. As any other action, it
may modify the world, e.g. change the position
of the camera, and fail. A requirement from the
application is that sensing actions can be used
in plans. Let us suppose that the behaviour

"sense(Closed(door))" activates a camera and
sonar to detect whether a door is open or closed.
The following plan takes into account the outcome
of the sensing behaviour.

follow- wall(door l)
if Succ(follow-wall(doorl)) then

sense(Closed(door1));
if (Succ(sense(Closed(doorl)))

Closed(door1))
then open(door1)}.

Sensing actions update the state of knowledge of
the system about the world. Consider for in-
stance the action sense(Closed(door1)). We intro-
duce the expression Sensed(Closed(door1)). (In
the application, this expression is contained in
the database of facts.) Its intended meaning is
"information about the fact whether the door is
closed has just been acquired, or in other words, is
up-to-date". Sensed(Closed(door1)) holds there-
fore if we have just executed sense(Closed(door1))
with success, i.e. in any final success state of
the action sense(Closed(door1)) (states 2 and
in Figure 6). In case of failure, we cannot rely on
the fact that the information has been acquired.
Therefore ~Sensed(Closed(doorl)) holds in a fail-
ure state of the action sense(Closed(door1)) (see
state 4). Moreover, the fact whether we have ac-
quired information with success is independent
of the particular result of the sensing action.
For this reason, Sensed(Closed(door1)) holds both
in the case Closed(doorl) and -~Closed(doorl)
hold. Finally, after we execute an action which
does not acquire information about the fact
whether a door is open or not (e.g. follow-
wall(landmark)), the information is not up to
date, i.e. -~Sensed(Closed(doorl)) holds (see
states 5 and 6). Indeed, the last action might
change the status of the door, or the door might
be moved (closed or opened) by an external agent
(e.g. a person). Independently of whether the
door is actually closed or opened and of the fact
whether it changes status or not, the value of
Closed(doorl) does not change, since the robot
cannot realistically get to know this (states 5 and
6). This is what actually happens in the database
of facts. The only fact the robot knows is that in-
formation about the door has not been "recently"
acquired, i.e. -~Sensed(Closed(doorl)).

132

Succ(sense(Closed(doorl)))
Sensed(CIosed(doorl)
Closed(doorl) -I Sensed(Closed(doorl))

y ~Closed(doorl

S
.~Sen~ed(Closed(doorl))

~ense(CIosed(doorl)) "I Closed(doorl)

~e~.,~_
Succ(sense(Closed(doorl)))

"~/"~
S ensed(Closed(doorl))

"%*e~,.,,~
¯ CIosed(doorl)

¯ ~oo~,]jj.~

Fail(sen~e(Closed(doorl))
-I Sensed(Closed(door1))

Figure 6: Sensing actions

Actions which generate and execute
plans

In Section "The Application" we have discussed
some of the different ways the planner can con-
struct a plan. One way is to construct a plan
by activating special purpose planners. No mat-
ter how the special purpose planners work, they
are components which, given goals and facts, re-
turn plans ("tactics", in our terminology). In gen-
eral, plan construction is the execution of some
system component code. We therefore represent
plan construction as executable actions which
construct a plan which can be executed. We
extend the language with actions which return
a syntactic expression (belonging to the same
language) which denotes a plan, i.e. a "name
of a plan". We call these actions plan-for ac-
tions. Intuitively, they construct plans and re-
turn names of plans. Plan-for actions are of the
form planfor(Tr, p), where p is a proposition (the
goal we have to plan for) and 7r is the name
of the plan which is generated. For example,
planfor(Tr, At(landmark)) can be a plan-for ac-
tion that invokes the path planner and generates
the plan follow-wall(landmark) denoted by 7r.

However, it is not always the case that a plan-
for action generates plans by simply activating
reasoning modules like special purpose planners.
Plan generation may involve the activation of be-
haviours at the sensing and acting level. For ex-
ample, the planner may have to ask the user for
a plan. In order to capture this extended notion
of plan generation, plan-for actions have to be
thought simply as actions which construct plans,
with no constraints on whether they operate in
the real world or not. As a consequence, plan
generation may fail in the same way as any other
kind of action.

Plan-for actions update the state of knowl-
edge of the system. After that a plan-for action
has been executed, the planner has a plan avail-

able for execution. We introduce the expression
PlannedQr, p), which holds in any final state of
successful plan-for action which generates a plan
denoted by 7r to achieve the goal p (see Figure 7,
state 2).

We require the planner the ability to execute
plans denoted by names of plans. We therefore
introduce actions of the form ezec(~r) and call
them (plan) execution actions. Their intended
meaning is: "execute the plan denoted by 7r".
Sometimes we write "a" for the name of the plan
(action) ce. For example, the intended meaning
of exec("follow-wall(landmarkf’) is: "execute the
plan denoted by "follow-wall(landmark~’ "

A reasonable constraint is that the seman-
tics of the execution of a name of an ac-
tion is the same as that of the action it-
self. As an example, the state transition
of exee("follow-wall(landmark]’) should be the
same as that of follow-wall(landmark). If we as-
sume that executing follow-wall(landmark) suc-
ceeds but may not achieve the goal, we have the
transitions in Figure 7. Finally, notice that plan-
for and execution actions allow for interleaving of
acting, sensing, planning and execution of a plan.
For instance, a possible plan which combines such
activities is the following:

follow-wall(landmark);
if Succ(follow-wall(landmark)) then

sense(position);
if Succ(sense(position)) then

plan f or(Tr, At(position)); exec(rQ

where sense(position) is the sensing action which
acquires information about the location to be
reached.

Final considerations and

related work

In the previous sections we have first described an
experimental application developed at resT and
then sketched a formal theory which takes into
account the lessons learnt from the application.
As we already remarked in the introduction, this
path is somehow unusual if compared with much
of the current research in theories of actions. In
theories of action (see for example (Boutilier 1995;
Buvac and Costello 1996)) the focus is from the
very beginning on how to reason formally about
actions and their effects on the world. The hope
is that the theory developed will be more or less
directly implementable to control a robot or, at
least, will serve as a specification for the imple-
mentation. Indeed, this does not seem yet to be
achievable if the goal is to build a theory and an
implementation of robots reasoning, acting and

133

Succ(exec(~))
Q ~ Planned(n, At(landmark))

Q plan-path(~,At(landmark)) .~.

At(landmark)

Planned(n, At(landmark))~’~vf rt-~ Succ(exec(re))
rc =follow-wall(landmark)

~Q "~ Planned(n, At(landmark))
"~ At(landmark)

Figure 7: Planning actions

perceiving in a partially and unpredictable envi-
ronment. As Lesperance et al. [1994] acknowl-
edge "[robot programming] remains very tightly
coupled to robotic hardware" and even though
they feel "that it should be possible to fully con-
trol a robot with minimal attention to the details
of sensors and effectors, this is certainly not the
case today’’1. Unfortunately, Lesperance’s et al.
commitment of "no implementation without a sit-
uation calculus specification" does not seem yet
to be exploitable for building robots.

Developing the application described in this pa-
per has not been an exception. Much of the efforts
have been in defining a syntax for interfacing the
planner with lower level modules (i.e. a syntax for
primitive actions and for the interchange of data,
e.g. failure). Of course, all the problems we have
been dealing with are grounded on the particular
application. A different project might have raised
a different set of problems. However, we believe
that the three main issues we have raised in this
paper (failure, sensing and plan-for actions) have
to be dealt by any robot-planner operating in a
partially known environment. Relaxing this as-
sumption, one might need to introduce less com-
plications in his own formalism and/or implemen-
tation. For example, in (Shanahan 1996) a robot-
planner is described in which failure and plan-for
actions do not seem to play any role. One of the
motivations could be the relatively simple robot
task (hypothesizing the existence, locations and
shapes of objects from a stream of sensor data).
Another could be the relatively simple robot’s
sensors (three bumpers).

Of course, we do believe that it is necessary to
provide a formal theory for the application, either
a priori or a posteriori. This is what we are trying
to do. However, things are very complicate since,
as far as we know, few formalizations have been
proposed for failure, sensing actions and plan-for
actions, and none combining all of them. Even
more, some of the traditional issues in theories of
actions, like the frame and ramification problems

1In (Lesperance et al. 1994), the comma in the
quotation is a full stop.

are just behind the corner and await to be faced.
Indeed, even though we have never explicitly men-
tioned the frame problem before, we have to deal
with it in our formalization. As a matter of fact,
in the previous section we implicitly assumed to
have a solution for it, see for example Figure 6.
Even though a formal treatment of the frame
problem has yet to be carried out, things are made
easier than it could be expected since we have
to deal with "simple" actions and constraints.
By "simple" actions we mean actions whose ef-
fects can be described by a set of literals. Anal-
ogously for the constraints. As a consequence
at the formal level, we have not to deal with
all the complications caused by disjunctive infor-
mation (see for example (Myers and Smith 1988;
McCain and Turner 1995)), e.g. ramifications are
not possible. As a consequence at the applica-
tion level, the frame problem can be --and indeed
it is-- solved by simply updating the knowledge
base of the scenario.

About the formalization, it seems that much of
the work in theories of action sees planning as de-
duction. The domain and the effects of actions are
represented in a logical formalism (e.g. the situ-
ation calculus) and then planning problems are
dealt asking whether a certain sentence logically
follows from the theory (see for example (Green
1969; Lin and Reiter 1994)). Our first goal is not
to provide a formal system with a proof theory,
but rather a language with semantics capturing
the ideas expressed in previous sections. To this
extent, the closest work to ours are the "high level
action languages" started after Gelfond and Lifs-
chitz [1993] language A.

Finally, as we have already mentioned, there
have been some works treating failure, sensing
actions and planning actions. About failure,
the closest work is that described in (Rao and
Georgeff 1991). Rao and Georgeff extend the
computation tree logic CTL* introducing explicit
notions for failure and success. However, in their
logic actions are not explicitly represented and
thus it is not clear how, for example, to do action
compositions, i.e. formalize tactics.

A formalization for sensing actions has been

134

proposed by Scherl and Levesque [1993] and later
extended by Bacchus et al. [1995]. There are
however some differences between Scherl’s and
Levesque’s formalization and ours. The major dif-
ference seems to be that they assume that sensing
actions cannot affect the world. We do not have
such an assumption. As a matter of fact, at least
in our application, it would have been impossible
to separate the action of "pure sensing" from the
acting involved. As we said, sensing for exam-
ple the actual position of the robot may involve
some adjustments, e.g. in the orientation of the
robot. On the other hand, our theory has yet to
been refined, for example to introduce some no-
tions analogous to Scherl’s and Levesque’s [1993]
Knows, Kwhether and Kref. Bacchus et al.
[1995] extend Scherl’s and Levesque’s work intro-
ducing probabilities meant to embody the "degree
of confidence" in sensors. In our application, all
the sensors’ data are equally probable or handled
with the same degree of confidence. This has not
been a choice but determined by the architecture.
The fusion of sensors’ data --and thus the even-
tual handling of inconsistency-- happens at the
lower level.

Planning actions have been dealt by
Steel [1994b] (see also (Steel 1994a)). However,
Steel regards planning actions as "non opera-
tional", i.e. actions which cannot be executed.
In our approach, planning actions are "normal"
actions which can be executed, can fail and can
change the world. For example, a planning action
may need to ask the user for a plan.

Acknowledgments

The application (very briefly) described in this
paper was developed at IRsT. The acting and
sensing level has been all developed by the people
at IRsT working on Vision and Speech Recogni-
tion. Several people at IrtsT worked on the plan-
ning and user level. We thank all of them.

References

G. Antoniol, B. Caprile, A. Cimatti, and R. Fi-
utem. The Mobile Robot of MAIA: Actions and
Interactions in a Real-Life Scenario. In The Bi-
ology and Technology of Intelligent Autonomous
Agents, pages 296-311. Springer Verlag, NATO-
ASI Series, 1994.

G. Antoniol, B. Caprile, A. Cimatti, R. Fiutem,
and G. Lazzari. Experiencing real-life interac-
tion with the experimental platform of MAIA.
In Proceedings of the 1st European Workshop on
Human Comfort and Security, 1994. Held in con-
junction with EITC’94.

F. Bacchus, J.Y. Halpern, and H. Levesque. Rea-
soning about noisy sensors in the situation cal-
culus. In Proc. of the 14th International Joint
Conference on Artificial Intelligence, 1995.

M. Beetz and D. McDermott. Improving Robot
Plans During Their Execution. In Proceedings
2rid International Conference on A1 Planning
Systems (AIPS-94), Chicago, 1994.

C. Boutilier, editor. Extending Theories of Ac-
tion: Formal Theories and Practical Applica-
tions: Proceedings of the 1995 AAAI Spring
Symposium. AAAI Press, 1995.

S. Buvac and T. Costello, editors.
Commonsense-96: Working Papers of the Third
Symposium on Logical Formalizations of Com-
monsense Reasoning, 1996.

A. Cimatti, P. Traverso, S. Dalbosco, and A. Ar-
mando. Navigation by Combining Reactivity
and Planning. In Proc. Intelligent Vehicles ’92,
Detroit, 1992.

R. E. Fikes and N. J. Nilsson. STRIPS: A new
approach to the application of Theorem Proving
to Problem Solving. Artificial Intelligence, 2(3-
4):189-208, 1971.
R. J. Firby. An Investigation into Reactive Plan-
ning in Complex Domains. In Proe. of the 6th
National Conference on Artificial Intelligence,
pages 202-206, Seattle, WA, USA, 1987.

M. Gelfond and V.Lifschitz. Representing action
and change by logic programs. Journal of Logic
Programming, 17:301-322, 1993.

M. Georgeff and A. L. Lansky. Procedural
knowledge. Proc. of IEEE, 74(10):1383-1398,
1986.

C. Green. Application of theorem proving to
problem solving. In Proc. of the 1st International
Joint Conference on Artificial Intelligence, pages
219-239, 1969.
D. Harel, D. Kozen, and R. Parikh. Process
Logic: expressiveness, decidability, complete-
ness. Journal of computer and system sciences,
25:144-170, 1982.

D. Harel. Dynamic Logic. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophi-
cal Logic, volume II, pages 497-604. D. Reidel
Publishing Company, 1984.

Y. Lesperance, H. J. Levesque, F. Lin, D. Marcu,
R. Reiter, and R.B. Scherl. A Logical Approach
to High-Level Robot Programming- A Progress
Report. In Control of the physical world by intel-
ligent systems, working notes of the 1994 AAA1
Fall Symp., 1994.

V. Lifschitz. On the semantics of strips. In
M. Georgeff and A. Lansky, editors, Reasoning

135

about Actions and Plans, Proceedings of the 1986
Workshop, pages 1-9. Morgan Kaufmann Publ.
Inc., 1986.

F. Lin and R. Reiter. State constraints revisited.
Journal of Logic and Computation, 4:655-678,
1994.

N. McCain and H. T~rner. A causal theory of
ramifications and qualifications. In Proc. of the
14th International Joint Conference on Artificial
Intelligence, 1995.

J. McCarthy and P. Hayes. Some Philosophi-
cal Problems from the Standpoint of Artificial
Intelligence. In B. Meltzer and D. Michie, edi-
tors, Machine Intelligence 4, pages 463-502. Ed-
inburgh University Press, 1969. Also in V. Lif-
schitz (ed.), Formalizing common sense: papers
by John McCarthy, Ablex Publ., 1990, pp. 21-
63.

K. Myers and D. Smith. The persistence of de-
rived information. In Proc. of the 7th National
Conference on Artificial Intelligence, pages 496-
500, 1988.

A. S. Rao and M. P. Georgeff. Modeling Ratio-
nal Agents within a BDI-Architecture. In Proc.
KR’91, Principle of Knowledge Representation
and Reasoning, pages 473-484, Cambridge Mas-
sachusetts, 1991. Morgan Kaufmann.

S. Rosenschein. Plan synthesis: A logical per-
spective. In Proc. of the 7th International Joint
Conference on Artificial Intelligence, pages 331-
337, Vancouver, British Colmnbia, 1981.
R. Scherl and H.J. Levesque. The frame prob-
lem and knowledge producing actions. In Proc.
of the 11th National Conference on Artificial In-
telligence, 1993.

M. Shanahan. Robotics and the Common
Sense Informatic Situation. In S. Buvac and
T. Costello, editors, Commonsense-96: Working
Papers of the Third Symposium on Logical For-
malizations of Commonsense Reasoning, 1996.

R. Simmons. An Architecture for Coordinating
Planning, Sensing and Action. In Proceedings
of the Workshop on Innovative Approaches to
Planning, Scheduling and Control, pages 292-
297, 1990.

S. Steel. Action under Uncertainty. J. Logic
and Computation, Special Issue on Action and
Processes, 4(5):777-795, 1994.

S. Steel. Planning to Plan, 1994. Technical Re-
port, Dept Computer Science, University of Es-
sex, Colchester CO4 3SQ, UK.

P. Traverso and L. Spalazzi. A Logic for Act-
ing, Sensing and Planning. In Proc. of the 14th

International Joint Conference on Artificial In-
telligence, 1995.

136

