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Abstract
Actions and objects are closely tied together (Russell & Norvig

1995). We often think of the actions we can perform on objects as
properties of those objects. The theory of action presented here,
contains the belief that actions are defined in terms of the objects
they effect. Intuitively then, actions consist of a verb and a noun,
for example, pick-up-the-soda-can, go-to-the-car, or paint-the-can-
vas. We are interested in two different roles for nouns, as direct ob-
jects which the agent manipulates (the-can in pick-up-the-can) and
as indirect objects which specify destinations (the-cat in go-to-the-
car). We refer to these nouns as m-role objects or d-role objects. In
our theory of action, before performing any action, an agent first
develops a deietic representation of the m-role or d-role object. So,
the agent identifies the-soda-can, the-car, or the-canvas. When this
is completed, the specified action can be taken using the object in-
dicated by the representation. A plan is, therefore, a set of objects
and the actions to perform.

We contend that this deictic organization is an effective means
of expressing actions because an action cannot take place without
identifying the m or d-role objects. Our research will show that ac-
tions can be performed effectively and plans can be organized ap-
propriately using such a representation. We will present a system
that uses deictie representations as a means to integrate a deliberate
planner and a perception/action system. Non-local-space informa-
tion in the plans will be conveyed to the perception/action system,
where it can be acted on.

Emergent from our theory of activity is a representation system
that integrates agent control system components. Our theory is cen-
tered on the real world objects effeeted by action. We believe this
provides sufficient and effective organizing principles for design-
ing perception/action systems.

Background
There are two schools of thought in the AI planning com-

munity, the classical planning camp [see (Tate, Hendler 
Drummond 1990) for a survey] and the reactive camp
(Brooks 1986)(Firby 1987). The classical planning propo-
nents claim that complex tasks cannot be completed without
reasoning about the state of the world in advance, while the
reactive proponents claim the world is too dynamic to rea-
son about or even represent. Clearly, a little of each is true.

One source of information, common to many classical
planners, but inaccessible to pure perception/action (i.e. re-
active) systems, is non-local-space information, such as is
present in a map. A perception/action system operating in a
large environment may not be able to perceive its entire
route space a priori. Some deliberative entity must plan a

course for the agent and activate appropriate behaviors at the
correct time. This is because a perception/action (PA) sys-
tem has no memory or representation. It cannot create a
plan, it only knows what action should be taken now. Al-
though PA systems can perform some navigation tasks with-
out consulting a deliberator, when the agent reaches a T-
junction for example, the perception/action system must ap-
peal to its route plan in order to deterministically choose the
correct direction. This paper’s agenda is not to discuss better
methods of plan generation, but to discuss how to better
communicate the information expressed in plans to a per-
ception/action system. That is, how to integrate a non-local-
space system component and a PA system component by
transferring non-local-space information to the PA compo-
nent. in such a way that the PA component can use the infor-
mation efficiently and effectively.

Integration
Traditionally, perception/action systems are thought of as

determining their actions directly from their perceptions.
This can be expressed as a =tiP), where a is the current ac-
tion and P is the set of current precepts. Work by Brill (Brill
1995) has shown that perception/action systems can exhibit
greatly improved performance by incorporating small
amounts of task-dependent representation into their frame-
work. In such systems, a = f(P, M). where a and P are as be-
fore and M is the PA component’s memory or
representation. Brill proposes a deictic, local-space repre-
sentation system based on Ullman’s (Ullman 1984) markers,
as used in (Agre & Chapman 1987).

Since perception/action systems can use such local-space
representations effectively to achieve certain complex be-
haviors, then the task of the entity possessing the non-local-
space representation is to transfer this infoLmation into the
PA system’s local-space representation. Given the formula-
tion, a = f(P, M), the most efficient way of influencing a PA
system’s actions is through M.

However, there is a temptation to pass arbitrarily complex
data structures to the PA system through M. In order for a
PA system to remain effective in dynamic environments, it
cannot be asked to manipulate large data structures. We
present a minimalist interface between a non-local-space
component and a perception/action system, using markers.

137

From: AAAI Technical Report WS-96-07. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Markers
Reactive systems, as conceived by Brooks (Brooks 1986),

do not attempt to model the world because any stored repre-
sentation will become stale. In fact, the design philosophy of
such systems is that the world is a better model of itself than
an agent could ever build. Therefore, an agent needs no rep-
resentation because it can just "look" at the world to deter-
mine whatever it needs to know.

Clearly, there are some simple tasks which require some
form of representation. For example, when I sit in an easy-
chair, I align myself with the chair, but when I actually sit
down, I am facing away from the seat. However, because I
have a representation of where the seat is, which I developed
while looking at it. I am able to maneuver myself into the
chair. If a pure reactive system were trying to sit down, once
it is no longer facing the chair, there is nothing in its percep-
tive field to indicate that it should sit down. Without repre-
sentation to tell the system that it was trying to sit, it never
will.

A more sophisticated system which could sit in the chair
at my desk might use the computer monitor as a visual cue
to decide when to sit, i.e. when you see the monitor, the chair
is behind you, so sit down. However, my desk chair has
wheels and can move around. In order to decide what visual
cue tells the agent when to sit for various instances of the sit-
ting task, the sit routine must be parameterized. Another sys-
tem component must pass this parameter to the reactive
system. This interaction is discussed in section rifled "Trans-
ferring Non-Local-Space Information to a PA System".

Trying to preserve the robustness of PA systems, while
incorporating representation involves using a minimalist
representation for any given task. Task dependent represen-
tations give us a minimalist deicric representation in that the
agent models only those objects whose roles are relevant to
its current task. The reason that only task dependent objects
are modeled is that the high cost of keeping an elaborate
model up-to-date limits PA system effectiveness.

Markers are the basis of the representation in our theory
of action. Ullman (Ullman 1984) uses the term "marking" 
refer to remembering a location for later reference. He sup-
poses the creation of a "marking map" which holds coutext
dependent location, in the visual field, that have been ana-
lyzed. Attneave and Farrar (Attneave & Farrar 1977) sug-
gest that locations outside the visual field can be marked.
Pylyshyn describes a similar concept in his FqNST model
(Pylyshyn & Storm 1988). He described a limited number 
"reference tokens" which can be bound to visual features.
This binding is a pre-requisite to determining relational
properties about those features. Agre and Chapman (Agre 
Chapman 1987) use markers in their Pengi system to identi-
fy objects relevant to the penguin’s current task, e.g. the-ice-
block-blocking-my-escape. Brill considers issues involved
in using markers in dynamic 3D domains involving occlu-

sion (Brill, Wasson & Martin 1996).
Markers are a task dependent representation in which

each marker is associated with an object having some role
(m or d) in the task. Markers are generally thought to contain
a ’what’ and a ’where’ component. The ’what’ component
describes the object’s role in the current task. The marker as-
sociated with a particular object may have different ’what’
components for different tasks. For example, an electric
socket could be marked as an obstacle for navigation, unless
the agent needed to recharge, in which case, the same socket
could be marked as goal. The ’where’ component contains
the location of the associated object in some coordinate sys-
tem useful to the current task. The markers in our system
have other components which are discussed in the imple-
mentation section. However, the total number of compo-
nents in a marker is purposely kept small in order to avoid
the data manipulation problems discussed earlier.

Expectants
Since a marker is associated with an object, an important

question is how the association is made. Pylyshyn says the
association is made through a "primitive operatiou which is
pre-attentively performed on the visual display" (Pylyshyn
& Storm 1988). This suggests that there is a process exam-
ining the visual field for properties which can be detected in
a pre-attenrive fashion. However, it is unlikely that all the
pre-attenfive properties which humans can detect are being
sought at all times. Rather, we only detect the features that
are important to our current task. Given this task depen-
dence, it is likely that the current task can dictate not only
which features one expects to fred, but where one might ex-
pect to f’md them.

In order to facilitate non-local/local space integration. We
define the term "expectant". An expectant defmes a set of
objects which match some description of an object. The
more specific the description, the fewer objects will be in the
expectant set. For example, suppose my task was to tighten
a screw. I know that my screwdrivers are in the basement on
the workbench. There may be multiple screwdrivers on the
workbench and each of these can match the expectant de-
scription. The expectant describes the object I need, a screw-
driver, and where I may fred that object, on the workbench.
The difference between a marker and an expectant is that a
marker is associated with a specific object, while an expect-
ant describes a set of objects.

Transferring Non-Local-Space Information to a
PA System

Communication between our system component possess-
ing non-local-space (NLS) information and our perception/
action component occurs via nninstantiated markers. "Unin-
stantiated" reflects the fact that the marker is associated with
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an expectant and hence a single object has not yet been as-
sociated with the marker. The NLS component can pass un-
imtantiated markers to a PA system for instantiation. The
PA system must detect and select a single object from the set
described by the expectant and associate it with the marker.
Making this association means the marker is now instantiat-
ed. So, it is now within the local-space representation of the
PA system, where it can be used effectively.

Consider an agent whose task is to get a cup of coffee.
One of the steps in this plan is to get a coffee mug. The cof-
fee mugs are in the cabinet above the coffee maker, on the
bottom shelf. When the cabinet door is closed, the agent can-
not perceive any mugs which may be in the cabinet. The
NLS component passes an uninstantiated ’mug’ marker to
the PA system. The ’where’ slot of this marker tells the PA
system that the mug will be inside the cabinet, on the bottom
shelf. The PA system can open the cabinet (whether this
emerges from some behavior in the PA system or is initiated
by the TE passing in a’cabinet door’ marker and telling the
PA system to execute an open action on it, will be deter-
mined by the PA system’s basic capabilities). At this point,
the PA system can instantiate the ’mug’ marker. This deictic
representation can be used to effectively manipulate the mug
in later stages of the plan, such as pour-coffee-into-mug.

It should be noted that the PA system is not limited to rep-
resenting only those objects indicated by the NLS compo-
nent. The PA system may have its own routines actively
looking for task dependent features. Representation ac-
quired and maintained by the PA system is referred to as lo-
cal-space representation.

Architecture
In the proceeding discussion about our theory of action

and how it leads to a form of representation, we discussed an
agent whose control system consists of a perception/action
system and some other system component possessing non-
local-space information. A diagram of this general architec-
ture appears in figure 1. Figure 2 shows a more structured ar-
chitecture, which our system uses. Our architecture consists
of 3 layers, the planning module, the task executor, and the
perception/action system. The job of the planning module is
to formulate high-level goals for the agent and create plans.
The task executor sequences these plans to the perception/
action system as necessary. The perception/action system
controls the agent’s effectors. This layer performs all actions
and forms all percepts from the environment.

In the architecture of figure 2, the means of integration be-
tween the NLS component and the PA component is the
Task Executor (TIE). The planning module has access 
non-local-space representations which it can incorp~ate
into the plans it generates. The TE takes plans and creates
nninstantiated markers for each object represented in the
plan. These unirLstantiated markers are passed to the PA sys-

Figure 1. General Architecture

Figure 2. Our Architecture

tem for instantiation when the appropriate step in the plan is
reached.

The specific architecture of figure 2 is similar to a number
of other 3 layered architectures, such as (Bonasso & Korton-
kamp 1995)(Connel11992)(Gat 1992), and is not the subject
of this research.

Features of Integration

There are several important features of the form of repre-
sentation that emerges from our theory of activity. First, our
theory leads to the development of integrated agent control
systems with a variable level of autonomy in their action
sub-systems. The perception/action system is capable of tak-
ing actions based only on its own percepts and representa-
tion, i.e. without any information from other levels of the
architecture. When there is little control information flowing
from the TE to the PA, the PA is more autonomous. In fact,
the PA system is capable of completely autonomous opera-
tion if communicatlon with the TE is completely cut off. The
system is then reduced to a Brill-like system. This form of
graceful degradation was one of Brook’s original goals for
subsumption.

For tasks in which it is necessary for the TE to more tight-
ly control the actions of the PA system, the TE can send
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more control information via expectants. Some situations re-
quire decisions that are more correctly made using non-lo-
cal-space information (and therefore more correctly made
outside the PA system). Deciding which way to go at a T-
junction is such a situation. So, ff the agent’s plan was to
navigate to the water fountain which is to the left at a T-junc-
tion, when the agent arrived at the T-junction, the TE would
pass an ,minstantiated marker corresponding to the water
fountain to the PA system. The ’where’ slot of this marker
would indicate that the water fountain is to the agent’s left.

In order for the agent to be as robust as possible, the
amount of control exercised over the PA system should be
minimized. This is because of the belief that the information
which the PA system acquires is the most up-to-date and
therefore the most believable. The non-local-space informa-
tion used by the planning module is potentially stale. The TE
communicates expectants to the PA system as necessary, to
allow the PA system to operate more autonomously when
this is appropriate.

Another feature of this integration methodology is the
ability to use multiple maps of differing scale. Planning be-
comes more complex for an agent operating in a large envi-
ronment. As the number of features in the environment
grows, so does the complexity of the planning task. Route
finding and feature selection may well become intractable
for even moderately large areas. Consider an agent driving
across the country. While on the interstate, many details
about the various localities are not needed. Having multiple
maps of differing scale allows ,mimportant details to be ab-
stracted away from the planning process.

There are also situations when having access to two dif-
ferent scale representations of the same area is useful. Con-
sider an agent which is walking through a university campus
in the rain. In order to stay dry, the agent enters a near-by
building. Now, the agent still wishes to reach its original
destination, but in order to stay dry, the agent wants to fol-
low a route which stays inside buildings as much as possible.
The agent can use its coarse scale map of the university to
form the context, i.e. the entrance and exit, for the planning
process which selects a route through a given building from
the agent’s fme scale map of that building.

Implementation
In order to decide what to do, the PA system accesses its

percepts and looks at its markers. These stimuli may trigger
multiple possible behaviors and the PA system must priori-
tize its responses. Practical implementation of this system
requires an expanded view of markers, from that of earlier
marker systems (Agr¢ & Chapman 1987)(BriU 1995). In 
dition to the ’what’ and ’where’ slots, markers have’ appear-
ance’, ’action’ and ’action support’ slots.

Appearance

Appearance denotes the sensor signature characteristics
of the object. This involves two, not necessarily distinct,
routines for initially locating the object and for tracking the
object once it is marked. The initial location routine can be
a visual routine which the agent begins executing when its
PA system receives an expectant. After the marker is instan-
tinted, the PA system can begin using the tracking routine to
keep the marker’s position up to date.

Action
The ’action’ slot is what the system wants to do with the

marked object. This is probably why the system marked the
object in the first place. The action can be any which the sys-
tem knows about for a particular object, i.e. for a particular
entry in the marker’s ’what’ slot. The possible actions will
be determined by the capabilities of the system. Some ac-
tions will be common to many objects. Examples of com-
mon ’actions’ include, go-to and get. Examples of actions
specific to a particular object could be ’pour’ and ’fill’ for a
pitcher. The agent may have a database of action routines
which the PA system can access.

Progress. The notion of task progress is essential to the
agent’s ability to determine when an action is complete.
Obviously, the measure of progress will vary from task to
task. Each action which the system knows about can have its
own progress routine.

The progress may also feed back into the action routine.
For example, when pulling a car up to a stop sign, the closer
the vehicle gets to the sign, the more strongly the breaks
should be applied.

While the PA system can execute the progress routine to
determine how close to completion it is on some task, it may
not be possible to resolve a lack of progress at the PA system
level. The PA system may be able to detect that a given ac-
tion is failing, but may have no idea why or what else to try.
At this point, it must appeal to higher layers of the architec-
ture for guidance.

Action Support
’Action support’ holds information about the action

which the perception/action system does not possess. This
could be parameters to the action’s progress routine or a
pointer to another marker marking an object to be "operat-
ed" on. There may also be information applicable to the par-
ticular instance of a task which the system is about to
perform. For example, if the agent wanted to fall a glass half
full of water from a pitcher, the pitcher would be marked
with a marker whose ’action’ slot contained ’pour’ and
whose’action support’ slot contained a reference to the glass
marker. The task also specifies a stop condition for the pour
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action, i.e. when the glass is half full, which can be checked
by the progress routine. This condition also appears in the
’action support’ slot of the pitcher marker because it is the
pour action that must be stopped. The pour-progress func-
tion must be applied to the object marked by the marker in
the ’action support’ slot. i.e. the glass. Another example of a
parameter to a progress routine might be for an open-door
task where the door just has a handle which can be pulled or
pushed. If the agent knows this particular door, it can notify
the progress routine that it should expect a push motion to
cause the door to open from the side the agent is on. If the
progress routine reports a lack of progress, the agent can try
pulling the handle.

System Platform
We are currently developing a system based on this theory

of action. The platform is a mobile robot based on a
MC6811 CPU. The robot, Bruce, has a single camera on a
pan/tilt platform for sensing. The perception/action system
runs on a workstation sending commands to the robot’s el-
lectors over a wireless data-link. More details and examples
of the system in action are available in (Brill, Wasson 
Martin 1996).

Conclusions
We have discussed a theory of action which identifies ac-

tions by associating them with the objects involved. This
theory encompasses a representational system and an archi-
tectural organizing principle. Actions are performed by ac-
quiring a deictic representation of the necessary objects and
then performing the action. This theory leads to a system of
representation which can express task dependent local-space
information and be used to integrate perception/action sys-
tems and non-local-space information, via expectants.

We have described our minimalist deictic representation
system, markers. The marker interface is minimalist in both
the number and size of markers. Uninstantiated and instan-
tiated markers facilitate communication between a percep-
tion/action system and a system component containing non-
local-space information. These two states of markers allow
non-local-space information to be placed into the local-
space representation for a perception/action system.

The theory of action presented in this paper can be used to
create systems which can operate robustly in large scale do-
mains. Variable levels of PA system autonomy allow rapid
execution of primitive actions when the environment is suf-
ficiently dynamic. Multiple maps of possibly differing scale
can be used to abstract unnecessary details away from the
planning process. Our communication between system com-
ponents can express non-local-space information at any
scale.

We believe that designing agents in accordance with our

theory of action will produce systems which are both suffi-
cient and effective for operation in large dytlamic environ-
ments.
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