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Abstract

Much recent planning research has focused on two re-
lated issues. First, there has been a strong interest in
information-gathering (or "sensing", or "knowledge-
producing") actions. Second, has been an investi-
gation of plans with sophisticated control structures,
such as conditional branches and loops. But the com-
bination of these two lines of research poses a represen-
tational problem: plans with information-gathering
actions that can be executed more than once can have
complex information-flow and control-flow relation-
ships. In this paper, we present a framework for the
representation and execution of hierarchical plans with
information producing actions, conditional branches,
periodic actions, and loops. Our framework subsumes
several techniques found in the recent literature.

Introduction

What is a plan? The answer to this question would
seem to be a fundamental characteristic of any plan-
ning formalism. Historically, there has been a good
deal of research aimed at developing representations
for actions, but this work has generally been done
in the context of planning formalisms that adopt a
very limited definition of plans, namely that a plan
is a (partially-ordered) sequence of primitive actions.
This definition of plans has been widely accepted in
both the generative and the hierarchical task network
(HTN) planning paradigms. Recently, though, there
has been a strong interest in plan representations that
support sophisticated control flow, such as parallel ex-
ecution (Knoblock 1994), conditional branching (Peot
& Smith 1992; Draper, Hanks, & Weld 1994) and
loops (Smith & Williamson 1995; Lin & Dean 1995;
Ngo & Haddawy 1995; Goodwin 1996). These de-
velopments have gone hand-in-hand with the cre-
ation of models for informative (a.k.a. "sensing",
"information-gathering") actions (Moore 1985; Etzioni
et al. 1992). The two developments are closely interre-
lated, since contingencies in a plan are only meaningful
if new information becomes available, and conversely,

1. Retrieve the initial contents of the web page.

2. Periodically retrieve the current contents of the
page.

3. Compare the results of actions (1) and (2).

4. If action (3) indicates a difference, give notification
of the new content, and signal successful completion
of the task.

Figure 1: An informal plan to monitor a web page for
change.

sensing the world is most useful when doing so can
have some impact on one’s course of action.

This paper will discuss two additional kinds of con-
trol flow in plans: 1) periodic actions, which are per-
formed repeatedly at specific intervals, and 2) triggered
actions, which are performed (perhaps repeatedly) 
response to external events. There is a clear motiva-
tion for allowing such actions: they provide the only
reasonable way to perform many useful tasks. For ex-
ample, consider the task of monitoring a web page for
new information. There is a simple plan for this task
consisting of four actions, shown in Figure 1. This
example illustrates the control-flow and information-
flow issues that arise when a plan contains repetitive,
information-producing actions. How does the execu-
tion system determine when to execute actions (3) and
(4)? How does action (3) obtain the information 
erated by actions (1) and (2)?

Existing planning formalisms explicitly describe con-
trol flow in terms of ordering relationships between ac-
tions, (i.e. A -~ B denoting that action A must be
performed before action B). But these relationships
are insufficient to distinguish between a number of dis-
tinct control relationships that might arise in plans
with repetitive actions. In the plan in Figure 1, for
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example, both actions (1) and (2) must precede action
(3) the first time each is executed. But thereafter, ac-
tion (3) stands in very different control relationships 
actions (1) and (2); it must be performed again 
and only when action (2) has been repeated, whereas
action (1) need not be repeated in order to reactivate
action (3). In order to represent plans such as the one
in Figure 1 we need a formalism capable distinguishing
these control-flow relationships.

We hold the position that most control flow relation-
ships in a plan are derivative from information flow
relationships. This paper will present an integrated
representation for information and control flow in hier-
archical task networks. Our perspective is essentially
pragmatic; the formalism we present arose from our
need to represent and execute hierarchical task net-
works in our agent architecture. We have implemented
this formalism in an Internet-based multi-agent infor-
mation system, WARREN, which uses cooperative, au-
tonomous agents to support financial portfolio man-
agement.

The agent architecture

A brief sketch of our agent architecture will assist in
understanding the issues we are addressing. The in-
ternal structure of our agents is similar to the DECAF
architecture (Decker et al. 1995). An agent comprises
concurrent planning, scheduling, and execution pro-
cesses operating on a shared task agenda (Figure 2).
The planner evaluates the agent’s objectives, formu-
lates top-level tasks (goals), and elaborates hierarchi-
cal task networks for each top-level task. The task
networks consist of higher-level tasks (which must be
reduced by the planner to some network of subtasks),
and primitive tasks (actions) which may be executed
directly. The scheduler’s role is to determine when
each action should be executed. That is, the scheduler
is responsible for making control-flow decisions about
the plan. The executor actually carries out an action
(in our case by directly invoking a code object attached
to the action). Action execution can have external ef-
fects on the state of the world, and internal effects on
an agents state of knowledge. If an action produces in-
formation, that information may need to be routed to
other actions that utilize the information. Thus, the
executor is responsible for carrying out information-
flow within the plan.

Caveat We are designing and building an architec-
ture for distributed, cooperative software agents. Our
representation is strongly motivated by the kinds of
tasks and actions that arise in such an agent, particu-
larly information-gathering actions which utilize Inter-

Plan:

I Action Action ]

B .

Figure 3: Indirect information flow through an agent’s
world model.

net resources, and communicative actions with other
agents. The applicability of our representation to other
kinds of agents in other domains may be limited.

Background

Information flow within plans has received little ex-
plicit study. Regarding the formal representation of ac-
tions themselves, an action’s information requirements
have sometimes been framed in terms of preconditions
on the state of an agent’s knowledge, while the infor-
mation produced by an action is similarly described
in terms of its effects on that knowledge (Moore 1985;
Morgenstern 1987). Thus, information flow in a plan
is indirect, taking place through an agent’s corpus of
beliefs about the world. (See Figure 3.) This work
has been primarily theoretical in nature, and does not
address practical issues that arise during the execution
of plans containing such actions.

The most ubiquitous mechanism for information flow
is parameter binding. Most planning systems employ
some sort of schematic action representations, where
the preconditions (and effects) may make reference 
variable parameters which are bound by the planner
when the plan is created. This allows information to be
statically provided from outside the plan before execu-
tion begins (Figure 4. A Blocksworld Stack action, for
example, needs to be informed of which block to stack,
and where to stack it; this information is provided by
the planner binding the action’s variable parameters
to specific values.

Several planning formalisms (Ambros-Ingerson 
Steel 1988; Etzioni et al. 1992; Knoblock 1995) extend
the concept of variable parameters to include "runtime
variables." Runtime variables appearing in the effects
of an action are bound to some particular value when
that action is executed, and may be used in the precon-
ditions of subsequent actions. Thus, runtime variables
are an explicit representation of the information flow
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Figure 2: An overview of the agent architecture.
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Figure 4: Information flow from the planner by param-
eter binding.

Plan:

Runtirne variable

Figure 5: Information flow by binding runtime vari-
ables.

relationship between producers and consumers (Fig-
ure 5). UWL (Etzioni el al. 1992) also uses runtime
variables to control the flow of execution within a plan.
At any point, a plan may bifurcate into two branches
depending on whether or not a runtime variable takes
on a particular value.

The conditional planners CNLP (Peot & Smith 1992)
and G-BURIDAN (Draper, Hanks, & Weld 1994) use 
somewhat different method to control execution flow
based on gathered information. In these systems, the
execution of an action leads to one of a number of
prespecified outcomes ("consequences" in C-BURIDAN’s
parlance). The outcomes of an action are partitioned
into discernible equivalence classes representing the
distinctions between outcomes that are apparent to the
agent at plan-execution time.1 Each equivalence class
is annotated with an outcome label. The information
produced by the execution of a plan consists of the se-
quence of outcome labels produced by the execution
of each action. Subsequent actions in the plan may
be annotated with a context, a conjunction of outcome
labels. An action is executed only if its context is con-
sistent with the outcome labels produced by all pre-
viously executed actions. The outcome/context mech-
anism thus provides an explicit representation of the
control-flow relationships in a plan. Reactive task net-
work architectures, such as TCA (Simmons 1994) and
RAPS (Firby 1994), provide similar models of control
flow

l~untime variables and outcomes/contexts are suffi-

1 In CNLP all outcomes are distinguishable, so each is in
its own discernible equivalence class.

cient to capture the information-flow and control-flow
relationships in a conditional sequential plan, where
each action is executed at most once. Smith and
Williamson (Smith & Williamson 1995) extended the
outcome/context mechanism to support control flow in
plans with loops, but did not address information flow.
In this paper we present a unification and extension of
all these techniques, which supports the representation
and efficient execution of plans with periodic actions,
externally triggered actions, and loops.

Information-producing and consuming

actions

In this section, we describe our representation for infor-
mation flow within plans. The foundation of this rep-
resentation is a description of the information require-
ments of actions, and of the information-producing
abilities of actions. We will also discuss how infor-
mation flow is used to control plan execution.2

Consuming information: provisions

The information needs of an action are represented by
a set of provisions. Provisions can be thought of as
a generalization of both parameters and runtime vari-
ables. (In fact, we define an action’s parameters to
be a subset of its provisions that obey certain condi-
tions, described below). Like parameters and runtime
variables, each provision has a symbolic name. For ex-
ample, an action to fetch a page from the web might
have a provision named URL. Unlike runtime variables
(and outcome labels), the scope of provision names 
local to each action, so there is no necessary connec-
tion between different actions with the same provision
name.

The primary difference between provisions and pa-
rameters or runtime variables is that instead of being
bound to a single value, each provision has an associ-
ated queue of values. When information is supplied to
some provision of some action, it is inserted into the
queue. Information may be supplied statically by the
planner when a plan is being composed, or dynami-
cally during plan execution, either as the result of the
execution of some other action or because of the oc-
currence of some external event (such as the arrival of
a message to the agent).

2We discuss here only those aspects of our representa-
tion that relate to information flow, and omit the more
traditional aspects of action modeling such descriptions of
the actions preconditions and effects. We believe that our
representation for information flow could be used with a va-
riety of different action representations, from simple, propo-
sitional, deterministic representations such as STP~IPS to the
more expressive representations supporting conditionality,
quantification, non-determinism and/or metric attributes.
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Individual action instances may be designated by the
planner as periodic or aperiodic. An aperiodic action
will only be scheduled for execution once. A periodic
action is rescheduled upon execution for subsequent re-
execution according to its associated period. An action
is enabled, and thus eligible for execution, when there
is at least one value queued for each of its provisions.
Upon execution, the action "consumes" its provisions
by removing them from the queue. If multiple values
are available on a provision’s queue, the action may
consume all values, thus disabling itself until new in-
formation arrives, or consume a single value, thus leav-
ing itself enabled and eligible for future re-execution.
An action that has no provisions is always enabled;
if it is periodic it will be perpetually available for re-
execution.

Parameters are a subset of the provisions with some-
what different behavior. First, a parameter may only
be provided once, so its queue will either contain no
values or a single value. Second, the value of a pa-
rameter is not consumed during execution, so its value
will remain available for future executions of the ac-
tion. Note that the distinction between parameters
and provisions in our system is not the same as the
distinction between plan-time and runtime variables in
previous planners; our parameters may have their val-
ues supplied dynamically during plan execution, while
provisions might have values supplied ahead of time by
the planner.

Producing information: outcomes and
results

Where does the information come from that is sup-
plied to the provisions of actions? As we said above,
it may be provided by the planner, and it may be pro-
duced by the occurrence of external events (more on
both of these later), but the most common source of
information is the execution of actions.

In our framework, the execution of an action pro-
duces an outcome and a result. The outcome is one
of a finite set of predesignated symbols (equivalent to
the outcomes of CNLP and the observation labels of C-
BUI~IDAN). The result can be any arbitrary piece of
information returned by the code object that imple-
ments the action. An example will help make clear the
intended difference. Consider the action to retrieve a
web page. The outcomes of such an action might be OK
and ERROR, depending on whether the action succeeds
in fetching the page, or fails for some reason. If the
outcome is OK, the result of the action would be the
web page itself. In the event of an ERROR outcome, the
result might be some description of the error.

Having both outcomes and results may seem redun-

dant, but there is a good practical motivation. The
outcomes represent a partitioning of the (perhaps in-
finite) set of possible results into equivalence classes
which are distinguished by their expected use in rout-
ing information. Outcomes allow the executor to effi-
ciently route results (as described below) without need-
ing to actually examine those results. Thus, outcomes
allow control flow to be decoupled from the specific
content of information produced.

Information flow relationships

The previous section described how individual actions
produce and consume information. A task network
consists of a set of actions and a set of information-flow
relationships between those actions. In this section, we
will describe how these information-flow relationships
are represented in our system. We will first discuss
those relationships which may occur between actions in
a non-hierarchical (or "flat") task network, then later
address the additional relationships that arise in the
hierarchical case.

Provision links

Information flow relationships between actions in a
non-hierarchical task network are represented by pro-
vision links. Each provision link is a tuple (P,w, C, ~r)
where P and C are actions, w is an outcome of P, and
7r is a provision of C. The meaning of such a link is
that if the execution of P gives rise to outcome w, its
result is supplied to provision 7r of action C.

We will demonstrate the use of provision links with
an example. Recall the monitoring plan shown in Fig-
ure 1. Figure 6 shows the task network represen-
tation of that plan in our framework. Periodic ac-
tions are represented by large boxes with rounded cor-
ners, while aperiodic actions are represented by large,
square-cornered boxes. The small boxes on the left
side of each action represent parameters (with square
corners) and provisions (with rounded corners).

The two fetch actions will both always be enabled,
since their single parameter is provided by the plan-
ner. The first one will only be executed once because
it is not periodic, but the second one will be executed
repeatedly. (It stays enabled since parameters are not
consumed on execution.) The comparison action will
be enabled when both of the fetches have supplied re-
sults. Upon execution, the value of PAGE2 (a provi-
sion) will be consumed, so the action will be disabled.
It will be re-enabled when the periodic fetch action
is executed again, and a new value is supplied. The
final notification action will be enabled whenever the
comparison has a SAME outcome.

Note that provision links obviate the need for the
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Planner

Fetch Web Page

period = 5

Figure 6: A task network for a simple monitoring plan.

DO-IT [ OK

Notify of change

ordering constraints that are used in many existing
planning formalisms. The planner instead describes
the information-flow relationships that hold between
actions. A correct ordering of actions is determined by
the scheduler, which selects an action for execution if
and only if all the required information is available.

Inheritance and disinheritance

In our hierarchical task network planning framework,
a task is reduced by instantiating a set of subtasks. Un-
like some recent formalizations of HTN planning (Erol,
Hendler, & Nau 1994), we do not replace the reduced
task with its subtasks, but instead represent the task
network as a tree-like structure. The definition of a
reduction specifies how the provisions and outcomes
of the new subtasks relate to each other, and to their
parent task. In order that our reduction schemas be
modular, the provision links described in the previous
section can only be used between siblings (i.e. imme-
diate subtasks of a common higher level task). The
provisions and outcomes of the subtasks are related to
their parent task by two other kinds of relationships:
provision inheritance and outcome disinheritance.

A provision inheritance link is a tuple (T, 7rT, S, ~rs),
where S is a subtask of T, 7rT is a provision of T, and
~rs is a provision of S. The meaning of such a link is
that any value supplied to ~rT will be passed on to ~rs.

Similarly, an outcome disinheritance link is a tuple
(S, ws, T, wT), where S is a subtask ofT, ws is an out-
come of S, and WT is an outcome of T. Such a link
indicates that if the execution of S results in outcome
ws, the supertask T will have the outcome WT. Addi-
tionally, the result of S will also be passed on as the
result of T.

We will illustrate these relationships with a sim-
ple example. The agents in our system, WARREN, of-

ten gather information by communicating with other

agents. An abstract task of answering a particular
query could be broken down into two subtasks as
shown in Figure 7. The first subtask determines which
agent should be used to answer the query, and the
second subtask asks that agent to answer the query.
Both subtasks inherit the query from their parent. The
Determine-Agent subtask has two possible outcomes.
If an appropriate agent is known, its name is provided
to the Ask-Agent-Query subtask. Otherwise, the fail-
ure outcome is propagated upwards, and indicates the
failure of the parent task. The task that actually an-
swers the query will be enabled when it is provided an
agent’s name. The successful completion of this sub-
task defines the successful completion of the parent.

External provision

We mentioned above that one of our objectives was
to support triggered actions, which are executed in re-
sponse to external events. In our system, the most
common such event is the arrival of a message from
another agent. Our architecture has a mechanism for
dynamically routing incoming messages to the provi-
sions of specific actions in the task network. Our agents
communicate using KQML (Finin et al. 1994), and the
incoming messages are routed according to the value
of their IN-REPLY-T0 field. Such a routing can be es-
tablished as part of a reduction schema.

For example, the "Ask Agent Query" task in Fig-
ure 7 might be further reduced into two subtasks: one
which sends the query to another agent, and one which
receives the reply and extracts the answer to the query
(Figure 8). The Process-Reply task will be enabled
when it is provided with an incoming message.

Provisions, parameters, and planning

In a fully-instantiated task network, control flow is
derived entirely from information-flow relationships.
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Figure 7: A task reduction for answering a query, showing provision inheritance and outcome disinheritance.

Ask Agent Query

Send Query Process Reply

Message
Routing Table

Figure 8: A task reduction for asking a specific agent a query, showing external provision.
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These relationships are established when the plan is
generated. In our hierarchical task reduction planner,
each reduction schema defines a set of subtasks and
specifies the various provision, inheritance, disinheri-
tance, and external provision links that exist between
subtasks and their parent. A reduction may also spec-
ify that certain values are to be supplied to certain
subtasks at task reduction time. Thus, a task in the
network may have its provisions supplied either before
or after it is reduced.

Provisions supplied to a task are supplied to the sub-
tasks that inherit them regardless of whether they are
supplied before or after the reduction occurs. In Fig-
ure 8, for example, the Ask-Agent-Query task could
have its QUERY provision supplied after it was reduced,
in which case the given value would be immediately
forwarded on to the Send-Query subtask. But on the
other hand, the value could also be provided before
Ask-Agent-Query was reduced. In that case, it would
be queued there until reduction occured. Upon re-
duction, any existing provisions are passed on to the
inheriting subtasks.

Parameters are handled somewhat differently. A
task that has parameters will not be reduced until all
the parameters have been provided. This is because
the choice of which reduction to use can depend on the
values of the task’s parameters. This does not mean,
however, that all parameters in a task network must
be supplied before execution can begin. Our agents
generate and execute plans concurrently; any actions
can be executed whenever they are enabled, which may
occur before a task tree is fully reduced. It is possi-
ble for a task to have parameters provided by one of
its siblings, in which case planning for that task will
be blocked until the task providing the parameter is
complete. For example, if AGENT is a parameter to
the Ask-Agent-Query task in Figure 7, then that task
will not be reduced until the Determine-Agent task has
completed execution and provided a result. This would
allow the planner to reduce Ask-Agent-Query differ-
ently depending on to whom the query is directed.

Conclusion

In this paper, we have addressed the issue of control
flow and information flow in hierarchical task networks.
We have proposed that control flow is derived from
information flow relationships. We have presented a
framework which unifies and generalizes two existing
information-flow mechanisms, runtime variables and
outcomes/contexts. This framework supports the rep-
resentation and execution of task networks with infor-
mation producing actions, conditional branches, loops,
periodic actions, and externally enabled actions. An

implementation of this framework is currently in use
in the WARREN multi-agent system.
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