
Verifying Multi-Agent Knowledge-Based Systems using COVERAGE*

Alun Preece and Neil Lambt

University of Aberdeen, Computing Science Department
Aberdeen AB9 2UE, Scotland

Phone: +44 1224 272296; FAX: +44 1224 273422
Email: apreece@csd, abdn. ac.uk

Abstract

Anomaly detection, as performed by the COVER tool,
has proven to be a useful method for verification of
knowledge-based systems. The increasing develop-
ment of distributed knowledge-based systems based
upon the multi-agent architecture demands techniques
for the verification of these systems. This paper de-
scribes the COVERAGE too1 -- an extension of COVER
designed to perform anomaly detection on multi-agent
systems. The paper includes an example of a multi-
agent system verified using COVERAGE.

KBS and MAS
Knowledge-based systems (KBS) are a relatively ma-
ture aspect of artificial intelligence technology. These
systems solve problems in complex application do-
mains by using a large body of explicitly-represented
domain knowledge to search for solutions. This ap-
proach enables them to solve problems in ill-structured
domains which defeat more conventional algorithmic
programming. Unfortunately, this approach makes
KBS harder to validate and verify because there is
not always a definite "correct" solution. However, in
recent years considerable progress has been made in
developing effective validation and verification (V&V)
techniques for such systems (Gupta 1990). One verific-
ation tool in particular, COVER, has been demonstrated
as an effective means of revealing flaws in complex
KBS (Preece, Shinghal, & Batarekh 1992). COVER op-
erates by checking the knowledge base of a KBS for lo-
gical anomalies which are symptoms of probable faults
in the system.

Recently it has been realised that in order to solve
certain kinds of complex problem it is necessary to cre-
ate a system in which a number of KBS cooperate and
combine their problem-solving capabilities. Sometimes
this occurs because the problem-solving activity covers

* This paper is an extended version of the paper
"Verification of Multi-Agent Knowledge-Based Systems",
presented at the ECAI-96 Workshop on Validation of KBS.

t Author’s current location: Ericsson Telecommunica-
tions, West Sussex, UK.

a large geographic region (such as in telecommunic-
ations networks or military applications), where dif-
ferent KBS have responsibility for different geograph-
ical areas; sometimes it occurs because different KBS
have different "specialities" to bring to the problem-
solving process, similar to the co-operation among hu-
man team members. The Multi-Agent System (MAS)
architecture has proven a popular and effective method
for building a co-operating team of KBS: each KBS
in the team is constructed as a software agent, con-
ferring abilities of autonomy, self-knowledge, and ac-
quaintance knowledge on the KBS -- abilities useful for
team-forming and co-operative problem-solving. How-
ever, the problem of assessing the reliability of MAS
through V&V has received scant attention, which is a
matter of some concern because these systems are con-
siderably more complex than individual KBS (Gross-
ner 1995).

The objective of the work described in this paper
is to build upon successful techniques in verification
of KBS, to develop methods for verifying multi-agent
KBS. Specifically, we extend the COVER tool to cre-
ate COVERAGE: COVER for AGEnts. Section 2 defines
the architecture of MAS that we assume, Section 3 de-
scribes the properties which COVERAGE is designed to
detect, Section 4 describes the COVERAGE tool, and
Section 5 concludes. A running example illustrates the
use of COVERAGE.

MAS Architecture

Our intention is to provide a general approach to veri-
fying MAS. The architecture of conventional KBS is
reasonably well-understood, and the approach taken
by the COVER tool is to check KBS represented in
a generic modelling language, into which many rep-
resentations can be translated without too much dif-
ficulty (Preece, Shinghal, & Batarekh 1992). Using
a modelling language rather than the implementation
language has three important benefits: the verification
approach is not tied to a specific target representa-
tion; by abstracting away detail not required for veri-
fication, it is computationally easier to work with the
modelling language; and not least, verification can be

From: AAAI Technical Report WS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

.A h.. to~from
W~acquaintances

Communication module
ARCHON layer

Planning &
i coordination

module (PCM)

Monitoring layer
Intelligent~
System
layer ~

models JP

Self I
model

Figure 1: Structure of an ARCHON Agent.

performed prior to implementation (for example, on
a conceptual model of the KBS (Wielinga, Schreiber,
& Breuker 1992)). These advantages far outweigh the
disadvantage, which is that inaccuracies may arise be-
cause the modelling language may not exactly match
the semantics of the target implementation language --
this is fully discussed in (Preece, Shinghal, & Batarekh
1992), where it is shown that such inaccuracies can be
dealt with in the verification process.

We would like to take a similar approach to MAS,
but their architecture is not as well understood at this
time (Wooldridge & Jennings 1995). After careful con-
sideration, the ARCHON1 architecture (Cockburn
Jennings 1995) was adopted as a starting point for de-
veloping a generic representation for COVERAGE, for
two main reasons:

¯ real world systems have been developed within
it (Cockburn & Jennings 1995);

¯ it clearly separates problem-solving KBS domain
knowledge from co-operation and communication
mechanisms.

The ARCHON approach helps designers correctly de-
compose and package components of a MAS. The indi-
vidual components of an ARCHON system are agents,
which are autonomous and have their own problem
solving abilities. Each agent is divided into two separ-
ate layers: the ARCHON Layer (AL) supports interac-
tion and communication, while the Intelligent System
layer (IS) provides domain level problem solving
the IS can be a KBS or some other type of information
system. This is illustrated in Figure 1.

1ARchitecture for Co-operating Heterogeneous ON-line
systems.

The agent initiates problem-solving using control
rules in the PCM. The PCM rules will typically either
invoke co-operation messages to other team members
(whose capabilities are defined in the acquaintance
models) or by passing a goal to its own IS to solve.
The monitoring layer between AL and IS acts as a
translator between IS and ARCHON terms, and al-
lows the AL to control the IS by invoking goals. For
the purposes of this paper we will refer to the know-
ledge base of the IS layer as domain knowledge (DK)
and the knowledge base of the AL as the co-operation
knowledge (CK). Links between CK and DK structures
are defined by monitoring units (MU).

Example MAS Application

For illustrative purposes, we introduce a MAS in the
domain of providing university course advice.2 Three
agents are involved:

User Agent serves only as the user’s front-end to the
MAS. It has an empty IS layer. Its AL has a user
interface which allows the user to enter their identity,
year of study, and the name of a course they wish
to take. It then locates and contacts an agent who
can provide advice on whether a student can take a
given course, and relays the agent’s response to the
user.

Advisor Agent provides advice on whether a stu-
dent can take a given course. Its IS layer is a course
advice expert system; its AL offers the facility for its
peers to ask queries of the expert system and obtain
answers. To answer queries, the expert system needs

2This is a simplified version of a prototype MAS which
advises on the options available to students who wish to
transfer between universities in the UK.

2

1. asks if student S

~
~ can take course ~

ser "~ "~ Advisor "~
k~ Agent ,,)

tells whether or
not S can take C T

I
I 12. asks for S’s

3. tells S’s I I history

h~story~

Figure 2: Example MAS Interaction.

information on the academic history of the student
(to see if course prerequisites are satisfied); the ad-
visor agent’s AL obtains this information by locating
and contacting an agent who can provide it.

History Agent provides information on the aca-
demic history of students. Its IS layer is a database
of student records; its AL offers the facility for its
peers to ask queries of the database.

The interaction between the three agents is summar-
ised in Figure 2.

Modelling Language for DK
We are interested in MAS where each agent’s DK is a
KBS. Therefore, we adopt a slight variant of the COVEa
KBS modelling language for capturing the DK of an
agent. A fuller description of this language, which is
built on top of Prolog, appears in (Preece, Shinghal,
& Batarekh 1992); here we will summarise the main
structures: rules, goals, constraints and data items.

Rules Rules make up most of the DK, defining
the flow of problem-solving in either a backward or
forward-chaining manner. The following are example
COVER rules from the Advisor Agent’s IS:
rule r42 ::

canTake (software_eng)
knowsC hasValue yes.

rule r43 ::
knowsC hasValue yes if
passedCourses includes ’C’ or
passedCourses includes ’C++’.

These rules conclude that a student can take the soft-
ware engineering course if they know the C program-
ming language; they are deemed to know C if they have
passed courses on C or C++. Rule consequents con-
clude a value for some data item, called the rule sub-
ject (knowsC in rule r43). Data items may be boolean
facts (canTake (software_eng) in rule r42) or single
multi-valued parameters (knowsC and passedCourses
in rule r43).

Goals Goals may be intermediate states in the
DK or final conclusions represented within an MU.
There will be at least one goal specified for each
task required by the ARCHON layer and the MUs
will represent one goal each. An example goal
declaration is goal canTake(software_eng), where
canTake(software_eng) is a data item.

Constraints Constraint declarations permit us to
verify the rules. An example declaration from the Ad-
visor Agent’s expert system:
rule c54 : :

impermissible if
can.Take (software_eng) and
canTake (intro_unix).

Each declaration states that a combination of data
items and their values is semantically invalid: that is,
it is not permissible in the real world. The example
constraint says that students are not allowed to take
both software engineering and introductory UNIX.

Data Declarations Data declarations are used to
detertnine which data items are expected to be sup-
plied as input to the KBS. In a standalone KB this
input will be supplied by the user. For an agent the
idea is actually the same, except that the "user" is
the ARCHON layer, and data declarations now define
which data the ARCHON layer has to give the IS in
order to achieve a task. An example declaration:3

data passedCourses / set /
[’C’, ’C++’, intro_unix,
software_eng] .

The data declarations are used in verification to es-
tablish the types of data items, to determine possible
legal values that data items can take, and to check that
certain values for data items can be established. This
example lists possible values for the multi-valued data
item passedCourses (not all values are shown).

3In COVER, input data axe defined askable; here we use
the more general keyword data.

Modelling Language for CK

The following language is derived from the description
of components in the ARCHON layer (Cockburn
Jennings 1995), consisting of PCM rules to govern the
behaviour of the agent, and a set of declarations that
define internal data for the agent (beliefs, goals, do-
main facts) and capabilities available internally (MUs,
self model) and externally (aquaintance models).

PCM Rules The PCM rule declarations define the
behaviour of the agent. For our purposes here, PCM
rules represent only the communication of information
and the completion of requested tasks. The following
rule is used by the Advisor Agent to determine if a
student can take a given course in a given year.

pcm_rule p3 ::
canTakeCourse hasValue yes if
student hasValue S and
year hasValue Y and
course hasValue C and
agentModel (HistAgent, getHistory,

[student, year], [history]) and
request (HistAgent, getHistory,

[student, year]) and
act ivat e (checkPrereqs,

[course, history]) and
hasPrereqs(C) hasValue yes.

This rule uses the request operator to find information
from an acquaintance;4 the activate operator is used
to invoke a task within an agent’s own IS. The student
S can take the course C if there is an agent HistAgent
that can deliver S’s history, and the task checkPrereqs
performed by the Advisor Agent’s IS yields the fact
that hasPrereqs(C) hasValue yes.

Agent and Self Declarations Each acquaintance
known to an agent has one or more entries in the
agent’s acquaintance model table of the form:

agentModel(Name, Task, Inputs, Outputs)¯

In the previous example PCM rule p3, the Advisor
Agent refers to an entry in its acquaintance model,
agentModel to find the identity of another agent
(HistAgent, a Prolog variable) which can perform task
getHistory using data student and year to produce
a value for history.

Self models are very similar: they are a self-reference
model for the agent’s own capabilities, and refer to MU
items.

4The request operator waits for a response as in a
conventional remote procedure call; it could be imple-
mented using an agent communication language such as
KQML (Finin e~ al. 1994), but in this case the agent would
have to wait explicitly for an appropriate reply from its
peer.

Monitoring Units The MUs provide a bridge
between AL task terms and IS goal terms, allowing
for different naming in each (this is necessary to allow
existing KBS to be "wrapped" as agents). An example
MU for the Advisor Agent’s checkPrereqs task:

mu (checkPrereqs,
[mapping(course, module),
mapping (history, passedCourses)

[mapping (hasPrereqs, canTake)]

Here, the AL operates in terms of input data course
and history, while the equivalent terms at the IS layer
are module and passedCourses. The IS output term
canTake (seen in IS rules r42 and r43) corresponds
the AL term hasPrereqs (seen in rule p3).

Example Agent Interaction

The User Agent’s AL contains the following rule frag-
ment:

¯ . °

Y, read values for student, year, course
.. o

agentModel (AdvisorAgent, courseAdvice,
[student, year, course] ,
[canTakeCourse]) and

request (AdvisorAgent, courseAdvice,
[student, year]) and

Y. print value of canTakeCourse

The User Agent locates a peer who can per-
form the courseAdvice task, given input values for
[student, year, course], and returning a value for
canTakeCourse; in this way, it will find the Advisor
Agent, and invoke the Advisor Agent’s task involving
PCM rule p3 shown earlier Rule p3 interacts with
History Agent as shown in steps 2 and 3 in Figure 2,
before activating its own IS task checkPrereqs to
obtain a value for hasPrereqs (C) Once the term map-
pings defined in the MU for checkPrereqs have been
applied, the expert system will attempt to establish a
value for hasPrereqs(C) (using IS rules such as r42
and r43). If the value is yes, rule p3 succeeds and
Advisor Agent can return a positive response to User
Agent.

MAS Anomalies

In defining the anomalies that can exist in a MAS,
modelled using the DK and CK languages described
above, we identify four distinct types:

DK anomalies Anomalies confined to an agent’s
DK.

CK anomalies Anomalies confined to an agent’s CK.

CK-DK anomalies Anomalies in the interaction
between an agent’s CK and DK (that is, between
the modelled AL and IS).

CK-CK anomalies Anomalies in the interaction
between acquaintance agents (this is, between dif-
ferent agents’ ALs).

The first three types are also known as intra-agent an-
omalies; CK-CK anomalies are also known as inter-
agent anomalies.

DK Anomalies

Essentially, the DK is a KBS; therefore, the COVEa
anomalies are applicable to the DK. COVEa defines
four types of anomaly (Preece, Shinghal, & Batarekh
1992); these, and their effects in MAS are as follows:

Redundancy Redundancy occurs when a KBS con-
tains components which can be removed without ef-
fecting any of the behaviour of the system. This in-
cludes logically subsumed rules (if p and q then
r, if p then r) rules which cannot be fired in
any real situation, and rules which do not infer
any usable conclusion. In MAS, simply redundant
DK components will not affect an agent’s ability to
achieve goals, but it can lead to inefficient problem-
solving and maintenance difficulties (where one rule
is updated and its duplicate is left untouched). How-
ever, redundancy is usually a symptom of a genuine
fault, such as where an unfirable rule or an unus-
able consequent indicates that some task is not fully
implemented. For example, rule r43 in the earlier
example would not be firable if the data declaration
for passedCourses did not contain either of the val-
ues ’ C ’ or ’ C++ ’.

Conflict Conflict occurs when it is possible to derive
incompatible information from valid input. Conflict-
ing rules (if p then q, if p then not q) are the
most typical case of conflict. Conflicting DK is as
harmful for an agent as conflicting knowledge in a
standalone KBS: the agent can derive incompatible
goals from a valid set of input to a task. In human
terms, it is untrustworthy. This would be the case
in the example if Advisor Agent’s IS contained the
following rule:

rule r44 ::
canTake(intro_unix)
knowsC hasValue yes.

The combination of rules r42 and r44 firing would
violate constraint c54.

Circularity Circularity occurs when a chain of in-
ference in a KB forms acycle (if p then q, if
then p). It may then not be possible for the KBS
or agent’s DK to solve some goals.

Deficiency Deficiency occurs when there are valid in-
puts to the KB for which no rules apply (p is
valid input but there is no rule with p in the ante-
cedent). If an agent’s DK is deficient, then it may
be promising a capability that it cannot supply: if
some agentModel in an agent’s AL indicates that the

agent can solve some goal using some input, and the
DK is deficient for some combination of that input,
it is effectively in "breach of contract". We e.xpand
on this theme below.

CK Anomalies
Anomalies confined to an agent’s CK fall into two
types:

¯ faulty integrity between components, checkable by
cross-referencing PCM rules, agent models, and
MUs;

¯ anomalies in PCM rules: as in DK, PCM rules may
be redundant, conflicting, circular and deficient.

CK-DK Anomalies

Anomalies indicating faulty integrity between an
agent’s CK and DK will typically result in a "breach
of contract": the agent’s AL is effectively promising
that the agent has certain capabilities, and the agent’s
IS is meant to provide those cababilities. If there is a
mis-match between CK and DK, then a promise made
by the AL will not be honoured by the IS. If an agent
A has a CK-DK anomaly, this may cause a problem for
A itself, if it relies on being able to fulfill a task in its
self-model; or it may cause a problem for an acquaint-
ance of A, say B, even where B’s agentModel of A is
consistent with A’s self-model)

CK-DK anomalies may be simple cases of malformed
MUs, where the MU does not properly map to DK
terms, or they may be much more subtle cases of un-
achievable tasks, where the information defined in the
MU does not permit the required goal(s) to be achieved
by the IS under any possible chain of reasoning. For ex-
ample, if the MU for task checkPrereqs failed to map
history into passedCourses, then the task would be
unachievable because pre-requisite checking rules such
as r43 could not fire.

CK-~2K Anomalies

Again, these anomalies result in "breach of contract"
between agents: typically, the agentModel held by
agent A of agent B is is in conflict with B’s self-model.
Special cases include:

¯ Over/under-informed task: the task input of the
self-model declaration is a subset/superset of its
counterpart in the agent model declaration; for
example, the User Agent’s model of the Ad-
visor Agent’s task courseAdvice would be under-
informed if it neglected to include year in its input.

¯ Insui~cient output: the task output of the self-model
declaration is a subset of its counterpart in the agent
model declaration; for example, if the User Agent’s
model of the Advisor Agent included the additional

~If B’s agentModel of A is not consistent with A’s self-
model, then this is a CK-CK anomaly, discussed later.

output prereqs from the courseAdvice task (to in-
dicate which pre-requisites are needed to take the
course), then the Advisor Agent’s actual capability
to perform courseAdvice would be insufficient to
meet the User Agent’s need.

¯ Unobtainable item: an item in an input list to a task
in agent A does not appear in any output lists for
acquaintance models held by A. This would be the
case if the Advisor Agent did not know any peers
who could supply a value for history.

In comparing the CK rules of different agents, we are
assuming that they share a common terminology --
they commit to a common ontology. Verifying an
agent’s commitment to an ontology is outwith the
scope of this paper; it is the subject of a companion
work (Waterson ~ Preece 1997).

Coverage
The COVERAGE tool has been implemented to detect
the anomalies described above in MAS modelled by
our DK and CK languages. COVERAGE includes and
extends COVER. Each agent in the MAS is presented
to COVERAGE in two files, for example advisor, dk and
advisor, ck. The procedure followed by COVERAGE is
as follows:

1. COVERAGE invokes COVER to check the. dk file in its
normal manner, producing a set of reference tables
and reporting instances of its four types of anom-
aly (redundancy, conflict, circularity and deficiency).
This covers all DK anomalies.

2. COVERAGE checks the . ck file to detect all CK an-
omalies and build CK reference tables.

3. COVERAGE then takes the reference tables produced
by COVER, and cross-references these with the CK
reference tables for the agent, reporting CK-DK an-
omalies.

4. Once the above procedure has been applied for every
agent in the MAS, COVERAGE cross-checks all CK
reference tables for CK-CK anomalies.

COVERAGE is implemented mostly in Prolog (except
for part of COVER which was implemented in C). In-
dexing of the reference tables makes the above checking
operations reasonably efficient for a moderately-sized
MAS (complexity of the CK-CK checks is obviously
proportional to the sizes of the agentModel tables held
by the acquaintances). The most expensive check is the
CK-DK check that ensures that tasks defined in MUs
can be carried out by the IS: this involves checking the
environment table created by COVER, containing in ef-
fect every inference chain in the IS (Preece, Shinghal,
& Batarekh 1992). Arguments in support of COVER’s
tractability apply here: IS in practice tend not to have
very deep reasoning, leading to short inference chains
which are exhaustively computable.6

6Where this is not the case, heuristics as in SACCO can
be used to constrain the search for anomalies (Ayel & Vign-

Conclusion
COVERAGE is merely a first step -- albeit a neces-
sary one -- towards the verification of MAS. One diffi-
culty at the outset was defining a stable architecture for
MAS, given the current immaturity of the technology.
We elected to base our CK and DK languages on the
ARCHON framework since ARCHON has been proven
to be "industrial-strength", and the notion of agents-
as-KBS is well-supported by ARCHON. Moreover, the
ARCHON framework introduced the important issue
of separating the agent’s components into distinct lay-
ers, allowing COVER to be used without modification
to verify the KBS at the heart of each agent. It can
only be hoped that our approach will be applicable to
a wider class of MAS architectures.

The following points summarise the current status
of our work:

¯ generic modelling languages have been defined for
agent domain and co-operation knowledge;

¯ a four-layer framework of anomalies has been defined
for MAS;

¯ COVER has been applied successfully to verify agent
domain knowledge;

¯ a new tool, COVERAGE has been built to detect all
four layers of MAS anomaly.

Future work in the COVERAGE project includes the fol-
lowing areas.

Implementation of further CK-DK anomalies
The anomalies defined for CK-DK "breaches of con-
tract" are largely sub-anomalies of a broader "un-
achievable task" anomaly. There are other broader an-
omalies that we have identified but not implemented
in COVERAGE, including:
¯ Redundancy, where an agents’ capabilities are sub-

sumed by those of other agents: in the extreme case,
an agent can be removed from a team without affect-
ice. the team’s abilities as a whole (the agent is lit-
erally "made redundant"); less extreme is the issue
of redundant tasks performed by an agent.

¯ Circularity, where two or more tasks may become
deadlocked.

¯ Deficiency, where agents fail in general to deal with
their environment; this is probably the most difficult
general anomaly to verify for MAS.

Dynamic anomalies In addition to the verifica-
tion of statically-detectable anomalies, it is necessary
to verify dynamic MAS behaviour. For example, an
agent’s mechanism for planning and re-planning task
achievement, coupled with communication and interac-
tion, is extremely complex to test. It is difficult to en-
vision a dynamic MAS verification system that is om-
niscient, because the space of all possible interactions

ollet 1993).

will usually be vast or infinite. A possible method of
circumventing the problem would be to make the veri-
fication system an agent in itself, and to let it verify
the process as it is happening.

Real world systems The work carried out so far
has demonstrated the use of COVERAGE on a simple
prototype MAS, showning that the anomalies dis-
cussed are important. Future work is planned which
will evaluate the COVERAGE approach on real world
MAS applications.

References
Ayel, M., and VignolIet, L. I993. SYCOJET and SACCO,
two tools for verifying expert systems. International
Journal of Expert Systems: Research and Applications
6(2):357-382.
Cockburn, D., and Jennings, N. 1995. AItCHON: A dis-
tributed axt~cial intelligence system for industrial applica-
tions. In Foundations of Distributed Artificial Intelligence.
New York: John Wiley ~ Sons.

Finin, T.; Fritzson, It.; McKay, D.; and McEntire, it.
1994. KQML as an Agent Communication Language. In
Proceedings of Third International Conference on Inform.
atio n and Knowledge Management (CIKM’g~). ACM
Press.

Grossner, C. 1995. Models and Tools for Co-Operating
Rule-Based Systems. Ph.D. Dissertation, Concordia Uni-
versity.

Gupta, U. G. 1990. Validating and Verifying Knowledge-
based Systems. Los Alamitos, CA: IEEE Press.

Preece, A. D.; Shinghal, R.; and Batarekh, A. 1992. Prin-
ciples and practice in verifying rule-based systems. Know-
ledge Engineering Review 7(2):115-141.
Waterson, A., and Preece, A. 1997. Knowledge Reuse and
Knowledge Validation. Submitted to AAAI-g7 Workshop
on Verification and Validation of Knowledge-Based ~ys-
terns.

Wielinga, B. J.; Schreiber, A. T.; and Breuker, J. A. 1992.
KADS: a modelling approach to knowledge engineering.
Knowledge Acquisition 4(1):5-54.

Wooldridge, M., and Jennings, N. R. 1995. Intelligent
agents: Theory and practice. Knowledge Engineering Re-
view. Forthcoming.

