
BVAL: Probabilistic Knowledge-Base Validation

Eugene Santos Jr. 1 and Howard T. Gleason and Sheila B. Banks
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-7765

esantos@afit.af.mil

Abstract
Our work develops a new methodology and tool for the
validation of probabilistic knowledge bases throughout
their lifecycle. The methodology minimizes user in-
teraction by automatically modifying incorrect knowl-
edge; only the occurrence of incomplete knowledge in-
volves interaction. These gains are realized by com-
bining and modifying techniques borrowed from rule-
based and artificial neural network validation strate-
gies. The presented methodology is demonstrated
through BVAL, which is designed for a new knowl-
edge representation, the Bayesian Knowledge Base.
This knowledge representation accommodates incom-
plete knowledge while remaining firmly grounded in
probability theory.

Introduction

The development and use of knowledge-based systems
(KBSs) has steadily increased since their inception,
and seems likely to continue in this trend (Giarratano
& Riley 1994)(Gonzalez & Dankel 1993). Any system,
including a KBS, is of little use if it does not function
properly. While many components of a KBS contribute
to its overall "functional correctness" (user interface,
inference engine, knowledge base), this research is con-
cerned with the correctness of the knowledge base, not
the entire knowledge-based system. Specifically, the
critical factor focused on here is ensuring that the
knowledge base provides an acceptable answer to ev-
ery query. In the medical domain, this is analogous
to ensuring the doctor provides the correct diagnosis,
without regard for bedside manner, location of office,
hourly charges, etc. This process is generally termed
the "verification and validation (V&V) of the knowl-
edge base." Verification can be thought of as ensur-
ing the knowledge is collected and structured properly,
while validation ensures the knowledge produces cor-
rect results.

Historically, the development and application of
knowledge-based systems has been published before

1This research was supported in part by AFOSR Project
#94O006.

any V&V results on the same system (O’Keefe, Balci,
& Smith 1987; Buchanan & Shortliffe 1984), and the
trend continues today. Furthermore, while KBSs us-
ing probabilistic knowledge representations are popu-
lar, little literature exists regarding the validation or
verification of those knowledge bases. It is this missing
piece of information that our work addresses.

Validation vs. Verification of
Knowledge

The general process of testing, evaluating, and correct-
ing any software is termed "verification and validation"
(V&V). As they relate to knowledge bases, verification
is the process of ensuring the knowledge base was built
right, while the validation process ensures the right
knowledge base was built (O’Keefe, Balci, & Smith
1987).

Verification is concerned with comparing the knowl-
edge base against its specifications (Gonzalez & Dankel
1993; Guida & Mauri 1993). This process ensures that
the transfer of knowledge from human to machine-
understandable form, does not violate any constraints
of the knowledge representation. In practice, the
knowledge representation may not have any intrinsic
constraints; however, the inferencing mechanism that
reasons over this knowledge representation will proba-
bly have constraints. These inferencing constraints are
usually mapped onto the knowledge representation to
ensure that a verified knowledge base can be inferenced
over without causing an error.

Validation, on the other hand, is concerned with
ensuring that the knowledge in the knowledge-base,
when inferenced over, provides acceptable responses.
This "sine qua non" of knowledge-base evaluation can
be defined as the comparison of the knowledge base
against its requirements (Guida & Mauri 1993). Both
processes include the testing for and correction of their
specific types of errors.

13



Rule-Based V/kV Approaches

Approaches to the verification and validation of rule-
based knowledge bases are numerous (Gupta 1991;
Zlatareva 1994; Nazareth 1993; Botten, Kusiak, & Raz
1989; Yager & Larsen 1991). While many of these
sources claim to provide methods and techniques for
verification and validation, nearly all of them are solely
concerned with verification. This preponderance of
verification literature centers around a standard list
of errors, developed through the years, against which
rule-bases are to be checked. This list generally in-
cludes (Gonzalez & Dankel 1993):

1. redundant rules
2. conflicting rules
3. subsumed rules
4. circular rules
5. unnecessary IF conditions
6. dead-end rules
7. missing rules
8. unreachable rules

In this list, the top five items pertain to the consistency
of the rule-base and the last three to its compleleness.
Generally, "rule-based verification" has been trans-
formed into "consistency and completeness" (Gupta
1991; Buchanan & Shortliffe 1984; Gonzalez & Dankel
1993).

The historical dominance of rule-based systems has
extended this "verification -- completeness -~ consis-
tency" concept to knowledge-based systems in gen-
eral. The reason this extension has proceeded
unchecked is due to the lack of specifications surround-
ing knowledge-base development. As mentioned previ-
ously, the specifications of a knowledge-base are ac-
tually the constraints of the inferencing method. It
follows, then, that the main thrust in knowledge-base
verification for all KBSs has actually evolved from the
constraints of rule-base inferencing. In other words,
the push towards "completeness and consistency" as
the goal of verification is an artifact of rule-based in-
ferencing mechanisms, and not necessarily a require-
ment for all knowledge-base verifications. Any verifi-
cation of a knowledge base with an inferencing mecha-
nism able to accommodate incompleteness renders the
"completeness" constraint moot.

Turning to validation, many authors recognize the
need to validate the knowledge base (Buchanan
Shortliffe 1984; Gupta 1991); however, published re-
sults of actual validations are few. The three vali-
dations that MYCIN underwent are frequently cited
as benchmarks in the evolution of knowledge-based
system validation (Buchanan ~ Shortliffe 1984); how-
ever, knowledge-base validation lacks historical bench-
marks save TEIRESIAS (Davis 1979). The act 

"knowledge-base debugging" (Buchanan & Shortliffe
1984) is accomplished on every KBS, but for some rea-
son rarely defined or detailed. Viewed from the defini-
tion mentioned above, knowledge-base validation has
historically lacked requirements (Gupta 1991). Con-
sequently, the techniques of knowledge-base validation
have been left open for interpretation.

Neural Networks and Validation

As knowledge-based systems, neural networks (Hecht-
Nielsen 1991) have a unique approach to validation.
The neural net itself, metaphorically the knowledge-
base, is validated through training of the net (which is
akin to knowledge acquisition) and amounts to a con-
tinuous validation process. During this process, the
net is presented with a set of inputs and a set of de-
sired outputs. The input is then propagated through
the net and its output is compared with the desired
output. Any error in output, even if the solution was
correct, is propagated backwards through the network
adjusting the weights in the direction of the desired
output. After each pass of the training data through
the network, an accuracy percentage is calculated by
passing all the training data through and determining
what percentage produces the desired output. This
entire process is repeated many times until the overall
accuracy of the network is as high as possible. At the
successful conclusion of this training, the neural net is
considered validated for its training set.

Knowledge Representation
One of the difficulties traditional knowledge represen-
tations have is handling uncertainty; something hu-
mans accomplish regularly. For example, if you were
told, "When it rains, the sidewalk gets wet" you would
understand the meaning. Similarly, a KBS utilizing
IF-THEN rules could be given: "IF raining = true
THEN sidewalk-surface = wet". The uncertainty prob-
lem occurs when it is raining, but the sidewalk is not
wet. A human may observe this apparent contradic-
tion and remark "There’s an exception to every rule."
However, getting a KBS to accommodate this situa-
tion is not trivial. The IF-THEN rule could be modified
to include exceptions, but at what point are enough
exceptions listed? The main problem is that the origi-
nal statement "When it rains, the sidewalk gets wet,"
is not completely true. It is true under most condi-
tions, but not all. A knowledge representation that
can incorporate uncertainty and accommodate knowl-
edge from a variety of domains is essential in making
a Knowledge-Based System that is both general and
useful.

Development of the earliest systems showed that



FmvP~ 1. Bayesian Network. The Bayesian
Network corresponding to the rule: "IF rain-
ing = true THEN sidewalk-surface = wet with
probability of 0.9". Here "R" and "S" correspond
to "raining" and "sidewalk-surface" respectively.

FIGUm~ 2. Improper Bayesian Network. The
Bayesian Network from Figure 1 with this rule
added: "IF sidewalk-surface = dry AND building-
shelters-sidewalk = false THEN raining = false
with a probability of 0.8".

accommodating uncertainty was a must for mak-
ing a KBS that could function well in diverse do-
mains (Buchanan & Shortliffe 1984). Currently many
schemes of accounting for uncertainty in a knowledge
representation exist, e.g. probabilities, certainty fac-
tors, Dempster-Shafer theory, and fuzzy logic to name
a few. While some of these methods have been demon-
strated in specific domains, probability theory, with
its well-established mathematical foundation, provides
sound and consistent knowledge representations for
many domains (Pearl 1991; Santos & Santos 1996).

One of the more popular knowledge representations
accommodating uncertainty is the Bayesian Network
(Pearl 1991). This knowledge representation mod-
els the probabilistic dependencies between discrete ob-
jects, termed random variables (RVs). Resuming the
above example, and adding probabilities to modify
the rule yields: "IF raining = true THEN sidewalk-
surface = wet with a probability of 0.9. "2 The more
general approach taken by Bayesian Networks elim-
inates the IF-THEN structure, and associates "rain-
ing = true", "sidewalk-surface = wet", and "0.9."
Bayesian probabilities (subjective probabilities) allow
this type of association to be made. To illustrate:
P(A = a I B = b) = means p is theprobability that
A = a given that B -- b. The example now becomes:

P(sidewalk-surface = wet ]raining = true) = 0.9.

Graphically, this relationship is shown in Figure 1.
There are, however, restrictions on the arrangement

of information in a Bayesian network due to theoret-
ical limitations (Santos & Santos 1996). Continuing
the example, the following rule needs to be added
to the knowledge base: "IF sidewalk-surface = dry
AND building-shelters-sidewalk -= false THEN rain-
ing -- false with a probability of 0.8", see Figure 2.

Such "circular dependencies" are fairly common to
humans, however classic Bayesian networks prohibit

2For clarification, here the RV’s are "raining" and
"sidewalk-surface".

Fracas 3. Bayesian Knowledge Base. The
Bayesian Knowledge Base representing the two
rules from Figure 2. Notice that the BKB
can accommodate RV level cyclicity-something a
Bayesian Network cannot.

them; limiting the flexibility and versatility of the
knowledge representation. Further limiting usefulness,
an exhaustive list of RV-states, as well as every depen-
dent and prior probability, must typically be supplied
to the Bayesian network before inferencing is possi-
ble. Often, these numerous (combinatorie) probabil-
ities are not known, and do not make any sense to
a human; defining them becomes a major stumbling
block in knowledge acquisition.

These limitations have been overcome by the
Bayesian Knowledge Base (BKB) (Santos & San-
tos 1996). The BKB is a generalization of the
classic Bayesian network capable of incorporating
more detailed probabilistic dependencies and incom-
plete knowledge of RV-states and dependencies. The
BKB subsumes Bayesian networks, and remains firmly
rooted in probability theory.

The two key differences between Bayesian Networks
and BKBs are: knowledge granularity, and knowledge
completeness. The BKB records probabilistic depen-
dencies at the instance (state) level, instead of the 
level; i.e. the smallest piece of knowledge in a BKB
is an RV-instanee (raining = true), as opposed to the
Bayesian Networks’ RV (raining). Figure 3 shows the
BKB needed to represent the two rules present in Fig-
ure 2.

A BKB is a bipartite directed graph composed of two

15



distinct types of nodes. The lettered ovals, termed "in-
stantiation nodes" or "I-nodes", represent specific RV-
instances. The filled circles, "support nodes" or "S-
nodes", each represent one probabilistic dependency
relationship, and contain the probability associated
with that relationship. The BKB has no requirement
for exhaustive RV-state lists or complete probability
specifications. This allows it to accommodate incom-
plete as well as uncertain knowledge.

Knowledge Acquisition and Consistency
Any knowledge representation is of little use without
a means of knowledge acquisition. The MACK tool
presented in (Santos & Banks 1996) is the knowledge
acquisition device for the Bayesian Knowledge Base.
MACK supports an incremental knowledge acquisition
philosophy, allowing the knowledge engineer freedom
in constructing the knowledge base. This tool uses
linguistic parameters to help overcome the typical dif-
ficulties in defining exact probabilities for a knowledge
base. Additionally, it provides a mechanism for han-
dling temporal information, and guarantees knowledge
base consistency.

This consistency is actually the verification of the
knowledge base. MACK compares the structure of the
knowledge base against a set of constraints (specifica-
tions) that ensure the inferencing method is able to
perform correctly. BVAL guarantees that the knowl-
edge base will remain verified during its operation.

Inferencing

The purpose of any Knowledge-Based System is to pro-
vide information (diagnosis, advice, analysis, etc.) 
a user. The process of deriving this "information",
termed inferencing, is of central importance to any
KBS.

Belief Revision (Pearl 1991) finds the "most proba-
ble explanation" (MPE) for the given evidence based
on the optimal joint probability of the random vari-
ables. This is actually the most likely state of all ran-
dom variables in the knowledge base; or more infor-
mally, the most likely state of the world. This type
of inferencing is most useful in explanatory/diagnostic
domains where the exact probability of any particular
element is not as useful as the inclusion of an element.
For example, in a medical domain (diagnostic) a pa-
tient may have chest pain (evidence). Inferencing with
Belief Revision will result in every RV being assigned a
state (instantiation). One of the RV-states in the MPE
may be "congestive-heart-disease -- true". The pres-
ence of this element is of more value to the user of the
system and/or the patient, than is the exact probabil-
ity that the patient has congestive heart disease (Belief
Updating). In fact, the probability of having a given

disease may be fairly small on an absolute scale; how-
ever, the fact that the disease is a part of the "most
probable state of the patient" is significant.

While this inferencing method seems to provide the
desired information in its applicable domains, a prob-
lem occurs when it is used on an incomplete knowledge
base (BKB). The problem has two main roots: the
"type" of information in the knowledge base, and the
"globalness" of the inferencing solution. While these
root problems seem disparate, they actually combine
to address the broader topic of relevancy.

"Type" of information is best described by way
of example. Remaining in the medical domain, the
knowledge acquisition process will probably acquire
only "positive" information; i.e. information that
can be used to conclude the presence of some dis-
ease. "IF chest-pain -- true THEN congestive-heart-
disease = true" (positive information) is more likely
to appear in the knowledge base than an exhaustive
listing of exactly what will cause "congestive-heart-
disease = false". It seems reasonable that the knowl-
edge engineer, when given the freedom to supply in-
complete information, will supply only the "impor-
tant" or relevant information. From here, it is easy
to see how the BKB would contain many "disease-
X = true" instances, and few "disease-X = false" in-
stances.

As mentioned above, Belief Revision results in every
RV being assigned its most likely state with respect
to the evidence. This "global" assignment of every RV
will result in the most likely assignment for all "disease-
X" RVs. However, since many of those RVs have only
one state in the knowledge base, their state assign-
ment is a foregone conclusion. What this means to the
user is every disease with only one state, or all positive
states, will be present in every solution; e.g. no mat-
ter the evidence, the patient’s most likely state will
include (say) flu, cold, pneumonia, meningitis, ulcer,
congestive heart disease, etc..

A possible solution to this problem is to make a sin-
gle "disease" RV, that has many states corresponding
to flu, cold, etc.. This method, however, has problems
of its own. It cannot accommodate positive and nega-
tive information for a single disease, it cannot account
for one disease being a symptom of another disease
(e.g. pneumonia is a symptom of AIDS), and it only
allows one disease to be present in any solution (since
a random variable cannot be in two states simulta-
neously). Each of these problems is as unacceptable
as the original problem of having many diseases every
time.

The ideal solution is to inference over (assign states
to) only those random variables that are relevant to

16



the evidence.

Solution vs. Answer

The previous section mentioned, but never defined, the
"solution" that results from inferencing. The solution
is the set of elements found to compose the most likely
(partial) state of the world. This set forms a subgraph
of the knowledge base and usually has paths that in-
clude the evidence. This solution provides important
information for validation (as we shall see) but presents
a problem for providing an answer to the user.

To clarify, "solution" refers to the output of the in-
ferencing mechanism, while "answer" refers to that
portion of the solution presented to the user. The
need for this distinction is apparent when dealing with
a Belief Revision solution. Recall that a Belief Re-
vision solution contains the state (possibly assumed)
of every RV in the knowledge base. Returning to the
medical example and bypassing the problems discussed
previously, the evidence is "fever = true", and the so-
lution now contains "cold = true", "shivering = true",
"coughing = true", "sore-throat = true", etc. What is
the answer?

One approach to this "interpretation" problem is to
not interpret the solution at all but just display the
entire solution to the user. It is easy to see, however,
that such an approach quickly degrades in usefulness
as the size of the knowledge base increases. Forcing
the user to examine a large number of RV-states, look-
ing for the one (few) that provide useful information
is not effective. The real crux of this problem is some-
how deciding what element(s) of the knowledge base
are relevant to the solution given the evidence. The
following approach attempts to address this problem
by extending the knowledge acquisition process and
adding functionality to the user interface.

This approach involves having the expert/knowledge
engineer provide additional information during knowl-
edge acquisition. This "additional information" will be
the "type" or "category" of the random variable. For
example, the RV "fever" might be type "symptom",
the RV "cold" might be type "disease", and the RV
"pneumonia" might be type "symptom" and type "dis-
ease". The exact type label(s) should be determined
by the expert/knowledge engineer, since they are the
source of information contained in the knowledge base.

Now that this additional information is in the knowl-
edge base, it must provide some functionality. The user
interface can utilize this information to filter the solu-
tion as reported by the inferencing mechanism. For
example, if "cold = true", "shivering = true", "cough-
ing = true", and "sore-throat = true" compose the
solution, and "cold" is of type "disease" while the

others are all of type "symptom", the solution can
be filtered for "disease" RVs resulting in the answer
"cold = true".

In deciding what types to report, the ex-
pert/knowledge engineer could provide a list of "re-
portable types" as a default filter for each query based
on the purpose of the knowledge base; e.g. all RVs of
type "disease" are included in the answer by default.
The user may also specify types to include or exclude
from the answer, giving them the flexibility to tailor
the output without changing the knowledge.

Bayesian Knowledge Base Validation

Ideally, the process that ensures an acceptable solution
is provided for every query would be completely auto-
mated. However, since BKBs incorporate incomplete
knowledge, this is not possible. Incomplete knowledge
produces errors that can only be corrected by modify-
ing the amount of knowledge in the knowledge base.
Automatically performing this correction requires an
awareness of the knowledge that is either missing or
extraneous. Having an awareness of what knowl-
edge is needed to automatically correct an incomplete-
knowledge error, implies that the system already con-
tains the knowledge needed to fix the error. Complet-
ing this circular argument, if the system already knows
what knowledge is missing or extraneous, why would
an incomplete-knowledge error ever occur? Clearly, the
allowance of incomplete knowledge requires the user
to interact with the knowledge base during vMidation.
Keeping the ideal in mind, the goal of BVAL is to min-
imize the interaction required.

BVAL’s approach to validating Bayesian Knowl-
edge Bases achieves this goal by combining both rule-
based and neural net validation techniques. The rule-
based approach emphasizes completeness and correct-
ness while only providing the user with assistance in
locating the incomplete/incorrect knowledge. The neu-
ral net approach assumes its knowledge is complete
and automatically reinforces correct knowledge. Since
BKBs will have incomplete and incorrect knowledge,
BVAL combines these techniques to provide automatic
correction whenever possible and user assistance oth-
erwise.

Validation Issues

Before detailing BVAL’s methodology, it is important
to understand its overall approach in general terms.
The PESKI system which contains BVAL will be re-
leased as a KBS shell, a fully functional system without
any knowledge. Since each user will need to validate
their individual knowledge base, BVAL was developed
for inclusion in the system shell. Because of this at-



rangement, BVAL is designed to directly compare the
knowledge base against its requirements. The require-
ments of the knowledge base are a set of test cases,
where each test case has evidence and an expected an-
swer. This requirements set is similar to the train-
ing/testing sets of neural networks. BVAL is designed
to be useful over, and an integral part of, the whole
knowledge base lifecycle.

Four significant validation issues were defined by
(O’Keefe, Balci, & Smith 1987) and detailed in (Gi-
arratano & Riley 1994): What to Validate, When to
Validate, Which Methodology and What Criteria. We
now consider how they pertain to BVAL.

What to validate: Since validation is concerned with
ensuring an acceptable solution is provided for every
query, it seems obvious that the final result, the so-
lution, is being validated. The intermediate results,
while a part of the solution, are immaterial if the so-
lution is correct. If an intermediate result is to be
included in the solution, then it should be part of the
expected answer for that test case. BVAL’s methodol-
ogy will then ensure that this intermediate result is a
portion of the solution.

When to validate: BVAL is designed to be used at
all stages of the knowledge base lifecycle. Since knowl-
edge can be acquired iteratively, it makes sense that it
should be validated iteratively. It is expected that as
the knowledge base is developed, it will be constantly
validated to ensure that the knowledge acquisition pro-
cess is working properly. This type of validation also
lends a sense of confidence to the user, as they can
see correct solutions being produced by the knowledge
base. Validating the final knowledge base will ensure
that the knowledge is as complete as needed and as cor-
rect as possible given the requirements. As the knowl-
edge base enters the maintenance portion of its life-
cycle, additional benefits of BVAL’s methodology are
seen. Reports of incorrect solutions can be directly
incorporated into the requirements of the knowledge
base. The knowledge base can then be re-validated
with the new requirements; BVAL will automatically
correct the knowledge base, or guide the user toward
areas of unacceptable incompleteness.

Which Methodology: As mentioned earlier, the only
feasible methodology currently available that can for-
mally compare a knowledge base against its require-
ments is validation by testing. BVAL uses this method-
ology throughout its lifecycle.

What Criteria: Currently, the measurement criteria
used by BVAL is similar to that used by neural net-
works; a simple percentage, calculated by dividing the
number of correct test cases by the total number of test
cases. This criteria will give an accurate measurement

of the knowledge base at any time during its devel-
opment. The exact accuracy percentage desired is de-
fined by the user; however, it is theoretically possible to
make any BKB 100% accurate, with respect to a given
set of requirements, by inputing enough knowledge to
account for all possible combinations of evidence (i.e. 
complete knowledge base). The intent of BKBs, how-
ever, is to allow for incomplete knowledge so that the
same accuracy percentage can be achieved with less
input from the user and less storage requirements for
the knowledge base. Furthermore, recall that the en-
tire KBS, should also be validated and verified. This
system-wide KBS validation should include some met-
ric relating to the expected long term reliability of the
knowledge base; however, at this time that metric has
not been formulated.

BVAL’s Methodology

The approach taken by BVAL to validate a single test
case is best described by a list of actions and tests
followed by discussions of each alternative.

1. A test case containing evidence and the expected
answer are submitted.

2. A query is run, returning a solution.

3. If the solution is correct (contains the expected an-
swer) and no assumptions were made, that test case
is considered validated, and the next test case is pro-
cessed.

4. If the solution was correct, but contained assump-
tions, then the knowledge base is incomplete and
needs to be corrected. (Note that the term "incom-
plete", used in this fashion with reference to a BKB,
means "unacceptably incomplete in a specific area
highlighted by the test case". This is not meant
to imply that the knowledge base should be made
"complete" .)
Otherwise, the solution was incorrect, making the
knowledge base a candidate for reinforcement learn-
ing on this test case.
Once a candidate for reinforcement learning is iden-

tified, a second query is submitted with the test case
evidence and the expected answer both provided to
the inference engine as "evidence". This forces the
inference engine to produce a solution containing the
expected answer. If this solution, which is known to
be correct, contains assumptions, then the knowledge
base is incomplete and needs to be corrected. Other-
wise, the knowledge base just needs to be reinforced to
accommodate this test case. Once the reinforcement
procedure is complete, the validation proceeds to the
next test case.

If the knowledge base was found to be incomplete,
the user is given the option of bypassing this test case,

.

18



or attempting to correct the knowledge base. If the
user wishes to correct the knowledge base, they are
provided different means of viewing the problematic
knowledge in order to efficiently deduce the remedy.
Once the user has decided upon a remedy, they are
allowed to edit the knowledge base using the familiar
MACK tools. Upon completion of editing, the original
test case is run again. This second check ensures the
corrections made actually work-providing immediate
feedback to the user. Since this second pass is han-
dled like any other test case, if the knowledge base is
still incomplete, the user can continue to edit. Addi-
tionally, this format allows the user to make iterative
corrections to the knowledge base without altering the
test suite.

Once every test case in the suite has been processed,
all cases are passed through again, this time for met-
ric purposes (each case is either correct or incorrect
with no additional processing). The percent correct is
considered the current accuracy level of the knowledge
base. Since the reinforcement learning caused by one
test case can impact the validation status of another
test case, the entire test suite is run again (as the first
time with reinforcement and interaction as necessary)
with the test cases in a random order. The constant
changing of the ordering of test cases is a technique
borrowed from neural networks and is important here
since order can affect validation.

After going through this process a number of times,
the knowledge base should start to show a fairly con-
stant level of accuracy. If this level of accuracy is ac-
ceptable to the user, then the knowledge base is con-
sidered validated for this set of requirements. If the
accuracy is not acceptable, then further analysis is war-
ranted. After all of the test cases causing incomplete
errors have been corrected, BVAL should be running
without user interaction; i.e., reinforcement is the only
corrective action being taken. At this point, if the
knowledge base is not achieving an accuracy of 100%,
then thrashing is occurring between test cases indicat-
ing areas of incompleteness that need to be corrected.
After the thrashing errors have been corrected, one fi-
nal pass through the test suite should show an accuracy
of 100%--indicating the knowledge base is validated
against its requirements.

Test Cases

Application BVAL uses the MACK tools the user
is familiar with to perform test case solicitation. Here
the user is being prompted for the evidence portion of
the test case used for Figure 4.

Please enter the EVIDENCE
Please pick a component:

1 - Acute Bronchitis
2 - Chronic Bronchitis
3 - Cough
4 - CXR
5 - History and Physical
6 - Interstitial Fibrosis
7 - Malignant Disease
8 - Obstructive Pulmonary Disease
9 - PFTs
10 - Pneumonia
11 - Sputum or Tissue Culture
0 - Abort

Choice: 3
Please pick an instantiation of Cough:
1 - Cough = TRUE
0 - Abort

Choice: 1

Although this example shows only one RV-state (in-
stantiation) being submitted as evidence; the answer
and evidence can contain many elements. Following
the entering of evidence, some calculations are per-
formed to find the connected/relevant region of the
knowledge base (See (Gleason 1996) for more details.).
The expected answer must be contained in this region;
this quality being guaranteed during solicitation. Ad-
ditionally, a check for potentially thrash-causing test
cases is performed as each expected answer is submit-
ted.

Following successful completion of test case solic-
itation, the validation process continues as outlined
above. Details regarding the test cases are presented
in the remaining sub-sections.

Numbers Ideally, the test suite (requirements)
would contain every possible query that could be sub-
mitted to the knowledge base; however, in all but the
smallest of domains this is impossible. It is possible to
generate all combinations of evidence automatically;
however, the user must provide an expected answer
for each combination to complete the requirements.
Clearly, this approach is infeasible. Not only would
a combinatoric number of test cases be generated, but
a large subset of these cases would be meaningless and
unrealistic for the domain. Barring such an exhaus-
tive listing, the test suite should contain those cases
representative of the entire domain.

Ensuring the requirements are representative of the
domain is the same problem the neural network com-
munity must solve in relation to the testing and train-
ing sets used on neural nets. Unfortunately, this is
an extremely difficult problem. Even if a neural net-
work is trained properly and passes all of its validation
tests, there is still no guarantee that the network will
ever solve a new problem correctly. Extensive test-
ing, if the data is available, provides some indication;
however, all testing is based on the assumption that

19



the available data correctly represents the problem do-
main.

Applying the lessons learned from the neural net-
work community: data is good, more data is better.
For neural networks this is not always true; data points
corresponding to exceptions can detract from the ac-
curacy of the net. For BKBs, however, if an exception
should be accommodated by the knowledge base, it
should be included in the test suite. This inclusion
may result in an interactive session during validation,
but BVAL will ensure that the exception is accounted
for without detracting from the "non-exception" test
cases. Bottom line, as many realistic test cases as pos-
sible should be included in the requirements.

Reinforcement Learning

Application In this portion of its methodology,
BVAL compares the incorrect solution generated by
the evidence to the known correct solution generated
by the evidence and the expected answer combined.
Recall that these solutions are actually paths through
the knowledge base, and only one state can be active
for any RV in a solution. The two solutions’joint prob-
abilities will be different, with the correct solution’s
probability less than or equal to the incorrect solu-
tion’s. This known ordering of the solutions’ probabil-
ities is used to compute the "reduction factor". This
factor is the percentage the incorrect solution’s prob-
ability would have to be reduced to be lower than the
correct solution’s probability. Every probability (S-
node) in the knowledge base, except the ones associ-
ated with the correct solution, are then reduced by this
factor. After this reduction is applied, an up-scMing
factor is applied to all probabilities in order to prevent
precision errors. Once this up-scale factor is applied,
the reinforcement process is complete. If the same test
case was re-run immediately, the correct solution would
result.

Figure 4 shows the progression of changing proba-
bilities during a reinforcement learning process. This
example is derived from a decision tree on respiratory
disorders presented in (Healey & Jacobson 1990). Ini-
tially, the query is submitted with evidence of Cough
= TRUE. (Table 1 shows the correspondence between
the alphanumeric RV-states and their more descriptive
terms.) This query returns the solution amounting to
the left-hand branch of the graph.3 Since this solu-
tion does not contain the expected answer of B = 1,
another query is submitted with {B = 1, C = 1} as ev-
idence. The solution from this second query is guaran-

3The full solution is {Cough = TRUE, CXR = Abnormal
with Nodular Infiltrate, Malignant Disease = TRUE} or {C =
1, D=2, G= 1}.

.345 328

.t~I .88,1

.Ca?

.966 .513
231 , ,20

l-I

FIGURE 4. Reinforcement Learning.The prob-
abilities change as reinforcement learning is ap-
plied to this knowledge base. Here the evidence
was C = 1 and the expected answer was B = 1.
Table 1 shows the translation of the alphanumeric
RV-states to their more descriptive terms.

teed to be correct, and since it does not contain any as-
sumptions, the reinforcement process is started. After
the reduction factor is applied, the up-scMing factor is
derived, coincidentally from B = 1, then applied. The
knowledge base ends up in the state denoted by the
final probabilities. It is apparent that a re-submission
of the initial query with C = 1 as the evidence would
result in the correct answer.

Why percentages? Using percentages to alter
probabilities keeps all the magnitudes in the same rel-
ative position. For example, P = 0.6 and Q = 0.3 are
reduced by 50% resulting in P = 0.3 and Q = 0.15.
Even after the reduction, P is still double Q; the rel-
ative magnitudes are identical. Reducing the original
probabilities by a constant, say 0.4, results in P = 0.2
and Q = -0.1. Not only are P and Q now of different
relative magnitudes, but Q is negative; a practical im-
possibility and a consistency violation. If some error
checking is done to prevent Q <_ 0, a side-effect results
in some initially different probabilities being equal af-
ter error checking and correction. This side-effect ac-
tually changes the knowledge, an unacceptable result.

BVAL needs to guarantee that the correct solution
will be the most probable after application of the re-
duction factor. To guarantee this quality, every indi-
vidual probability is reduced (in percentage) by the
amount that the overall joint probability needed to be
reduced. This technique guarantees the original solu-

2O



I RV Name RV State
Alpha I Descriptive Numeric I Descriptive

A Acute Bronchitis 1 TRUE
B Chronic Bronchitis 1 TRUE
C Cou~h 1 TRUE
D CXR (Chest X-Ray) I Normal

2 Abnormal with Nodular Infiltrate
3 Abnormal with Diffuse Infiltrate

E History and Physical 1 Infection
2 No Infection

F Interstitial Fibrosis 1 TRUE
G MaliGnant Disease 1 TRUE
H Obstructive Pulmonary Disease 1 TRUE
I PFTs (Pulmonary Function Tests) 1 Normal

2 Abnormal
J Pneumonia 1 TRUE
K Sputum or Tissue Culture 1 Positive

2 Negative

TABLE 1. Mapping alphanumeric names to descriptions This table shows the correspondence
between descriptive names and and alphanumeric names in the example associated with Figure 4.

Fmu~ 5. Thrashing.Here the BKB in part (a)
will thrash when conflicting test cases are pre-
sented. Part (b) shows one possible remedy 
the thrashing.

tion and every intermediate solution are less than the
correct solution.

Thrashing As mentioned previously, due to the in-
completeness allowed in BKBs, thrashing can occur
during the validation. When thrashing occurs, the
knowledge base oscillates (thrashes) between two 
more states, where each state is lacking some of the
qualities (accuracies) of at least one other state. For
an example, see Figure 5. In this example thrashing
occurs in the BKB represented by part (a) when the
following two test cases are included in the require-
ments:

1. Evidence: A = 1--Expected Answer: C = 1
2. Evidence: A = 2--Expected Answer: C = 2

Validation of the first test case ensures that the fol-
lowing inequality is true: P(C = 1 I B = 1) 
P(C = 2 I B = 1). This must be the case since
only one instance of C can be included in any solu-
tion. Conversely, validation of the second test case
ensures: P(C= 1 [B : 1) < P(C= 2[B = 1).
Left unchecked, this thrashing would continue indefi-

FIGURE 6. Potential Thrashing.This BKB is
susceptible to thrashing if a test case like: Evi-
dence: A = 1, B = 1; Expected Answer: C = 2 is
included in its requirements

nitely. A skillful user may detect this condition and
choose to remedy the situation, or pick the best of the
thrashing states. However, automatic detection of this
condition is possible by monitoring the changes occur-
ring in the knowledge base each time the test suite
is validated. Once the test cases causing thrashing are
identified, an analysis of the solutions generated by the
test cases can provide pointers to the areas responsi-
ble for the thrashing. Figure 5(b) shows one possible
remedy to this particular situation. Future work in
this area will attempt to isolate and define conditions
leading to thrashing, with possible automated or semi-
automated correction.

While the aforementioned example showed a thrash-
ing situation detectable during validation, it is possi-
ble to detect some potentially thrash-causing test cases
before any validation is done. The BKB shown in Fig-
ure 6 is susceptible to thrashing if the following test
case is present in its requirements:

1. Evidence: A = 1, B = 1--Expected Answer:
C=2

Validation of this test case alone would not result in
thrashing; however, if a test case such as

21



2. Evidence: D = 1, E = 1--Expected Answer:
C=I

were added to the requirements at a later time, thrash-
ing would result. BVAL checks for this potentially
thrash-causing relationship between the evidence and
the expected answer, warning the user appropriately.

Conclusions
This research develops a methodology and an auto-
mated tool for the validation of probabilistic knowledge
bases. This tool, BVAL, incorporates aspects of both
rule-based and neural network validation techniques to
provide automatic correction and localization of prob-
lematic knowledge. The validation is accomplished by
a formal comparison of the knowledge base against its
requirements; where the requirements are composed of
test cases.

The requirements (test suite) are processed one test
case at a time, ensuring the knowledge base is as com-
plete and as correct as needed to validate each require-
ment. When a requirement highlights areas of incom-
pleteness, BVAL intelligently interacts with the user,
assisting in the correction of the problem. If BVAL
locates a requirement that can be satisfied by an ad-
justment of the probabilities, the adjustment is made
automatically. This adjustment accounts for the strict
probabilistic nature of the knowledge base and the fi-
nite resolution of any machine without bothering the
user. At completion of validation, BVAL guarantees
the knowledge base has remained consistent and is now
100% accurate with respect to the requirements.

BVAL is designed to integrate with the previous
tools developed for Bayesian Knowledge Bases (San-
tos & Banks 1996) in PESKI, and to operate in an
iterative manner. This incremental validation allows
the user to gain confidence in the knowledge base as
more and more knowledge is incorporated. After the
knowledge base enters the maintenance portion of its
lifecycle, BVAL remains useful by validating changes
and additions to the knowledge base and/or its require-
ments.

References
Botten, N.; Kusiak, A.; and Raz, T. 1989. Knowledge
bases: Integration, verification, and partitioning. Eu-
ropean Journal of Operational Research 42:111-128.

Buchanan, B. G., and Shortliffe, E. H., eds. 1984.
Rule-Based Expert Systems. Addison-Wesley Publish-
ing Company.

Davis, R. 1979. Interactive transfer of expertise: Ac-
quisition of new inference rules. Artificial Intelligence
12:121-158.

Giarratano, J., and Riley, G. 1994. Expert Systems:
Principles and Programming. PWS Publishing Com-
pany, Boston, MA, second edition.

Gleason, H. T. 1996. Probabilistic knowledge base
validation. Master’s thesis, Graduate School of Engi-
neering, Air Force Institute of Technology.
Gonzalez, A. J., and Dankel, D. D. 1993. The Engi-
neering of Knowledge-Based Systems. Prentice Hall.
Guida, G., and Mauri, G. 1993. Evaluating per-
formance and quality of knowledge-based systems:
Foundation and methodology. IEEE Transactions on
Knowledge and Data Engineering 5(2):204-224.
Gupta, U. G., ed. 1991. Validating and Verifying
Knowledge-Based Systems. IEEE Computer Society
Press.
Healey, P. M., and Jacobson, E. J. 1990. Common
Medical Diagnoses: An Algorithmic Approach. W. B.
Saunders Company.
Hecht-Nielsen, R. 1991. Neurocomputing. Addison-
Wesley Publishing Company.
Nazareth, D. L. 1993. Investigating the applicabil-
ity of petri nets for rule-based system verification.
IEEE Transactions on Knowledge and Data Engi-
neering 4(3):402-415.
O’Keefe, R. M.; Balci, O.; and Smith, E. P. 1987.
Validating expert system performance. IEEE Expert
81-89.
Pearl, J. 1991. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, San Mateo, CA. (Revised Sec-
ond Printing).
Santos, Jr., E., and Banks, D.O. 1996. Ac-
quiring consistent knowledge. Technical Report
AFIT/EN/TR96-01, Department of Electrical and
Computer Engineering, Air Forc e Institute of Tech-
nology.
Santos, Jr., E., and Santos, E. S. 1996. Bayesian
knowledge-bases. Technical Report AFIT/EN/TR96-
05, Department of Electrical and Computer Engineer-
ing, Air Force Institute of Technology.
Yager, R. R., and Larsen, H. L. 1991. On dis-
covering potential inconsistencies in validating un-
certain knowledge bases by reflecting on the input.
IEEE Transactions on Systems, Man, and Cybernet-
ics 21(4):790-801.
Zlatareva, N. 1994. An effective logical framework for
knowledge-based systems verification. International
Journal of Expert Systems 7(3):239-260.

22



MACK: A Tool for Acquiring Consistent Knowledge Under
Uncertainty

Eugene Santos Jr. 1 and Darwyn O. Banks and Sheila B. Banks
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-7765

esantos@afit.af.mil

Abstract
We develop a new methodology and tool for knowledge
acquisition under uncertainty. A new knowledge rep-
resentation called Bayesian Knowledge Bases provides
a powerful key to our approach and is well-grounded in
probability theory. In this paper, we demonstrate the
ease and flexibility with which knowledge acquisition
can be accomplished while ensuring the consistency
of the knowledge base as data is both acquired and
subsequently maintained. We present the MACK tool
and apply it to NASA’s Post-Test Diagnostics System
which locates anomalies aboard the Space Shuttles’
Main Engines.

Introduction

Knowledge engineering new domains remains a daunt-
ing task for both the expert and the engineer involved.
The knowledge must be elicited from the expert and
then converted into a form according to the internal
knowledge representation of the target expert system.
Furthermore, the knowledge itself must then be val-
idated and verified to ensure the system’s reliability.
Figure 1 lays out the standard three phase knowledge
acquisition process.

The ease with which we perform a given phase is
intricately tied to each of the other phases. For exam-
ple, the interview should ideally be as painless as pos-
sible avoiding problems such as redundant question-
ing, overly rigid response templates -- requiring the
expert to answer using an inflexible and often unreal-
istic format, etc. Only the most intuitive and flexible
of knowledge organization should be required of the
expert. Unfortunately, if the internal knowledge rep-
resentation is significantly different from the organiza-
tion of the interview, then the knowledge engineer is
faced with the onus of properly encoding the informa-
tion. This typically entails a radical re-structuring of
the given information while simultaneously attempting
to preserve its original content.

1 This research was supported in part by AFOSR Project
~940006.

FIGURE 1. Knowledge acquisition process.

For the moment, let’s assume that our knowledge
representation is also relatively simple and mirrors the
interview organization. While this simplifies the job
for the knowledge engineer, we end up impacting our
last phase. Clearly, there is a tradeoff between the
amount of organization and flexibility inherent in our
knowledge representation versus our ability to perform
verification and validation over it. For example, the
problem of consistency is especially sensistive. With-
out much organization, it is nearly impossible to detect
when and where an incosistency has occurred.

There are many other factors that determine the
success or failure of a knowledge acquisition tool.
This includes many pragmatic concerns such as learn-
ability of the tool, input requirements -- user inter-
face, and knowledge induction (Gaines & Shaw 1993;
Gonzalez & Dankel 1993). All of the above factors
serve towards building an ideal tool for assisting knowl-
edge engineers.

The major difficulty faced by all knowledge engi-
neers is in dealing with uncertainty: uncertainty in the
expert’s themselves about their knowledge and uncer-
tainty in the engineer trying to translate the knowl-
edge. Although it seems that all knowledge can be

23




