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Abstract
We develop a new methodology and tool for knowledge
acquisition under uncertainty. A new knowledge rep-
resentation called Bayesian Knowledge Bases provides
a powerful key to our approach and is well-grounded in
probability theory. In this paper, we demonstrate the
ease and flexibility with which knowledge acquisition
can be accomplished while ensuring the consistency
of the knowledge base as data is both acquired and
subsequently maintained. We present the MACK tool
and apply it to NASA’s Post-Test Diagnostics System
which locates anomalies aboard the Space Shuttles’
Main Engines.

Introduction

Knowledge engineering new domains remains a daunt-
ing task for both the expert and the engineer involved.
The knowledge must be elicited from the expert and
then converted into a form according to the internal
knowledge representation of the target expert system.
Furthermore, the knowledge itself must then be val-
idated and verified to ensure the system’s reliability.
Figure 1 lays out the standard three phase knowledge
acquisition process.

The ease with which we perform a given phase is
intricately tied to each of the other phases. For exam-
ple, the interview should ideally be as painless as pos-
sible avoiding problems such as redundant question-
ing, overly rigid response templates -- requiring the
expert to answer using an inflexible and often unreal-
istic format, etc. Only the most intuitive and flexible
of knowledge organization should be required of the
expert. Unfortunately, if the internal knowledge rep-
resentation is significantly different from the organiza-
tion of the interview, then the knowledge engineer is
faced with the onus of properly encoding the informa-
tion. This typically entails a radical re-structuring of
the given information while simultaneously attempting
to preserve its original content.

1 This research was supported in part by AFOSR Project
~940006.

FIGURE 1. Knowledge acquisition process.

For the moment, let’s assume that our knowledge
representation is also relatively simple and mirrors the
interview organization. While this simplifies the job
for the knowledge engineer, we end up impacting our
last phase. Clearly, there is a tradeoff between the
amount of organization and flexibility inherent in our
knowledge representation versus our ability to perform
verification and validation over it. For example, the
problem of consistency is especially sensistive. With-
out much organization, it is nearly impossible to detect
when and where an incosistency has occurred.

There are many other factors that determine the
success or failure of a knowledge acquisition tool.
This includes many pragmatic concerns such as learn-
ability of the tool, input requirements -- user inter-
face, and knowledge induction (Gaines & Shaw 1993;
Gonzalez & Dankel 1993). All of the above factors
serve towards building an ideal tool for assisting knowl-
edge engineers.

The major difficulty faced by all knowledge engi-
neers is in dealing with uncertainty: uncertainty in the
expert’s themselves about their knowledge and uncer-
tainty in the engineer trying to translate the knowl-
edge. Although it seems that all knowledge can be
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encoded in logical "if-then" style rules -- indeed, most
agree that it is the simplest and most intuitive ap-
proach to organization (Buchanan & Shortliffe 1984),
exceptions to the rule quickly explode the number of
rules necessary. Unfortunately, this further leads to
questions on completeness. Unless all the exceptions
have been identified, the original rule being as general
as it is will produce an incorrect result in the situations
where the yet to be identified exceptions occurs.

A wide variety of models for uncertainty are avail-
able. However, we must be careful in choosing an ap-
propriate one for our task. Managing the uncertainty is
also a task by itself and the most successful approaches
ground themselves with strong semantics such as prob-
ability theory. This grounding helps to reduce general
ad-hocness and reasoning anomalies which arise from
weakly defined semantics. Furthermore, completeness
and consistency are easier to guarantee. The trade-off,
of course, again lies in the flexibility of the represen-
tation and most importantly in how intuitive it is for
the expert and knowledge engineer to work with.

In this paper, we present a new knowledge acquisi-
tion tool called MACK. Its knowledge representation is
semantically well-grounded yet remains extremely flex-
ible and intuitive. Furthermore, MACK automatically
guarantees that our knowledge-base is always consis-
tent and assists the engineer in avoiding or correcting
inconsistencies as knowledge is acquired. Finally, we
demonstrate our system by applying it to the real world
problem of Post-Test Diagnosis on the Space Shuttle
Engines for NASA Lewis Research Center.

Managing Uncertainty

There is an inverse relationship between the efficiency
of an automated reasoning algorithm and the flexibil-
ity of its associated knowledge representation. How-
ever, the former is secondary to the overall capabili-
ties of the final product when weighed against the lat-
ter. Without an appropriate representation we can-
not properly store our knowledge. Thus, system de-
signers often give preference to flexible representations
(Feigenbaum 1980). Nevertheless, real-world applica-
tions for intelligent or expert systems, such as those in
space operations domains, require a balance of these
two capabilities. As we shall see, Bayesian Knowledge
Bases (abbrev. BKBs) (Santos & Santos 1996) are 
such a representation.

Inference mechanisms such as those in BKBS are note-
worthy for their ability to represent uncertainty pre-
cisely because they marry the strong models of proba-
bility theory with a simple "if-then" rule structure. Re-
liance on the well-established laws of probability helps
guarantee that BKBs are a sound and consistent repre-

sentation of knowledge, and therefore, that the results
they generate will not be inconsistent.

Probabilistic reasoning in intelligent systems ex-
ploits the fact that probability theory is and has been
an accepted language both for the description of un-
certainty and for making inferences from incomplete
knowledge (Keshavan et al. 1993). Using the seman-
tics of probability theory, we designate random vari-
ables to represent the discrete objects or events in ques-
tion. We then assign a joint probability distribution to
each possible state of the world, i.e., a specific value
assignment for each random variable. This assignment
allows us to reason over the set of probabilities.

Unfortunately, the size of this joint distribution can
grow exponentially in the number of random variables
making inferencing and knowledge acquisition compu-
tationally intractable. One way to address this com-
plexity is by assuming many, if not all, of the random
variables to be independent. However, while such in-
dependence assumptions significantly facilitate knowl-
edge acquisition and ultimate resolution, if applied
carelessly, they can oversimplify the problem statement
such that the final answer loses considerable validity.

Bayesian approaches avoid oversimplification by
couching their independence assumptions in terms of
conditional dependencies. Let D, E and F be ran-
dom variables. The conditional probability, P(D]E, F),
identifies the belief in D’s truth given that E and F
are both known to be true. If P(D[E, F) = P(D[E), 
say that random variables D and F are conditionally
independent given E. In other words, once we know E
is true, we can establish D’s truth with or without any
knowledge of F’s. We call D the head of P(D[E, F) and
{E, F} the tail.

Bayesian philosophy holds that such conditional re-
lationships -- e.g., P(DIE) -- are more in keeping with
the way humans tend to organize knowledge (Shafer
1987; Shachter & Heckerman 1987). The following
equation below shows Bayes’ Formula for computing

these probabilities: P(DIE)= ~. We can view
random variable D as a possible hypothesis (or set of
hypotheses) held in advance and E as the actual ev-
idence that was or will be generated. This formula
shows how previous hypotheses should be modified in
light of that new evidence.

By manipulating Bayes’ Formula we can compute
the joint distribution for n variables as shown in Equa-
tion (1):

P(D, E, F, G, H) = P(DIE, F, G, I-I)P(EIF, G, H).

P(GIF, H)P(HIF)P(F) (1)

More importantly to inferencing, the subsequent in-
corporation of the known independence conditions
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FtGuP~ 2. Example graph with random variables
as nodes.

further reduces the amount of information we must
actually store to be able to compute the required
joint probability (Pearl 1988). Thus, let us as-
sume that random variable E is known to be con-
ditionally independent from both F and H when
the value of G is known, and D is likewise con-
ditionally independent with knowledge of both E
and G. Then, we can simplify Equation (1) further
still: P(D, E, F, G, It) -- P(DIE, G)P(EIG)P(GIF, H)
P(HIF)P(F)

These conditional dependencies can also be repre-
sented pictorially with a directed graph. Let A, B and
C be random variables representing a traffic light, its
associated vehicle detector and pedestrian signal, re-
spectively. Figure 2 graphically depicts this network
over these variables. Since the signal depends upon
the light, we say that A is the parent of C. Similarly,
B is the parent of A.

Now, assume we want to expand this set with a prob-
ability for the detector stating the likelihood of its be-
ing tripped during rush hour. Such an inclusion would
introduce a cycle into our graph since the detector and
traffic light cannot both depend upon the other. It
becomes synonymous to the classic circular reasoning
example: "If Smoke, then Fire" coupled with "If Fire,
then Smoke."

As we can see, conditional independence at the ran-
dom variable level is overly restrictive. We must pro-
ceed to an even finer level of distinction. This is the
basis of the BKB representation. Assuming the same
trio of random variables and the partial set of values
below:

P(C = "Don’tWalk"[A = red) =xl (2)

P(C = "Walk"lA = green) --x2 (3)

P(A = greenlB = On) =x3 (4)

P(A = redlB = Off) =x4 (5)

We can quite legally add the new constraint:

P(B --- OnlA = red, D = rushhour) =x5 (6)

without creating a directed cycle. Figure 3 shows the
graphical representation of this example.

FIGUP~ 3. Example Bayesian Knowledge Base.

Notice how the graph of a BKB is simple, bipartite
and directed. It has two distinct types of nodes. The
first, shown as lettered ovals, corresponds to individual
random variable instantiations. However, now these
nodes are particular not simply to a random variable,
but to a specific instantiation thereof. Hence Figure 2’s
single node for variable A, the traffic light, becomes
two distinct instantiation nodes for "A = Red" and "A
= Green" in Figure 3. These are called instan~ia~ion
nodes or I-nodes for short.

The second type of node, depicted as a blackened
circle, is called a support node. When drawn, these
nodes, which represent the numeric probability value
itself, have exactly one outbound arrow to the instan-
tiation node representing the probability’s head. Sup-
port nodes also provide a graphical terminus for zero or
more inbound dependency or conditioning arrows from
each of the parent instantiations in the probability’s
tail. Conversely, all instantiations nodes must have
one or more inbound arrows to establish their proba-
bilities and sets of supporting conditions, but need not
contain any outbound arrows.

BKBs subsume many existing probabilistic models
such as Bayesian networks (Pearl 1988). They are more
powerful from the fact that cyclicity can be represented
in BKBs and that there is no requirement that all con-
ditional probabilities must be specified unlike Bayesian
networks. Furthermore, conditional independence con-
ditions are much more explicit in the BKBS providing
a clearer organization to the knowledge engineer.
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Guaranteeing Consistency

As we have seen, BKBS allow cyclical construc-
tion, i.e., we can have P(B -- b2[A- a2) and
P(A = al[B -- b2, C = cl) in our database simultane-
ously. However, this additional constructive capacity
changes the concept of consistency for a knowledge
base in ways unique to BKBs.

BKB inference algorithms operate straightforwardly
by computing a joint probability for a particular in-
stantiation to all the random variables set -- hence-
forth we will refer to such an assignment as a "state of
the world." In an inconsistent knowledge base, there
will be multiple ways to compute this value for any
particular state of the world with no guarantee that
the results will be equal as they must.

To illustrate, let X, Y and Z be boolean random
variables. Clearly, there are eight possible states of the
world. Given the following probabilities as the entire
population of the BKB’S database:

P(X = true[Y = false) -- .40 (7)

P(X = true[Z = true) = .80 (8)

P(Y = false[X = true) = .70 (9)

P(Y = false[Z = true) = .45 (10)

P(Z = true) ----.75 (11)

The inference engine may compute P(X = true,
Y = false, Z = true) ~ by multiplying equations (7),
(10) and (11) or by multiplying equations (9), (8) 
(11). However, the joint probability on the first 
these logical paths is .135, while along the second path
it is .42, more than three times greater!

We eliminate this inconsistency by requiring any two
tail-compatible 3 probabilities which share a head to
have exactly equal probability values. In other words,
we guarantee that the probabilistic value of (8) is the
same as the value of (7) and that (10) is also equal 
(9) as shown below.4

P(X = true[Y = false) = .40 (7a)

2Note that there is insufficient data here to compute any
other joint probability.

3We define probabilities to be tail-incompatible or mu-
tually exclusive only if there exists a random variable in the
tail of both which takes on a different value in each.

P(Y = false[Z = true) = .45
P(Y = false[Z = false) = .83

For example, these probability equations are tail-
incompatible since both place conditions upon random vari-
able Y’s being false and the variable Z assumes a different
value in their tails. Similarly conditioned probabilities with
non-identical heads are considered mutually exclusive.

4In this case we have arbitrarily set the value of the
second member of each pair equal to the first.

P(X = true[Z = true) .80.40 (8a)

P(Y = false[X = true) = .70 (9a)

P(Y = falselZ = true) =.-46.70 (10a)

P(Z = true) = .75 (lla)

While this equality requirement clearly forbids in-
consistencies, it does little either to explain or to assist
the knowledge engineer in his or her efforts to build
the system. The engineer’s problem, then, is to de-
termine the equating formula which will be used ini-
tially to create a viable knowledge base. Such formulae
are countless--e.g., minima, maxima, weighted or un-
weighted averages, any real function over the values,
etc. Moreover, in the absence of other information,
all can be equally valid. This makes an algorithm to
construct BKBs all the more elusive.

Before we can develop a knowledge acquisition
methodology, we must be aware of those areas of a
BKB with the potential to violate its construction con-
straints or to harbor inconsistent bits of knowledge.
Once identified, we can ensure both the validity and
consistency of a knowledge base by induction as it is
being built. However, unlike inductive systems such as
those predicated on the ID3 algorithm (Quinlan 1986),
BKBS have no requirement for the complete specifica-
tions of all attributes and values which make those sys-
tems less tenable for large data sets.

Following are descriptions of the eight construction
constraints we determined, as well as the manner in
which our implementation satisfies them. Taken to-
gether, they guarantee both the structure of the BKB
and, more importantly, its probabilistic consistency.
The fact that there are only eight underscores the flex-
ibility of the BKB representation and its ability to obey
the laws of probability theory while still being general
enough directly to interface with the expert.
¯ Constraint 1 - All instantiation nodes must be the

head of at least one support node.
¯ Constraint 2 - The sources and sinks of a node

must be well-defined.
¯ Constraint 3- Each instantiation node represents

a unique instantiation of a single random variable.
¯ Constraint 4- Any support nodes which share a

head instantiation must be mutually exclusive.
Given any state of the world, all but one of an in-
stantiation node’s support conditions must conflict
with that particular assignment of global values. In
the parlance of logic, we could say that this con-
straint requires the truth or falsity of any instan-
tiation node to be established via an exclusive-or
condition among its attendant support nodes.

P(X = true[Y = true) =yl (12)
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P(X = truelY = true, Z = false) =y2 (13)

P(X = truelY = false, Z = false) =y3 (14)

P(X = truelY = false, Z = true) =y4 (15)

For example, the equations above show a set of sup-
port conditions using boolean random variables: X,
Y and Z. Clearly, each of these support conditions
modifies the same head instantiation: setting X to
"true." However, probabilities (12) and (13) are 
mutually exclusive, since the former, which does not
depend upon random variable Z, will always be valid
any time that the latter is. In this case when Y is
true, either probability affords a valid inference path
to substantiate X’s truth, thus yl must equal y2 for
the database to be consistent.
Constraint 1 guarantees there will be one or more
support nodes for each instantiation. This fourth
constraint provides the necessary distinctions be-
tween those support nodes such that one, and only
one, may be active.

¯ Constraint 5 - Given any inference chain~ a sup-
port node’s head must not occur in the tail of any of
its successors in that chain.
The fifth constraint closes the door on logical cycles.
For example, (16) through (19) below form a loop 
that all four can be simultaneously active,

P(A - alID = d2) (16)

P(D = d21B = b3, C = cl) (17)

P(B = b3IE = e2) (18)

P(E = e2IA = al,C = cl) (19)

i.e., no mutual exclusivities exist within the set, and
(19) depends in part upon the head instantiation
of a predecessor, in this case "A = al." Failure to
preclude this cycle would allow the inference engine
potentially to enter an infinite loop since (16) can
clearly be re-investigated as a successor to (19).
As with many search problems, discovering these cy-
cles can quickly become combinatorial. However, we
can conduct this search as the expert identifies sup-
port conditions which ensures the consistency of the
knowledge base. This also assists the expert in cor-
recting inconsistencies by flagging them sooner, i.e.,
upon introduction to the database, rather than later.
We accomplish this search cheaply and efficiently us-
ing a depth-first algorithm which begins at the head
of the new support node and branches throughout
the BKB structure, as necessary.

¯ Constraint 6 - The instantiation nodes for a given
random variable must not simultaneously appear in
the head and tail of a support node.

Constraint 7 - At most one instantiation node for
a given random variable can occur in the tail of a
support node.
Constraint 8 - Given any set of support nodes
whose tails are mutually tail-compatible but whose
heads each denote a distinct instantiation of a single
random variable, the probabilities must sum to less
than or equal to 1.
Because we are using a probabilistic reasoning
scheme, we need this last constraint to disallow
any simultaneously valid sets of probabilities for the
same item from ever summing to values greater than
1. We use the fact that the head instantiations of
the sets’ elements share the same random variable
to identify each set.
In the example below, we have collected all support
conditions for random variable A (regardless of in-
stantiated value) which depend upon random vari-
able B’s first value.

P(A=alIB=bl,C=cl) = v (20)

P(A=allB=bl,C=c2,D=dl) = w (21)

P(A=a21S=bl) = x (22)

P(A=aaIB=51,D=dl) = y (23)

P(A = aa]B = bl,D = d~) = z (24)

Equations (20) and (21) can never be active at 
same time since they depend on different instantia-
tions of C. Similarly, (24) is mutually exclusive both
with (21) and (23) due to random variable D. 
der this constraint, these dependencies on different
states of the world divide this set of equations such
that the following inequalities must all be true:

x + z < 1 (25)

v+x+z _< 1 (26)

w+x+y< 1 (27)

v+x+y<_ 1 (28)

MACK automatically normalizes the values of any
probabilities which violate this constraint simply by
dividing each element of the set by the total, s No-
tice that (22)’s probability, x, is a factor in all these
subsets since it does not depend either on C or D
and can thus be simultaneously true with any of the
other four. We also note that in this example (26)
effectively overrides (25) because if the former holds,
then the latter must also a fortiori.6

SThe pre-normalized value is maintained in the system
for use in subsequent normalizations over different sets of
probabilities.

%, w, x, y, z are all non-negative real-valued variables
between 0 and 1.
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A complete consistency check essentially involves
verification of each of the eight aforementioned con-
straints. Obviously, such an approach may become
computationally expensive, especially as the size of the
network grows. However, we have implemented our
BKB knowledge acquisition routine such that complete
consistency checking is rarely necessary. Specifically,
guarantors for Constraints 2, 3, 6 and 7 are built into
the object creation routines. Thus, as the expert de-
fines the items of the BKB, their associated values and
dependencies, the software objects themselves prohibit
duplicate instantiations and ensure the validity of all
references between the instantiation node and support
node classes. Constraints 1, 4, 5 and 8, then, are the
only constraints explicitly tested during a review. In
addition, our BKB implementation conducts such re-
views incrementally. We check each new support node
as it is entered into the database to ensure it intro-
duces no new inconsistencies to the existing consistent
BKB, e.g., by engendering a logical cycle.

Post-Test Diagnosis

Development, maintenance and improvement of any
large system, especially one with human lives at stake,
usually involves extensive testing. NASA’s Space
Transportation System, or Space Shuttle, is no ex-
ception. Marshall Space Flight Center in Huntsville,
Alabama routinely conducts ground tests and collects
actual flight data on the shuttle’s boosters to bet-
ter assess the health, status and current capabilities
of the reusable engines and their many components.
Presently, these assessments involve large teams of en-
gineers who review remote data received from hundreds
of on-board sensors called PIDS. Officials then use these
manual reviews to determine the fitness of the engine
for another test or flight.

The Post-Test Diagnostic System is an on-going co-
operative project to automate the Space Shuttle Main
Engine (SSME) review process using intelligent systems.
Its stated goals are:
¯ To aid in the detection and diagnosis of engine

anomalies.
¯ To increase accuracy and repeatability of rocket en-

gine data analysis.
¯ To reduce analysis time.
When complete, its components will validate engine
sensors, reliably extract salient features from telemetry
data, and analyze SSME performance systems, combus-
tion devices, turbomachinery and dynamics.

As of this writing, two different versions of one
component--the High Pressure Oxidizer Turbopump
(HPOWP)--have been built and validated by govern-
ment contractors under the auspices of researchers at

NASA Lewis Research Center. 7 These systems pro-
vided us the opportunity to test MACK’S applicability
to a real-world domain and a set of known parame-
ters against which to corroborate the utility of MACK-

acquired knowledge for BKB reasoning.
The HPOTP is an engine component designed ini-

tially to raise, then to maintain the pressure of the liq-
uid oxygen flowing into the engine at the varying levels
of thrust during the shuttle’s flight profile (ric 1988).
Using a turbine powered by the oxidizer preburner’s
hydrogen-rich hot gas, this centrifugal pump manages
the flow of liquid oxygen into the engine’s main and
preburner injectors. Beside the pumps and turbines,
the HPOTP’S third major group of subcomponents con-
tains the extensive shaft seals which separate pumps,
turbines and the fluids they regulate (tic 1988).

Being an automated tool, MACK is designed to be
operated directly by the domain expert. In fact, it
is a key component of the PESKI Knowledge Organi-
zation and Validation subsystem currently under de-
velopment for Air Force Office of Scientific Research
(AFOSR). As a result, we, the knowledge engineers,
simulated the expert’s involvement. We note, however,
that much of the previous knowledge engineering ac-
complished for HPOTP has involved collating and sort-
ing the information gathered in numerous interviews
with the Alabamian crew of rocket scientists, s (Banks
1995) correlates selected text from knowledge acquisi-
tion interviews with anomaly definitions from the sec-
ond version of HPOTP and with conditional probabili-
ties in the HPOTP BKB. These correlations show that it
is, in fact, plausible partially or completely to remove
the middleman and allow the expert to be his/her own
knowledge engineer--i.e., if the expert is so inclined,
s/he can with minimal instruction create a BKB from
scratch.

The MACK Tool

Having described both BKBs and the HPOTP applica-
tion, we now explore some of the processes by which
MACK acquires knowledge. The PESKI architecture
within which MACK resides assumes the knowledge en-
gineer to be optional. As a result, the MACK tool, like
those discussed by Sandahl (Sandahl 1994), can poten-
tially be the primary interface with the expert. This
role places a premium on user-friendliness as much

7The first was developed by Science Applications In-
ternational Corporation, San Diego, California (sai 1994).
The second by personnel from Aerojet Propulsion Division,
Sacramento, California (Bickmore 1994).

8NASA Lewis researchers have been conducting inter-
views with Marshall Space Flight Center engineers since
Spring 1992.
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as adherence to BKB constructs and probabilistic for-
malisms.

MACK is a menu-driven system. These menus al-
low us to handle the simpler BKB constraints -- Con-
straints #2, 3, 6 & 7 --by simple manipulation of
the menu options presented to the user. Other ille-
gal choices simply trap program control until a valid
selection is entered. The examples excerpted below are
taken from the HPOTP application. 9 It includes data
entry of the conditions governing the shift anomaly
noted via sensor, PID 990, here called "Anomaly 990
Shift." This anomaly depends upon the sensor’s peak
and equilibrium values which are represented by the
random variables, "PID 990 Peak" and "PID 990 Equi-
librium," respectively. Here the expert is creating the
first support condition for the instantiation of the ran-
dom variable "Anomaly 990 Shift" to value "Found." 10

At present, [Anomaly 990 Shift]’s being [Found] depends
upon the following sets of conditions:

No support conditions!
Enter 0 to add new support conditions for [Anomaly 990
Shift]’s being [Found].

Otherwise, enter 1 to quit
0

Recall that Constraint 2 requires the instantiations
and supports connected in a BKB to be well-defined.
Thus the system when creating a support condition
only presents a choice among the previously instanti-
ated random variables. MACK additionally restricts the
options to those variables which can actually be used
in the nascent support condition. We can see this in
the absence of Anomaly 990 Shift itself from the sub-
sequent menu shown below which is in keeping with
Constraint 6.

[Anomaly 990 Shift]’s being [Found] can depend upon
which of the following components:

2 - PID 990 Equilibrium
3 - PID 990 Peak
0 - None of the Above Components

Choice: 2__
1 - Nominal
2 - Out of Family
0 - None of the Above; Abort

Choice: 2__
Having already selected a value of PID 990 Equilib-

rium, the expert is now queried for continuance. In
this abbreviated example we see that the only remain-
ing random variable option available to the expert is
BID 990 Peak. Anomaly 990 Shift has been previously
removed under Constraint 6 and PID 990 Equilibrium,

9See (Banks 1995) for complete transcripts.
l°AnomMy variables are basically boolean: "Found" or

"Not Found."

as a new addition to the condition, is now illegal in
accordance with Constraint 7.

Presently, this condition holds that [Anomaly-990 Shift]’s
being [Found] can depend upon the following:

PID 990 Equilibrium = Out of Family
Do you wish to extend this condition? Y / N
Y

[Anomaly 990 Shift]’s being [Found] can depend upon
which of the following components:

3 - PID 990 Peak
Choice: 3

1 - Nominal
2 - Out of Family - High
3 - Out of Family - Low
0 - None of the Above; Abort

Choice: 2_

Presently, this condition holds that [Anomaly 990 Shift]’s
being [Found] can depend upon the following:

PID 990 Equilibrium = Out of Family
PID 990 Peak = Out of Family - High

Do you wish to extend this condition? Y / N
n

Please complete the sentence below from the following
list of choices:

0 - inconceivable
1 - not likely
2 - possible
3 - probable
4 - almost certain

It is that the [Anomaly 990 Shift] is
[Found] depending upon ...

PID 990 Equilibrium = Out of Family
PID 990 Peak = Out of Family - High

Choice: 3_..

MACK then presents the expert with a menu of
choices from which it will internally derive the sup-
port condition’s probability. Since a BKB’s probabilis-
tic nature is masked from the expert, we use only the
qualitative and linguistic terms shown below with their
current value ranges.

inconceivable: 0.00- 0.10
not likely: 0.10- 0.35
possible: 0.35- 0.65
probable: 0.65- 0.90
almost certain: 0.90- 1.00

It is important to note here that during knowledge
acquisition for a BKB, the actual numeric value as-
signed to any given probabilities is not significant. Re-
finement of these values through belief revision and
belief updating is the province of the reasoning and
explanation facilities in PESKI. The values associated
with each node only attain meaning after the infer-
ence engine reasons over them during belief updating.
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It should be obvious, however, the inference engine’s
propagation of probabilities must begin somewhere. In
his discussion of the validity of such values to proba-
bilistic reasoning schemes, Pearl (Pearl 1988) writes:

[p. 148, The] conditional probabilities charac-
terizing the links in the network do not seem to
impose definitive constraints on the probabilities
that can be assigned to the nodes .... The result
is that any arbitrary assignment of beliefs to the
propositions a and b can be consistent with the
value of P(alb) that was initially assigned to the
link connecting them ....

Thus, the decision to use a random number generator
in the initial stages of database development neither
adds to nor detracts from the BKB. More germane to
the topic at hand, it certainly has no impact upon the
consistency of the data’s logical organization within
that BKB.

These menu restrictions only account for the sim-
ple constraints. The more involved BKB formalisms
are found in a separate consistency checking rou-
tine. MACK initiates this larger routine itself after any
change to the set of support conditions, removal of an
instantiation or upon receipt of up to five new, unsup-
ported instantiations.

Welcome to M.A.C.K. -- The BKB Module for the
Acquisition of Consistent Knowledge!!

0 - Generate new BKB
1 - Edit existing BKB
2 - Display current BKB
3 - Load BKB from file
4 - Save BKB to file
5 - Check Knowledge Base Consistency
6 - Run BKB Belief Revision Program
7 - Delete the current BKB
8 - Exit BKB program

This consistency checking routine sampled below
covers the four remaining BKB constraints and, as a
courtesy, also notifies the user of any conditions with
zero probability. Initially, we see below that the knowl-
edge base has failed Constraint 1 since the system has
no condition defining a probability value for the ab-
sence of Anomaly 990 Shift. In these cases, MACK

prompts the expert appropriately. Were the expert to
answer any of these negatively, the consistency routine
aborts there and returns the expert to the edit menu.

This BKB is currently inconsistent.

Is it correct that
[Anomaly 990 Shift] being [Not Found]

does not depend on anything else? Y/N
y

Please complete the sentence below from the following
list of choices:

0 - inconceivable
1 - not likely
2 - possible
3 - probable
4 - almost certain

It is that the [Anomaly 990 Shift] is
[Not Found] depending upon ...

Nothing!
Choice: 3

This BKB is currently inconsistent.

Is it correct that
[PID 990 Equilibrium] being [Nominal]

does not depend on anything else? Y/N
n

Please edit the conditions for
[PID 990 Equilibrium] being [Nominal]

accordingly.

Growing the graph for your BKB.
Instantiations:

0 - Add new instantiation
1 - Delete instantiation

Support Conditions:
2 - Add new support condition
3 - Edit existing support condition
4 - Delete support condition

5 - Return to main menu

Constraint 4 is an important one which identifies
support conditions that are not mutually exclusive.
With insufficient information to make any automatic
resolution assumptions here, MACK again queries the
expert.

ERROR: Support conditions below are not mutually ex-
clusive.

At present, [Anomaly 990 Shift]’s being [Found] depends
upon the following sets of conditions:

Support Node #1:
PID 990 Equilibrium = Out of Family
PID 990 Peak = Out of Family - High

Support Node ~2:
PID 990 Peak = Out of Family - Low
PID 990 Equilibrium = Nominal

Support Node ~3:
PID 990 Equilibrium = Nominal

This BKB is currently inconsistent.

The following pair of conditions for [Anomaly 990 Shift]
being [Found] are not mutually exclusive.

First Set:
PID990 Peak = Out of Family - Low
PID990 Equilibrium = Nominal
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Second Set:
PID 990 Equilibrium = Nominal

Does [Anomaly 990 Shift]’s being [Found] really depend
upon both sets of conditions? [Enter 0]

or

upon each set separately? [Enter 1]
Choice: 1_

Which of these conditions may we add to eliminate the
overlap?

1 - [PID 990 Peak] can be [Nominal]
2 - [PID 990 Peak] can be [Out of Family - High]
0 - None of the Above

Choice: 2_

The expert is given the option either of merging the
two conditions into one or of distinguishing them in
some way. While the first option is straightforward,11

the second could conceivably draw upon any compo-
nent in the BKB except the one in question, i.e., the
head of the two support conditions. To assist the ex-
pert in this area, MACK makes an initial simplifying as-
sumption that excludes all random variables that are
not already present. Since the only way to establish
mutual exclusion is for both of the support conditions
to contain in their tails a different instantiation of one
or more variables. The basis of the assumption is that
at least one of the current random variables can be
expanded to meet this requirement, thus allowing the
tool automatically to select and present options as it
does in other areas. These options will be all the values
of the existing variables which are not already repre-
sented. MACK can easily determine which of the two
support nodes should obtain the adjustment since, of
course, Constraint 7 which proscribes against multiple
values remains in effect.

Verifications of Constraint 8, shown below, occur
somewhat innocuously. Since the expert is not aware
of the actual probabilistic values anyway, MACK can
simply normalize the pertinent sums12 and reports any
adjustments of the support conditions’ qualitative vari-
ables -- e.g., inconceivable, not likely, possible, prob-
able, or almost certain -- to the expert. These nor-
malizations always use the original probabilistic range
the expert assigned in order to avoid a new, high-value
addition from overwhelming predecessors whose values
may have already been reduced.

11This merger cannot be illegal, Le., violate either Con-
straint 6 or 7. If the support conditions in question refer-
ence instantiations which will conflict when merged, then
they are mutually exclusive and, therefore, not inconsistent.

12It is worth noting that although the normalization itself
may be a trivial operation, the determination of the support
node sets which are eligible to be normalized is not.

This BKB is inconsistent.

Currently, support ranges overlap. Adjusting ranges for
consistency . ..
Conditions were:

It is probable that the [Anomaly 990 Shift] is
[Found] depending upon ...
PID 990 Equilibrium = Out of Family
PID 990 Peak = Out of Family - High

It is probable that the [Anomaly 990 Shift] is [Not
Found] depending upon ...
Nothing!

New conditions are:

It is possible that the [Anomaly 990 Shift] is [Found]
depen I---d~-upon ...

PID 990 Equilibrium = Out of Family
PID 990 Peak = Out of Family - High

It is possible that the [Anomaly 990 Shift] is [Not
Found] depending upon ...
Nothing!

The HPOTP application turned out to be a rather
flat knowledge base. By that we mean that the sen-
sor readings which represent the bulk of the random
variables are unconditioned, and most anomaly deter-
minations depend directly on the sensors rather than
on some intermediate calculations. As a result, the ap-
plication did not violate Constraint 5 which searches
for logical cycles in the knowledge base.

Conclusions
This research develops a viable knowledge acquisition
and maintenance tool and its associated methodol-
ogy which together implement the new BKB knowledge
model. This new tool, MACK, guarantees the consis-
tency of the data stored in a BKB’S knowledge base as
it is both acquired and later maintained. Moreover,
this tool has been applied to a real-world domain--
NASA’s Post-Test Diagnostic System--which supports
Space Shuttle main engine analysis.

MACK, which is implemented on an explicit object-
oriented analytical foundation, contains routines de-
signed automatically and incrementally to confirm the
consistency of the knowledge being received from the
expert and provide him/her with natural assistance in
the transfer of knowledge. Regular incremental checks
preserve both probabilistic validity and logical con-
sistency by flagging the inconsistent data points to
the expert as they are entered and presumably under
his/her current consideration. Such checking guards
against expert oversight--e.g., the "Whoops! I forgot
to run the consistency checker again[" phenomenon--
and helps prevent information overload since there can



be at most five adjustments required of the expert im-
mediately after any given run of the consistency check-
ing module.13

The tool is also able to accept and manipulate time-
dependent data which is both common and required
not only in the PTDS domain modelled herein, but in
many other real-world applications as well (See (San-
tos & Banks 1996) for more details). Moreover, this
capability will prove crucial to any eventual efforts to
operate a BKB inferencing mechanism in real- time or
near real-time.

In order to implement the MACK tool properly to
guarantee consistency of the knowledge, we had to for-
malize the notion of consistency for BKBs and then
determine the necessary conditions and constraints.
The constraints ensure the proper relationships be-
tween the instantiation and support nodes are in force
at all times. This includes algorithms both to detect
constraint violations and to facilitate corrections.

We have availed ourselves of the BKB’s compu-
tational efficiencies without sacrificing the increased
structural flexibility they afford both for reasoning
with uncertainty and when compared to other Bayesian
inferencing methods. We evidence this by the con-
struction of a BKB for the Post-Test Diagnostics Sys-
tem. Continued work in the application domain by
PESKI and BKB researchers promises to facilitate on-
going PTDS knowledge acquisition within NASA as
well as to provide the agency with novel, probabilistic
reasoning alternatives.

With MACK, by allowing the expert to enter his/her
data, conduct verification test runs, and receive from
those tests an explanation detailed enough to allow the
expert to refine and adjust the knowledge base appro-
priately, this will establish BKBs as a new methodology
for reasoning under uncertainty.
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