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Abstract

Automatic verification tools such as COVER have
proven to be valuable aids in the validation process
for knowledge-based systems (KBS). COVER checks
KBS for logical anomalies. Background domain know-
ledge can allow COVER to detect errors in knowledge
bases that would otherwise go undetected. Ontologies
are a necessary component of knowledge sharing: two
KBS cannot share knowledge unless they commit to
a common ontology. Ontologies also provide a rich
source of background domain knowledge for valida-
tion. This paper describes a tool, DISCOVER, which
verifies KBS against ontologies. DISCOVER verifies
heterogeneous sources of knowledge: KBS are repres-
ented in CRL (COVER rule language), and ontolo-
gies are represented in MOVES (Meta-ontology for the
verification of expert systems). The paper describes
MOVES and CRL, and discusses a number of anom-
alies arising between KBS and ontologies. It is shown
that DISCOVER can be used to verify that a KBS
commits to a given ontology, which is a prerequisite
for sharing its knowledge.

Introduction and Motivation

The reuse and sharing of knowledge bases is a central
theme of knowledge engineering in the 1990s (Neches
et al. 1991). Whereas, in the 1980s, organisations fo-
cussed upon the construction of standalone knowledge-
based systems, a significant amount of current interest
lies in integrating existing knowledge bases together
into enterprise-wide resources. Such resources play a
vital role in modern the evolution of organisations, re-
lating to the ideas of enterprise modelling and business
process reengineering (Jennings et al. 1996).

Knowledge Reuse There are two primary ways in
which organisations seek to reuse and integrate existing
knowledge bases:

* Knowledge fusion: Incorporation of existing know-
ledge into a new knowledge base, or merging of ex-
isting knowledge bases into a combined resource.
Data warehousing is an example of this kind of ap-
proach (Wiederhold 1992).

¯ Distributed knowledge-based systems: Interoperation
of existing knowledge-based systems (or "agents"),
distributed as nodes on a network. An example of
this approach is the European ARCHON architec-
ture (Cockburn & Jennings 1995).

Enabling Technology: Ontologies Early work on
enabling technology for knowledge sharing established
that three components are needed to allow knowledge
to be shared between two knowledge bases (Neches et
al. 1991):

¯ a common protocol in which to communicate know-
ledge;

¯ a common language in which to express knowledge;

¯ a common set of definitions of terminology -- an
ontology.

A great deal of work has been done to define com-
mon protocols and languages for the communication
and expression of knowledge, the best-known being
the KQML protocol (Finin et al. 1994) and the KIF
language (Genesereth & Fikes 1992) produced by the
Knowledge Sharing Effort (KSE) project (Neches et
al. 1991). In many ways, the definition of ontologies is
a mote difficult problem, because there are many dif-
ferent domains in which terminology must be defined.
These include:

¯ domain terminology for the application domain(s)
that the knowledge refers to, for example, medicine,
aerospace, or commerce;

¯ task terminology for the operational aspects of the
knowledge-based systems, for example, diagnosis,
scheduling, or design;

¯ physical ter}ninology describing the nature of reality
underpinning the knowledge, including time, space,
and part-whole relations.

Approaches to building ontologies range from large-
scale work in defining highly-reusable ontologies of
"commonsense" knowledge (Lenat & Guha 1990) 
more modest efforts in defining terminology in a spe-
cific application area (Uschold & Gruninger 1996).
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Although precise definitions of an ontology differ,
the most widely held view is that an ontology an in ex-
plicit specification of a conceptualisation: "the objects,
concepts and entities that are asumed to exist in some
area of interest, and the relationships that hold among
them" (Gruber 1995). Ontologies may be expressed
using informal or semi-formal specification languages,
but for our purposes we are interested only in onto-
logies defined formally in an appropriate knowledge
representation language (to permit their manipulation
within knowledge-based systems).

As a minimum, an ontology will define taxonomic re-
lationships (informal example: "student is a person");
more generally, any constraints may be put on terms
(informal example: "all students must take at least one
course"). It is worth noting that, although the pur-
pose of an ontology is to define terminology, the form
of an ontology is that of a knowledge base or database
conceptual schema; any knowledge representation lan-
guage or database schema definition language may be
used to define an ontology.

Knowledge Reuse using Ontologies There are
two requirements to share knowledge between two
knowledge bases:

¯ it must be possible to translate their knowledge rep-
resentations into a common language;

* it must be possible to map their terminologies into
a common ontology.

The first requirement is accomplished using a set of
translation rules; the second is accomplished using a
set of mapping rules. Note that there does not have
to be a single common language and a single common
ontology; however, if multiple common languages and
ontologies exist, there will need to be multiple sets of
translation and mapping rules. The translation prob-
lem is not hard if knowledge bases use a syntactically-
sugared version of first-order predicate calculus, which
is the approach taken by the KSE project (Gruber
1995), and is assumed for the purposes of this paper.

A set of mapping rules between a knowledge base
and an ontology defines an ontological commitment of
the knowledge base. It is highly desirable that this on-
tological commitment be consistent: no constraint in
the ontology should be in conflict with inferences deriv-
able from the knowledge base, and vice versa. Checking
that an ontological commitment is consistent is a val-
idation issue. It is worth noting that there is no com-
pleteness requirement on ontological committment: it
is not necessary for every term in the knowledge base
to have an equivalent term in the ontology, but in that
case there will be some unsharable statements. Simil-
arly, there is no need to have an equivalent knowledge
base term for every term in the ontology.

Verifying Ontological Commitment To support
sharing and reuse of knowledge, we want to provide

help in verifying the commitment of a knowledge base
to an ontology. Furthermore, we want to reuse exist-
ing knowledge base verification tools for this task. This
paper reports on an initial investigation of the use of
the COVER knowledge base verification tool (Preece,
Shinghal, & Batarekh 1992) for verifying ontological
commitment. COVER is an anomaly checker: it ana-
lyses a knowledge base for undesirable properties in-
cluding conflicting knowledge, redundant knowledge,
and deficient knowledge. This paper describes how
an ontology containing university terms, ’The Univer-
sity Ontology’ can be used to verify a knowledge base,
’The University Knowledge Base’, that commits to it.
These examples are inspired by the knowledge base
from (Zlatareva & Preece 1994). The paper:

¯ introduces a simple ontology description language
called MOVES (based on a subset of CycL (Lenat 
Guha 1990), but with a Prolog flavour);

¯ shows how an ontological commitment is defined us-
ing mapping rules;

¯ shows how, with extensions, COVER can be used
not only to check the ontological commitment, but
also to do the terminological translations between
ontology and knowledge base (and, hence, to verify
the mapping rules also!);

¯ examines what anomalies like conflict, redundancy,
and deficiency mean when they involve ontological
commitments.

The extended version of COVER (which does not
change any of COVER’s original functionality) is
called DISCOVER (COVER for DIStributed know-
ledge bases).

It is worth observing that DISCOVER can do more
than verifying ontological commitment: it can use an
ontology as a body of background knowledge against
which the original knowledge base can be validated. It
can also employ knowledge from other sources to val-
idate the knowledge base; for example, it can use items
in a database as test cases, provided that the database
commits to a common ontology with the knowledge
base.

Heterogeneity
Knowledge bases are developed in many different lan-
guages. For an automatic verification tool to be use-
ful to a broad corpus of knowledge engineers it must
be able to verify knowledge bases implemented in as
many languages as possible. Ontologies are also im-
plemented in a number of different languages, e.g.
KIF (Genesereth & Fikes 1992), and CycL (Lenat 
Guha 1990). DISCOVER verifies knowledge based
systems expressed in CRL (COVER Rule Language)
against Ontologies also expressed in CRL (Preece,
Shinghal, & Batarekh 1992). This does not comprom-
ise the usefulness of DISCOVER; since CRL is based



on first order logic, it is possible to derive CRL repres-
entations of knowledge expressed in other languages,
that are also based on first order logic. The Univer-
sity Ontology described in this paper is implemented in
MOVES (Meta-Ontology for the Verification of Expert
Systems) which is introduced below. The University
knowledge base is expressed in CI%L, described later in
this section.

MOVES

MOVES uses a hierarchical frame based system with
multiple inheritance for knowledge representation.
Concepts in the ontology are represented by frames,
and specific examples of these concepts are represen-
ted by instances. Frames have slots assigned to them.
A slot can hold any simple type (integer, real, string or
boolean) or can contain an instance of another frame.
All frames except the root frame are subtypes of other
frames. The root frame is declared to be a subtype of
itself. A frame inherits all slots of its parent frames.
Frames are declared using the frame statement as
shown below in aa example from the University On-
tology:

frame
frame
frame
frame
frame
frame
frame
frame

These
frames
frames

person
person
person
person

thing of thing.
university of thing.
department of thing.

person of thing.
facultyMember of person.
student of facultyMember.

staff of facultyMember.
researchStudent of student.

MOVES declarations create the hierarchy of
shown in Figure 1. To assign slots to these
the hasSiot command is used.

hasSlot overworked of boolean.
hasSlot hasdegree of boolean.
hasSlot enrolled of boolean.
hasSlot age of integer.

facultyMember hasSlot uni of university.
facultyMember hasSlot dep of department.

staff hasSlot tenured of boolean.

researchStudent hasSlot supervisor of staff.

In the above example from the University Ontology
the slots name, hasdegree, enroiied and age are
assigned to the frame person, and are therefore inher-
ited by the frames facultyMember, staff, student
and ResearchStudent. FacultyMember has the slots
uni and dep assigned to it; these slots are inherited by
the frames staff, student, and researchStudent.
Staff has the slot tenured assigned to it, and
researchStudent has the slot supervisor assigned
to it; neither of these slots are inherited by other frames
since neither staff nor, researchStudent have sub-
frames.

i Thing l

Student 1

tu° n’}

FacultyMember

l Staff

Figure 1: The University Ontology Frame Hierarchy

Constraints It is possible to add constraints to a
MOVES ontology. MOVES constraints take the fol-
lowing form:

constraint <frame_selector>
[where <instance_selector>]
tohave <condition>.

MOVES constraints have either two or three parts: a
frame selector, an optional instance selector, and a con-
dition. The frame selector binds frames to variables.
The instance selector, selects instances to which the
constraint is relevant. The condition is a predicate
which must be true for all possible combinations of
relevant instances.

constraint

where

tohave

x isa researchStudent and
y isa staff

slotvalue(x,supervior,y)

slotvalue(y,uni,var university) and
slotvalue (x, uni, university).

The above constraint from the University Ontology
says that, for the ontology to be consistent, all re-
search students must be a member of the same uni-
versity as their supervisors. The frame selector binds
the variables x and y to the researchStudent and
staff frames respectively; the instance selector states
that the condition applies only to instances of x and
y such that y is the supervisor of x; finally, the
condition states that where instance y of staff is
a member of university university, instance x of
researchStudent must also be a member of univer-
sity university.
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Note that where is used to separate the instance se-
lector from the frame selector and that tohave is used
to separate the instance selector from the condition.
Also note that vat is used to declare university as
a variable. A constraint is unsatisfied if an instanti-
ation of variables causes the condition to evaluate to
false and the instance selector to evaluate to true.

The slotValue command takes three arguments:
an instance, a slot associated with that instance, and
a simple expression. If the value contained in the slot
matches the simple expression, the slotvalue com-
mand evaluates to true. If vat is used in a simple ex-
pression, a variable is created and the value associated
with the selected slot is assigned to the variable.

It is possible to declare frames as being disjoint with
each other as follows:

<frame> disjoint_with <frame>.

Two frames are said to be disjoint if there is no frame
which is a direct or indirect subclass of both frames.

COVER Rule language

The COVER Rule language (CRL) is used for model-
ling knowledge bases. CRL was developed for use with
the COVER verification tool, upon which DISCOVER
is based. CRL statements take four forms.
¯ Rules take the form

rule <ruleid> : :
<consequent> if
<antecedent>.

For example:

rule 120 ::

researchStudent hasValue yes if
student hasValue yes and
takescourses hasValue no.

Rule consequents assign values to data items. These
data items may take a boolean value or single or
multi-valued parameters.

¯ Constraints take the form

<ruleid> : :
impermissible if
<antecedent>.

For example:

rule 42 : :

impermissible if
professor hasValue yes and
tenured hasValue no.

Constraints specify invalid states of affairs i.e. com-
binations of data items that should not occur in the
domain being modelled.

¯ Goal declarations take the form

goal <data_item>.

For example:

goal getDegree.

These declarations specify which data items the
knowledge base is attempting to infer.

¯ Askable declarations take the form:

askable <askable_item> /

<type> /
<possible values>.

For example:

askable tenured / category / [yes, no].

Askable declarations specify which data items can
be used as inputs to the knowledge base and what
values these data items can take.

Mapping

DISCOVER uses a translation program to convert on-
tologies represented in MOVES into CRL. Once this
conversion has taken place, a set of mapping rules is
required, to define how to map between the termino-
logies in the ontology and the knowledge base. The
translations involved can be simple, requiring a single
rule to map an ontology term to a knowledge base term
or much more complicated, requiring several rules to
translate a single term. The translation rules formalise
the extent to which the knowledge base commits to the
ontology. It could be said that the translation rules are
a statement of ontological commitment}

For example the University Ontology contains the
following statement:

frame researchStudent of student.

The automatic translation program converts this to
the following CRL rule:

rule 130 : :
uni__student (Item) 
uni__researchStudent (Item).

Note that the data items have a unique identifier(uni
-- short for university) prepended to their names to
avoid~ clashes in name-space. The original rule con-
tained more information than it’s CRL counterpart,
i.e. the fact that researchStudent frames inherit all
the slots that student frames contain. However, this
information is meta-knowledge and, assuming that the
ontology is defined in valid MOVES statements, the
meta-knowledge is irrelevant to the verification pro-
cess.

The translated rule is useless without mapping rules
to allow comparison with the knowledge base know-
ledge. The n~apping rules used to map this rule are
given below:

~It would be possible to check a knowledge base against
an ontology that the knowledge base does not commit to,
but merely shares a conceptualisation with. In these cir-
cumstances the mapping rules would translate between the
two different specifications of the same conceptualisation.
We are exploring this issue further.
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rule 100 ::
researchStudent hasValue yes if
uni__researchStudent(uni__instance).

rule 101 ::
uni__researchStudent(uni__instance) 
researchStudent hasValue yes.

rule 110 ::
student hasValue yes if
uni__student(uni__instance).

rule 111 : :
uni__student (uni__instance) 
student hasValue yes.

The data item uni_instance is a term introduced
to represent the person to whom all the knowledge base
rules apply. These mapping rules provide us with a
chain of inference from the knowledge base terms to
the ontology termss using rules 101 and 111 and from
the ontology terms to the knowledge base terms using
rules 100 and 110.

Anomaly Checking

Logical anomalies in a knowledge base are often symp-
tomatic of more serious problems (Preece, Shinghal,
& Batarekh 1992). DISCOVER uses a slightly mod-
ified version of the COVER anomaly checker. The
COVER anomaly checker contains three subsystems:
the integrity checker, the rule checker, and the envir-
onment checker, we briefly summarise their capabilities
here. F~ll descriptions appear in (Preece, Shinghal, 
Batarekh 1992).

The COVER Integrity Checker The COVER in-
tegrity checker checks the "connectivity" of the know-
ledge base i.e. it makes sure that data items in the
antecedents of all rules are either askable or are in the
consequents of other rules; and that the data items
in the consequents of all rules are either in the ante-
cedents of other rules or are goal items. It also detects
circular dependencies among data items in rules.

The COVER Rule Checker The COVER rule
checker examines the knowledge base for anomalies
which can be detected by comparing pairs of rules,
looking for duplicated rules, subsumed rules, and con-
flict. A rule is said to be subsumed if it is merely a
specific case of another more general rule. Rules are
in conflict with each other if they are able to imply
different mutualy exclusive inferences from any set of
inputs.

The COVER Environment Checker The
COVER environment checker performs the most
computationally expensive checks on the knowledge
base. Firstly, the environment checker generates all
combinations of askable items and their values which

will infer each goal. These sets of askable items are
known as environments. The environment checker
then checks each environment to see if it violates a
constaint or if a state which would violate a constraint
can be inferred from it.

The DISCOVER Integrity Checker

The DISCOVER integrity checker treats the mapping
rules just like any other rule with the exception that
no anomaly can occur as a result of firing two mapping
rules in a row that convert in different directions.

Circularity Circularity occurs when the original
premise of a rule can be inferred from the consequent
of the same rule. The mapping rules often contain cir-
cular rules; therefore, DISCOVER does not detect rule
cycles that involve only mapping rules, since these rule-
cycles are not deemed to be anomalous. For example
the cycle formed by rules 100 and 101 shown earlier
is not anomalous since they are inverse mappings. On
the other hand, the following cycle is anomalous:

rule 120 : :
researchStudent hasValue yes if
student hasValue yes and
takescourses hasValue no.

rule 101 ::
uni__researchStudent(uni__person) 
researchStudent hasValue yes.

rule 1020 ::
uni__student(Item) 
uni__researchStudent(Item).

rule 104 ::
student hasValue yes if
uni__student(uni__person).

The definition of researchStudent is circular here
(chaining rules 120,104,1020,120).

The -DISCOVER Rules Checker

The rule checker examines pairs of rules for anomalies.
Since the ontology and the knowledge base manipulate
different symbols the ontology must be statically con-
verted to the knowledge base representation. For this
check the mapping rules are used to fully convert the
ontology rules to the knowledge base representation.
For example, rule 1020 becomes:

rule 1020 ::
student hasValue yes if
researchStudent hasValue yes.

The three types of rule pair anomalies that DIS-
COVER can detect are explained below.

Conflict Conflict occurs when two rules are capable
of deriving incompatible conclusions from a set of given
premises. For example, in the University Knowledge
Base the rule:
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rule 25 ::

staff hasValue yes if
student hasValue yes and
demonstrates hasValue yes.

is in conflict with the ontology rule:

staff disjoint_with student

which translates to:

rule 125 ::
staff hasValue no if
student hasValue yes.

rule 126 ::
student hasValue no if
staff hasValue yes.

Subsumption A subsumption anomaly is detected
if one rule is a more general form of another rule. For
example in the University Knowledge Base the rule:

rule 14 ::

facultyMember hasValue yes if
student hasValue yes and
studiesHere hasValue yes.

is subsumed by the ontology rule:

frame student of facultyMember.

which translates as

rule 114 ::

facultyMember hasValue yes if
student hasValue yes.

When this anomaly involves two knowledge base
rules it is normally a sign of redundancy. When it
occurs between an ontology rule and a knowledge base
rule, it probably indicates a problem with ontological
commitment, either due to faulty mapping rules or a
pathological case where the knowledge base and the on-
tology are based on different incompatible conceptual-
isations. In the latter case the correct course of action
would be to lower the level of ontological commitment,
i.e. to map fewer terms -- providing of course that
greater commitment to the ontology is not required
for knowledge sharing. In the case above it is clear
that the mismatch between knowledge base and onto-
logy is due to the ontology defining faculty member
as someone who is a member of a faculty at a univer-
sity somewhere, and the knowledge base definition that
requires the person to be a member of a particular uni-
versity. The anomaly can be remedied by adding the
line:

uni ignores s~udiesHere.

to the mapping rules. This statement tells DIS-
COVER that studiesHere is meaningless to the Uni-
versity Ontology, and enables DISCOVER to discount
the anomaly as simply the product of the differing
granularity of knowledge base and ontology.

The DISCOVER environment checker

The DISCOVER environment checker is identical to
the COVER environment checker, but because of the
translation software it can make use of constraints
defined in the ontology e.g. the University Ontology
constraint:

constraint
s isa staff and r isa researchStudent

where
slotvalue(r,supervisor,s)

tohave
slotvalue(r,department,var dept) and
slotvalue(s,department,dept).

which is translated into the folloing CRL statement.

rule I00010 ::
impermissible if
uni__staff(Us) and
uni__researchStudent(Ur) and
uni__hasvalue(Ur,uni__supervisor,Us) and
not (

uni__hasvalue(Ur,uni__department,Udept) and
uni__hasvalue(Ur,uni__department,Udept)
).

Conclusion

In this paper, we have shown how existing verification
technology (the COVER tool) can be adapted to check
the commitment of a knowledge base to an ontology.
The DISCOVER tool can detect anomalies between
the ontology and knowledge base, such as conflicting,
subsumed and circular definitions. Based on the re-
ports produced by DISCOVER, knowledge engineers
can modify the knowledge base to ensure that it com-
mits to the ontology in a satisfactory way. Ontological
commitment is a prerequisite for knowledge sharing
and reuse.

DISCOVER has extended the integrity and rule
checks performed by the COVER tool. DISCOVER
has been demonstrated on an example knowledge base
and ontology in an academic domain. We intend in the
future to apply it to check more complex and realistic
examples.

This effort is part of a larger research undertaking to
address a range of problems associated with knowledge
sharing and knowledge validation:

¯ The general problem of "fusing" knowledge from dis-
parate sources; this is the central objective of the
KRAFT project (Home Page ).

¯ The provisibn of an agent-oriented architecture to
provide assistance to knowledge engineers in identi-
fying appropriate tools and sources of metaknow-
ledge for validation of knowledge-based systems.
This is a future goal of the DISCOVER project.

¯ The need for validation of distributed knowledge-
based systems; this is the objective of the COVER-
AGE project (Lamb & Preece 1996).
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