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Abstract
Many approaches to knowledge based systems (KBS)

development attempt to build complete systems that are
mostly considered final before they are put into
production. Verification and Validation (V&V) is seen 
an activity performed before the system is installed and
little consideration is given to incremental KA,
maintenance or validation of the system after installation.
We take a situated view of knowledge as something that
is created to suit the situation and that knowledge evolves
as contexts change. Therefore we do not regard KA and
maintenance as two distinct phases. For actual KA and
maintenance we use a technique, known as ripple down
rules (RDR) that is simple, yet reliable. RDR provides
online validation of rules by ensuring that no new rule
results in a previous rule giving the wrong conclusion.
We seek to further improve the validation capabilities of
RDR by retrospectively finding the models inherent in
our knowledge base. We have added tools based on
Formal Concept Analysis to RDR to assist the user with
KA by showing the user whether the new rule and/or
conclusion are consistent with existing concepts in the
knowledge base and where they fit into the subsumption
lattice of concepts.

1 Introduction

Many approaches to knowledge based systems (KBS)
development attempt to build complete systems that are
mostly considered final before they are put into
production. These approaches are based on Newell’s
(1982) Knowledge Level which advocates the modeling
of knowledge at a level above its symbolic
representation and includes modeling of problem solving
methods (Chandrasekaran 1986, McDermott 1988,
Puerta et al 1992, Schreiber, Weilinga and Breuker 1993
and Steels 1993) and ontologies (Guha and Lenat 1990,
Patil et al 1992 and Pirlein and Struder 1994). The need
for complex modeling for KA has resulted in the
development of verification (Cragun and Streuduel
1987, Preece, Shinghal and Batarekh 1992, Suwa 1982)
and validation (O’Keefe and Leary 1993) (V&V)

techniques that are designed for use before the system
goes into routine use. There is little consideration for
incremental validation of such systems and maintenance
is often a neglected problem (Kang, Gambetta and
Compton 1996, Menzies and Compton 1995 and
Soloway, Bachant and Jensen 1987). While methods do
exist, validation of systems is often left to vague
heuristics such as: If the result is similar to an experts
then it is okay. Perhaps validation poses such a problem
due to the difficulty of trying to validate models that are
by their very nature inaccurate (Clancey 1991). 
models are at best imperfect representations that vary
between users and the same user over time (Gaines and
Shaw 1989) then an emphasis on modeling as 
prerequisite for building KBS seems to impose a
structure that does not actually exist.

The approach we have taken is based on a situated
view of knowledge as something that is constructed to
suit the particular situation (Clancey 1991b). We have
chosen a KA and representation technique, known as
ripple down rules (RDR) that incrementally captures
knowledge in context. Refinements to existing rules
always occur within the same context. The technique has
been shown to address the KA bottleneck and
maintenance problems. This has been achieved without
the need for a priori modeling or the intervention of a
knowledge engineer. We believe that starting with
models is problematic because experts are often unaware
of their own conceptual models and have difficulty
describing why they would make a particular
conclusion. However, we also believe that it is possible
to build systems that exhibit behaviour similar to an
experts and then extract the models underlying the
knowledge captured. As explained by Clancey (1988)
concerning the process of extracting conceptual and
procedural abstractions from MYCIN into NEOMYCIN,
the most famous reuse of knowledge, "we are stating a
model that goes well beyond what experts state without
our help" (Clancey 1991b, p261). By finding these
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inherent models we are also providing a means of
improving validation of the knowledge. As a new rule is
entered or a new conclusion is chosen we show the user
how the new concept fits in with the existing knowledge
and notify the user if the knowledge is inconsistent. We
have added ideas from Formal Concept Analsysis (FCA)
(Wille 1982) that allow us to generate the concepts
associated with a rule base and then we use these
concepts for comparison.

We first briefly describe how KA, maintenance and
validation are currently performed in RDR. Then we
describe the way FCA develops concepts and how we
have added tools using these ideas. We finish with an
evaluation of what we have done thus far and what we
still plan to do.

2 Ripple Down Rules

Ripple down rules were proposed in answer to the
problem of maintaining a large clinical pathology KBS.
It was observed that experts did not offer an explanation
of why they took a particular course of action but rather
they offered a justification of their action and that
justification depended on the situation (Compton and
Jansen 1990). To avoid the problem of side-effects that
occur when maintaining a typical production rule KBS
(Grossner et al 1993), rules are never changed or deleted
in an RDR KBS. If a case is misclassified a new rule is
added as a refinement to the rule that gave the wrong
conclusion. This new rule is reached only if the same
sequence of rules is followed. The last true rule is the
conclusion given. The utility of RDR has been
demonstrated by Pathology Expert Interpretive
Reporting System (PEIRS) (Edwards et al 1993) which
went into routine use in a large Sydney hospital with
about 200 rules and grew to over 2000 rules over a four
year period (1990-1994).

In single classification RDR we can define an RDR as
a triple <rule,X,N>, where X are the exception rules and
N are the if-not rules (Scheffer 1996). When a rule 
satisfied the exception rules are evaluated and none of
the lower rules are tested. This study has used Multiple
Classification RDR (MCRDR) (Kang, Compton 
Preston 1995) which is defined as the triple <rule,C,S>,
where C are the children rules and S are the siblings. All
siblings at the first level are evaluated and if true the list
of children are evaluated until all children from true
parents have been exhausted. The last true rule on each

pathway forms the conclusion for the case. MCRDR was
chosen since the ability to provide multiple conclusion
for a given case is more appropriate for many domains
and, more importantly, because the problem of how to
handle the false "if-not" branches (Richards, Chellen and
Compton 1996) does not exist.

¯ ii
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Figure 1: The MCRDR screen for making rules

RDR handles the issue of context by its exception
structure and the storing of the case that prompted a rule
to be added. This case is known as the cornerstone case
and assists the expert in identifying the features in the
current misclassified case that not only apply to the new
classification but also differentiate it from the case
associated with the rule that fired incorrectly. In Figure 1
we see the MCRDR for Windows screen for making new
rules. The user must select the conclusion and then
specifiy the attribute-value pairs (rule clauses) that
distinguish the current case from the cornerstone cases
associated with the rule that incorrectly fired. In this way
the new rule is validated online against the case when it
is added. With MCRDR multiple cases are involved in
this evaluation, but it has been shown this is efficient
(Kang, Compton and Preston 1995). The compactness
and efficiency of both RDR and MCRDR have been
demonstrated in simulation studies (Kang, Compton and
Preston 1995).

RDR does not differentiate between initial KA and
system maintenance. RDR develops the whole system on
a case by case basis and automatically structures the
KBS in such a way to ensure changes are incremental.
Most approaches seek to define some globally applicable
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Figure 2: The critiquing screen in MCRDR/FCA, the user is shown inconsistent pathways

rules and require some consideration of the whole
domain. This is true of methods that begin with
modeling and is also true of methods, such as FCA and
Repertory Grids (Gaines and Shaw 1989), that attempt
to minimise modeling and allow the user to enter the
knowledge directly. With the latter methods,
incremental maintenance is often addressed by
regenerating implications associated with the revised
data set. The validation of rules provided by RDR and
MCRDR is not total validation, but it ensures that the
new rule is sufficiently specific and different to the
wrong rule to assign the new classification to the
current case but not to cover previously correctly
classified cases.

We have also been looking at providing KA in a
critiquing mode so that when a user selects a certain
conclusion it is evaluated against all other paths (rules)
and if those rules are inconsistent with the current case
the user is notified of the discrepancy. In Figure 2,
using the data from the SISYPHUS III (Shadbolt 1996)
experiments, we have attempted to add a rule that states

that a particular rock, already classified as plutonic,
should be classified as volcanic. These conclusions are
mutually exclusive, therefore it is inconsistent to assign
both conclusions to the same case. This inconsistency
has been detected by the system. The user is shown the
rules in conflict and can then change their conclusion,
select an existing rule to modify or add a new rule.
Once the changes are made the case is run again and the
user is given all conclusions for that ease. This should
now show the new conclusions and any conclusions
that were not being altered.

3 Formal Concept Analysis

Formal Concept Analysis, first developed by Wille
{ 1982), is "based on the philosophical understanding of
a concept as a unit of thought consisting of two parts:
the extension and intension (comprehension); the
extension covers all objects (entities) belonging to the
concept while the intension comprises all attributes (or
properties) valid for all those objects" (1992, p.493). 
formal context is a mathematical model in crosstable
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form that shows a set of objects and their attributes,
known as the extension and intension respectively, and
how they are related. A cross indicates that a particular
object in a row has the corresponding attribute in a
column, see Figure 3. The following description of
FCA follows Wille (1982).

A formal context 0~:) has a set of objects G (for
Gegenstande in German) and set of attributes M (for
Merkmale in German) which are linked by a binary
relation I which indicates that the object g (from the set
G) has the attribute m (from the set M) and is defined
as: J~ -- (G,M,I). Thus in figure 3 we have the context 
of animals with G = {bird, reptile, amphibian, mammal
and fish} and M = {has wings, flys, suckles young,
warm-blooded, cold-blooded, breeds in water, breeds
on land, has scales}. The crosses show where the
relation I exists, thus I = {(bird,has wings), (bird,flys),
(bird,cold-blooded), (bird,breeds on land), (reptile,
cold-blooded) .... ,(fish, has scales)}.

A formal concept is a pair (X,Y) where X is the
extent, the set of objects, and Y is the intent, the set of
attributes, for the concept. The derivation operators:

Xc_G : X a X’ :={me MI glm for all g e X }
Y c_ M: v a w :={g e G [ gIm for all m e Y}

are used to construct all formal concepts of a formal
context, by fending the pairs (X",X’) and (Y’,Y"). 
can obtain all extents X’ by determining all row-intents
{g}’ with g ~ G and then finding all their intersections.
Another approach it to find all intents Y’ by
determining all column-extents {m}’ with m c M and
then finding all their intersection. This is specified as:

x,: N(g}’ v’: N{m}’
geX m~Y

Less formally, we take the set of objects, G, to form
the initial extent X which also represents our largest
concept. We then process each attribute sequentially in
the set M, Finding the intersections of the extent for that
attribute with all previous extents. Once the extents
have been found for all attributes, the intents X’ for
each extent X may be found by taking the intersection
of the intents for each object within the set. Thereby we
determine all formal concepts of the context K by
finding the pairs (X,X’).

The next step is to find the subconcept-superconcept
relation between concepts so that they may be ordered.
We can use the subsumption relation ___ on the set of all

concepts formed such that (X1,YI) < (X2,Y2) iff Xj 
Xz For a family (Xi,Yi) of formal concepts of K the
greatest subconcept, the join, and the smallest
superconcept, the meet, are respectively given by:

From Lattice Theory, we are able to form a complete

lattice, called a concept lattice and denoted B(K), with
the ordered concept set. The concept lattice provides
"hierarchical conceptual clustering of the objects (via
the extents) .... and a representation of all implications
between the attributes (via its intents)" [Wille 1992,
p.497]. The line diagram in figure 5 is our
implementation, called MCRDR/FCA. Each concept
has various intents and extents associated with it and is
shown as a circle. The lines represent the
sub/superconcept relations. For easier reading we have
reduced the labeling. All extents are reached by
descending paths from the concept ~5 and all intents of a
concept 8 are reached by ascending paths from ft.

a ib ic id ie if ig h
Bird X iX [ i iX i iX i
Reptile i ~ ~ iX i iX iX
Amphibian i i i i i i i
Mammal i iX IX i i iX i
Fish ] i i !X iX i iX
Figure 3: Context of "Vertebrates of the Animal
Kingdom". Columns a-h represent has-wings,
flies, suckles-young, warm-blooded, cold-blooded,
breeds-in-water, breeds-on-land and has-scales.

FCA shares a number of similarities with RDR. They
both see KA as a task that should be primarily
performed by experts and they see knowledge as only
applying in a given context (Compton and Jansen 1990,
Wille 1996). In FCA, KA consists of the expert
defining a formal context. The subsumption relation
provided by the concept lattice can be used to derive
implications for use in a knowledge base (Wille 1992).
We investigate starting from the opposite direction by
using existing rules in an RDR KBS to define contexts
and then generate the concepts using FCA
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4 Finding Concepts in RDR Using FCA

As discussed in section one, we wanted to understand
the underlying relationships and models inherent in the
RDR rules to assist us with validation of new rules and
conclusions. To test the benefits and suitability of FCA
for such a purpose, MCRDR for Windows was
enhanced with FCA tools. The following discussion
refers to this implementation, known as MCRDR/FCA.

To derive concepts we need to use the rules to
generate a context. The first step was to convert the
RDR KBS into a flat structure made up of rule
pathways. Pathways were found by reading each rule
and picking up the conditions from the parent rule until
the top node with the default rule was reached. From
this flattened KBS the user chooses either the whole KB
or a more narrow focus of attention from which to
derive a formal context. When the whole KB is chosen
the rules and rule clauses form the extents and intents,
respectively. Selecting all rules is only feasible for
small, if not very small, KBS. The line diagram became
too cluttered to be readable as the number of rules being
modeled grew. This is a limitation of graphical
representation. Therefore, to limit the concepts to a
manageable size the user was asked to narrow their
focus of attention. Our approach is similar to that
proposed by Ganter (1988) where the context 
shortened to find subcontexts and subrelations. The
decomposition of a concept lattice into smaller parts is a
strategy that has previously been found useful (Wille
1989a).

Attlibules-O biects

Figure 4: The Concept Matrix Screen from
MCRDR/FCA. Here the user is shown the concepts for
the context generated from the rules which conclude
PLO00 or VCO00 for the SISYPHUS 111domain.

There are thirteen possible ways that a context can be
derived. It is also possible to combine contexts. The two
most common methods are to create a context based on
a selected rule or conclusion If a conclusion is chosen,
all rules using that conclusion are selected and added as
objects to the set G, forming the extents of the context.
As each extent is added the clauses of the rules are
added to the set M of attributes to form the intents of
the context, first checking to see if any attributes have
already been added by previous rules. Where the
relation I held, that is object g had attribute m, a cross
was marked in the appropriate row and column. If the
user chooses a particular rule then that rule is added as
the first object with the rule clauses as the initial
intension. Every clause in each rule in the flattened
RDR rule base is searched for a match on the initial set
of attributes. If a match is found, that rule is added to
the extension and all new attributes (clauses) found 
the matching rule are also added to the intension.

Thus we are treating the rule clause, which is actually
an attribute-value pair, as an attribute. This is similar to
the technique known as conceptual scaling (Ganter and
Wille 1989) which has been used to interpret a many-
valued context into a (binary) formal context. A many-
valued context, such as that represented in an RDR
KBS, is a quadruple (G,M,W,I) where I is a ternary
relation between the set of objects G, the set of
attributes M and the set of attribute values W
(merkmalsWerte in german). Basically, each attribute 
treated as a separate formal context with the values as
attributes associated with each of the original objects. A
scale is chosen, such as a nominal scale (=) or 
ordinal scale (>__), to order these attributes. From the
many contexts, one for each attribute, the concepts are
derived.

Having generated a formal context we can then
construct all formal concepts of the formal context,
using the process described in section 3. The algorithm
used for ordering will affect the appearance of the
concept matrix, see Figure 4, but does not affect the
calculation of predecessors and successors or the graph
layout. Appropriate ordering of concepts can be
difficult as a given concept may be a subconcept of
different superconcepts. This can be seen in the concept
lattice in Figure 4 where we can see a number of sets of
concepts.
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Figure 5: The Hasse Diagram for the PLUTONIC (%PLO00) and VOLCANIC (%VCO00)
conclusions using MCRDR/FCA for Windows

From our set of ordered concepts we compute the
predecessors and successors of each concept so that we
can draw the Hasse diagram. Predecessors were
determined by finding the largest subconcept of the
intents for each concept. Successors were determined
by finding the smallest superconcept of the intents.
The successor list was used to identify concepts higher
in the diagram, the parents, and the predecessor list
identified concepts lower in the diagram, the children.
There are many ways that a line diagram can be
drawn. It may be desirable to provide a number of
different layouts because concepts can be viewed and
examined in different ways depending on their
purpose and meaning (Wille 1992). In addition, the
user has the ability to move a node anywhere they like
providing the node is not moved higher than any of its
parents or lower than any of its children.

So far we have used this system on three different
domains. The first was a 60-rule Blood Gases KBS,
known as 105, that had been developed from the
cornerstone cases associated with the 2000+ PEIRS
rules. The second domain was known as LOTUS and

concerned the adaptation and management of the
Lotus Uliginosis cv Grasslands Maku for pastures in
the Australian state of New South Wales (Hochman,
Compton, Blumenthal and Preston 1996). The
knowledge was recorded into four KBS by four
independent agricultural advisors. We used the
concept matrices and line diagrams to compare the
conceptual models of the advisors. This technique was
seen as a useful way to identify and reconcile any
differences as well as identify the main concepts
associated with this domain.

The third domain also involved knowledge from
multiple experts. Initially we have used the tools to
understand the key concepts of the domain. We can
see in Figure 5 that when GRAIN-SIZE = COURSE a
rock is plutonic (%PL000) and if GRAIN-SIZE 
FINE a rock is VOLCANIC (%VC000). However,
when GRAIN-SIZE = MEDIUM then if SILICA =
LOWISH it is a volcanic rock otherwise if SILICA =
VERY-HIGH or INTERMEDIATE it is a plutonic
rock. The line diagram has shown us what attribute-
value pairs are the critical ones for these conclusions.
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Figure 6: The user can compare pathways in the knowledge base using FCA and a nearest neighbour algorithm

We have also sought to the use the concepts for
assisting the user with KA/validation. In addition to our
work on critiquing conclusions, mentioned in section 2,
we want to assist the user in forming the rule. Figure 6
shows how rule pathways can be compared. When the
user selects the conditions for the rule the user is
presented with a listbox of all the other pathways in the
knowledge base that are matches, sub or superconcepts.
For this purpose we are only using the intensional
definition of the concepts derived using Wille’e
technique. This is because an intensional defmition
implies an extensional definition but the converse is
possibly but not necessarily true (Zalta 1988). Thus the
extensional definition was too restrictive. The purpose
of showing the user this information is to give them an
understanding of how the new rule fits in with the
existing knowledge. If the new rule is identified with
concepts that seem inappropriate this is a warning to the
user that the knowledge in the new rule or an existing
rule is incorrect.

5 Future Directions

We can see from the examples that the ability to fred
and compare concepts in our knowledge base is useful
for validation purposes. Such an approach goes beyond
verification but attempts to identify that the knowledge
is an accurate representation of the expert’s knowledge.
As a next steps we want to improve the user
friendliness of our screens and test our approach using
real experts, seeing if giving the user more
understanding of the knowledge already captured
assists them when adding new rules.

We have also demonstrated that the incorporation of
FCA into RDR allows models to be found and
compared without the need for prior understanding or
explication of that model. This is particularly useful in
domains where knowledge is emerging or in the
common situation where it is difficult for experts to
describe how they arrive at a conclusion. We see that
KA using RDR offers a more realistic and reachable
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goal than approaches that depend on the user to
predef’me a model.

We are not the first to implement the ideas of FCA.
Software, such Conlmp (Burmeister 1996) and Toscana
(Vogt and Wille 1995), have been available for many
years. The main difference is that rather than using a
Formal Context as the starting point we are trying to
reduce the need for specification of the essential
elements at the start and allow rules to be acquired and
validated on-line. The rules in an RDR KBS lend
themselves well to conversion to a formal context
because each rule represents a rule pathway, which
corresponds to a row in the formal context. We let the
user select, from a variety of views of the knowledge,
what parts of the KB should be included in the Formal
Context.

While these preliminary results appear promising
there is still much more work to be done. As mentioned
in section 4, the formulation of concept lattices from
many-valued contexts requires their interpretation into a
formal context. While we have taken a simple approach
by treating a clause as an attribute, currently a rule that
should be part of the context for a selected focus of
attention may be missed if the clause does not match on
a conclusion or attribute already selected. The use of
different conceptual scales (Ganter and Wille 1989)
may provide a solution and needs further investigation.
Some work has been done using a distance-weighted
nearest neighbour algorithm to assign a score to clauses
to find if clauses are related at all and to what extent.
This approach has been implemented in Figure 6 where
a nearest neighbour algorithm is used to assign a score
of relative closeness of one pathway to others. It may
also be possible to incorporate these techniques in
determining which rules should be added to a context.

We continue to look at methods for discovering
relationships in the knowledge base. Some work
(Richards, Gambetta and Compton 1996) has already
been done on the use of rough sets for this purpose and
for verification of KBS. A comparison will be made
between the dependencies and concepts generated using
FCA and those found in the cores and reducts computed
using rough sets. Other investigations include: a
comparison of concept lattices to concept maps (Gaines
and Shaw 1995); the use of attribute exploration for
acquisition of formal contexts (Wille 1989b) and
review of work which combined repertory grids and
FCA (Spangenbery and Wolff 1988). Of particular
interest to us, although not discussed in this paper, is
the usefulness of these techniques to support the reuse

of knowledge in a wide range of modes, such as
explanation, tutoring or ’what-if analysis, and this is
currently under investigation.
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