
Z to Java

Stephen MurrellI Robert Plant2

1Department of Electrical and Computer Engineering
2Department of Computer Information Systems

University of Miami, Coral gables, FL 33124

Tel: (305) 284-1963
Fax: (305) 284-5161

rplant@umiami.miami.edu

Abstract

The commercial demand to create
industrial-strength heterogeneous systems on a
networked platform for mission critical systems
requires that a formal development approach be
taken. We describe an initial attempt at creating
Java programs from Z specifications.

1. Introduction

Recent work in the area of validation
and verification has started to move the focus of
the research away from the static and dynamic
testing of knowledge-based systems [Gupta.91]
to more formal notations in an attempt to
rigorously define the properties of the systems.
The earlier emphasis on testing was due in part
to the relative youth of the field and the need to
establish a basic set of techniques from which to
develop a special understanding of these
systems. The testing approach primarily utilised
established techniques used in the verification of
conventional systems and adapted them for use
in the declarative knowledge-based systems
[Preece.92]. The application of conventional
techniques focused primarily upon the
identification of five anomalies in rule sets, these
being circularity, subsumption, redundancy,
dead-end rules and inconsistency [Nguyen.85].
This has led to the creation of over thirty five
tools that consider this problem [Murrell.97]. It
can be seen therefore that this area is now well
understood and has a large and extensive
literature.

The early work of the validation and
verification of knowledge-based systems was
principally focused upon rule-based systems of a
stand alone nature [Nguyen.85]. However, along

with the growing understanding of these system
came a need to embed them into more complex
environments, hence the need to perform
validation and verification on complex
heterogeneous systems [Murrell.96]. Again,
techniques from the domain of conventional
systems testing were considered. These are
documented extensively by Miller [Miller.95].
The limitations of these approaches for
heterogeneous industrial-strength systems having
been understood required researchers to utilise
more formal techniques and more rigorous
development techniques [Murrell.96]. The
research into the application of formal methods
to the validation of knowledge-based systems
can be split into two primary fields: work in the
specificational aspects of systems and the work
in the area of logic and languages. We will
consider these in more detail in the next two
sections.

2. Formal Approaches to the Validation of
KBS

Work on the application of formal
methods to knowledge-based systems has
focused upon several areas. The use of
mathematical notations to specify and derive
rule-based programs [Roman.93], the
specification of production system architectures
[Gold.95], the specification of the semantics of a
production system [Murrell.95], as well as the
application of formal notations to domains such
as medicine [Todd.95]. Recent work has built
upon these foundations and applies notations
such as Z to the problem of specifying
heterogeneous systems [Murrell. 96], as well as
the application of description logics [Rousset
and Hors.96]. The area of complex systems and

66

From: AAAI Technical Report WS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

the inherent complexity of formal notations has
also caused a growth in research in the area of
tools to support such developments, including
the B-Method (B-Tool & B-Toolkit), Estelle
(EDT: Estelle Development Toolkit), EVES
(Z/EVES) 1, PROSPECTRA (PROgram
development by SPECification and
TRAnsformation) [Hoffan.91], VDM Domain
Compiler [Schmidt.91], ProofPower, Mural,
IPTES Toolset, DST-Fuzz [Woodcock.93]. In
order to derive maximal effect from the research
there has been a move to standardise 2 the
notations and both Z and VDM-SL are
undergoing ISO Standardisation.

3. Languages for KBS

The history of AI and knowledge-based
systems is intertwined with the history of
programming languages, as LISP3 is at the core
of both these two fields of computer science. The
adoption of LISP as the default AI language
from the early days through to the modem
variances of LISP such as CLIPS4 (C Language
Integrated Production System) and OPS5 has
also been interspliced with theoretical
developments in programming language theory
through the logic-based languages such as
Prolog [Clocksin.81] and Godel, and the advent
of expert systems shells such as VP-Expert,
Expert, 5 ART, AIM, CRYSTAL , CxPERT6.

However, the adoption of knowledge-based
systems has been hampered by the unwillingness
of industry and commerce to adopt these
"esoteric" languages that fall outside of their in-
house standards and programming expertise.
The most successful of the expert systems
implementation languages are C and C++,
which are both understandable to the commercial
in-house programming staffers and easily
interoperates with other systems.

I http://www.comlab.ox.ac.uk/archive/formal-

methods.html#VDM
2http://www.comlab.ox.ac.uk/oucl/groups/zstand
ards/
3 http://www8.informatik.uni-

erlangen.de/html/lisp/histlit.html
4http://rodau.ed.umuc.edu/-rshecter/inss555/clip
s/cliphtml/voll .html
5 http://knight3.cit.ics.saitama-

u.ac.j p/ai/expert.html
6 http://www.ioe.ac.uk/hgm/expert3.html

4. KBS Through Java

The use of C and C++ as preferred
development languages for knowledge-based
systems and the consequent use of these systems
in a heterogeneous environment has led to their
use in an increasing number of critical and
operationally dependent systems. Hence the need
to utilise formal techniques for specification and
then map these specifications to a C/C++
environment. There are currently three tools that
perform this activity: The LOTOS7 Toolbox
which supports specification in LOTOS and then
via a tool set the development of C code
prototypes; RAISEs which assists in the
development of VDM-SL specifications into
C++ , and PET DINGO [Woodcock.93] which
support the translation of specifications written
in the Estelle language into C++ code. LOTOS
Toolbox and RAISE are both commercial
products while PET DINGO is in the public
domain.

The advent of the intemet and its
impact upon industry and commerce as a vehicle
for electronic data interchange and electronic
trading has led to the increasing need to have
access to information and knowledge both intra-
and inter-organisationally. This is fueling the
adoption of Java [Deitel.97] as a nascent
standard medium for the exchange of executable
objects.

For these reasons we chose Java as the
target language for the creation of executable
extensions of Z specifications.

5. The System

The originally intention for Z was not to
produce executable specifications, but most
industrial users of Z do tend to adopt a
specification style which makes schemas appear
almost to be programs, with pre-conditions first,
the "assignments" to output variables, and ffmally
some post-condition testing. Our system relies to
a certain extent on the procedural nature of
specifications, but is capable of reordering
components when necessary. This makes

7 http://wwwtlos.cs.utwente.nl/lotos/
s http://www.ifad.dk/

67

translation into a practical programming
language an achievable goal.

For user convenience, we chose to
accept specifications in the Latex Z style. These
specifications are mechanically translated into
Java applets.

6. An Illustration

For reasons of space, we take as an
example the exceptionally simple specification
of a counter limited to the range [0,max] with
three access operations: Initialise sets the
counter to zero; Increase adds some increment to
the counter; Read returns both the value of the
counter and the space remaining for further
increments.

-- Counter
n: N
max: N

n>O
n < max

-- Initialise
ACounter

n’ =0
max’ = 10

Increase--
A Counter
inc?: N

n + inc? _< max
n’ = n + inc?
max’ = max

Read
.~. Counter
val!: N
space!: N

val! = n
space! = max - n

For this style of specification, a single class
definition is created; it has two integer members
(n and max), three public methods,
corresponding to the three schemas that include
Acounter or .=counter, and one private method
which tests the validity of the state of a counter
according to its predicates. Each of these four
methods returns a boolean result, indicating
success or failure. In addition to the three
"active" methods for Initialise, Increase and
Read, three "passive" methods are also created,
for testing whether the operation is in-domain or
not.

public class counter
{ public int n;

public int max;

public boolean valid ()
{ if (! (n>=O)) return(false)

if (t (n<=max)) return(false)
return (true) ;

public boolean can_initialise()
{ return (true) ;

public boolean initialise()
{ if (tcan_initialise ())

return (false)
n=O;
max=lO;
return (valid())

Initialise is always in domain (it has no
preconditions), so can_initialise() always returns
true. Initialise simply sets the class members as
directed, and test, the validity of the result.

public boolean
can increase(int inc)

{ if (1 (n+inc<=max))
return (false)

return(true) ;

public boolean increase(int inc)
{ if (!can_increase (inc))

return (false)
n=n+inc ;
return (valid())

Inc? is syntactically marked as an input
parameter. The translation algorithm sorts the
predicates of a schema into dependency layers:
predicates that contain only input variables and

68

constants become part of the in-domain test.
Predicates containing input variables, constants,
and "assignments" to new variables are
translated first, making more variables available
to allow translation of other predicates. This
simple method is successful for most real
industrial Z specifications, but can not handle
"subtle" assignments (e.g. n:N; n>3 ; n<5,
or g=n+2), a problem that is still the subject of
much on-going research. Usually, predicates that
appear to be multiple assignments (e.g.
n’=n+:l.; n’=x) may be resolved as one
assignment and one test.

public boolean can read()
{ return (true) ;

public boolean
read (counter_read_output R)

{ if (!can_read()
return (false)

R.val=n;
R. space=max-n;
return (valid ())

Val! and Space! are recognised as output
parameters; as Java insists upon passing simple
values (such as integers) by value, and class
objects by reference, a special dummy class with
member representing each of the output
variables must be created to force call by
reference, allowing output.

public class counter_read_output
{ int val;

int space; }

The translator also produces an "Applet" class
for testing the executiable specification:

public class test counter
extends Applet

{ }

Test counter draws a window with "textfields"
for each of the members, and buttons for each of
the methods; the buttons are surrounded by
editable textfields for each of their input
variables, and non-editable textfirelds for each of
their output variables; the buttons are not visible
when the operations they represent are not in
domain. Additionally, "radio buttons" are added

to indicate the validity of the schema’s private
members (See Figure 1).

Counter

n= [-~--] max=~

O valid O not valid

[Initialise [
[Increase [inc?=
[Read [val=~--’’] space=[----’-’]

Figure 1. Counter

Additionally, the translator may produce another
"applet" class that draws the originally provided
Z specification for reference during testing.

7. Conclusions

The paper has shown in outline the process of
deriving an executable program from a Z
specification. The example use to illustrate the
process was extremely simple, but the same
principles apply to larger scale problems. One
particular benefit is the ability to experiment
with a specification remotely, in line with the
aims of the ARPA CAETI9 project, in particular
this work is related to that of Gamble and
Murrell under this project [Murrell. 96a].

The code produced by this mechanical
translation is not particularly efficient (there is
much duplication of code, especially in the
domain checking), but that is not the point. We
do not intend to create or replace the application
itself, but to produce a remotely testable object
directly and independently from its specification.

8. References

Clocksin, W.F., & Mellish, C.S., 1981
Programming in Prolog
Springer Verlag

Deitel, H.M., & Deitel, P.J., 1997
How to Program Java
Prentice Hall

9 http://www, fwl.org/techpolicy/caeti.html

69

Gold, D.I., & Plant, R.T
"Towards the Formal Specification of an Expert
System"

International Journal of Intelligent Systems. Vol.
9, Number 9 August 1994, pp739-768

Gupta, U. 1991
Validating and Verifying
Systems
IEEE Computer Society Press

Knowledge-Based

Hoffmann, B., & Krieg-Bruckner, B. 1991
"The PROSPECTRA System" In, VDM ’91
Formal Software Development Methods, 4th Int.
Symposium of VDM Europe, Vol. 1. Editors:
Prehn, S., & Toetenel, W.J., Lecture Notes in
Computer Science 551., Springer Verlag. pp668-
671

Miller, L. 1995
Guidelines for the Verification and Validation of
Expert Systems and Conventional Software
EPRI TR-103331, Project 3093-01
SAIC, McLean Virginia.

Murrell, S., & Plant, R.T. 1995
Formal Semantics for Rule-Based Systems
Journal of Systems & Software, Vol. 29, No 3.

Murrell, S., Plant, R.T., Gamble, R. 1996
"Formal Specification of Rule-Based Systems
Through Styles"
AAAI Workshop Notes: 9th Workshop on
Validation & Verification of Knowledge-Based
Systems
Portland., Oregon, August 1996

Murrell, S., & Gamble, R., and Butler, P. 1996a
"ZtoRefine 1.0 Users Guide"
Tech Report UTULSA-MCS-96-14 Department
of Mathematical and Computer Sciences,
Univerity of Tulsa. Sept 1996

Murrell, S., Plant, R.T. 1997
"A Survey of Tools for the Validation
Verification of Knowledge-Based Systems"
Decision Support Systems (To Appear 1997)

&

Nguyen, T.A., Perkins, W.A.,
Pecora, D. 1985
"Knowledge base verification"
IJCAI pp 375-378

Laffey, T.J.,

Preece, A.D., Shinghal, R., Batarekh, A. 1992
"Verifying expert systems: A logical framework
and a practical tool"
Expert Systems with Applications 5:421-436

Roman, G., Gamble, R.F., Ball, W. 1993
Formal Derivation of Rule-Based Programs
IEEE Trans. on Software Engineering, Vol. 19.,
No.3., March 1993 pp277-296

Rousset, M.C., & Hors, P. 1996
"Modeling and Verifying Complex Objects: A
Declarative Approach based upon description
logics"
AAAI Workshop Notes: Verification and
Validation of Knowledge-based Systems and
Subsystems, Schmolze, J., & Vermesan, A.
Portland, Oregon. August 5th 1996

Schmidt, U., & Horcher, H., 1991
"The VDM Domain Compiler AVDM Class
Library Generator" In, VDM ’91 Formal
Software Development Methods, 4th Int.
Symposium of VDM Europe, Vol. 1. Editors:
Prehn, S., & Toetenel, W.J., Lecture Notes in
Computer Science 551., Springer Verlag. pp675-
676

Todd, B. 1995
An introduction to Expert Systems.
Technical Monograph PRG-95
Oxford University Computing
Oxford, England.

Laboratory,

Woodcock, J.C.P., & Larsen, P.G., (Eds) 1993
FME ’93: Industrial Strength Methods, First
International Symposium on Formal Methods
Europe Odense, Denmark, April 1993. Lecture
Notes in Computer Science 670. Springer Verlag.

7O

