
Reminders of ToDos-II (R2Do2):
Work Flow Agents for Reengineering Health Care Enterprises

by

Barry G. Silverman, Christo Andonyadis, Alfredo Morales, In-Kuk Song
Institute for Artificial Intelligence, George Washington University, Washington DC 20052

barry @ seas.gwu.edu

Abstract
This paper describes efforts to develop and field an

adaptive health planner and parallel agents that securely connect
distributed users and data sets in a collaborative approach able to
anticipate health ToDo items and to remind and alert about these
items over the web. The planner and agents, reasoning temporally
and non-monotonically, are able to handle changing health
conditions, unknown health facts, user wellness and lifestyle
preferences, and updates about each user’s situations. A set of
robust, open standards-based client server approaches (e.g.,
CORBA, ODBC, Java, and ANSI HL7 Common Object Model)
are used to encapsulate and plug all these components into the
web, and to handle the distributed agent and object
communications. Extensions to these emerging standards are at
times made due to engineering and domain considerations,
however, the goal is to maximize reuse of published guidelines
and integration of R2Do2 by any patient record system that also
adheres to the standards. From this perspective, R2Do2 is an
experiment in an open standards framework for middleware in the
healthcare field. This research also tries to reflect lessons learned
about the extensions needed in these standards if healthcare
middleware frameworks are to transparently support users over
the web.

1) Introduction
Several related paradigm shifts are occurring in

the health care field to produce an opportunity for a
dramatically more cost-effective delivery system. First,
medical practice is shifting toward more prevention, health
promotion, shared patient-provider decision making, and
managed-care. This shift is creating a greater demand for
online services and information. Second, distributed,
heterogeneous patient data and isolated applications are
becoming less tolerated in view of progress in health
informatics standards, the information highway, and a
proliferating set of access devices. This implies health
system users want a shift toward usable interfaces, and
easily accessed, integratable information sets..Third, due to
cost and quality control concerns, inspection, rework, and
paper intensive processes are giving way to reusable
electronic information sets that are machine-checked for
omissions and to get the decisions right the first time.
Lastly, to meet these demands, applications developers are
attempting to shift formerly closed, proprietary applications
toward open, rapidly customizable software. This, in turn,
will further democratize health information delivery.

To enable these types of paradigm shifts, one
would like to utilize the Internet and the World Wide Web
("the web"), since it is widespread, supports cross platform
interconnection, promotes heterogeneous information
systems, and has an installed base of open standards based
software browsers and distributed servers. Yet, the web
alone suffers several drawbacks. Among others, the current
obstacles to using the web include:

1) It is largely document-centric and ignores the
relational technology that is so central to much of the
patient record and personal health information systems of
the medical sector. It is important to explore how best to
utilize plugins, object resource brokers, and other open
database interfaces to integrate the document- and data-
centric worlds,

2) The web is largely a browse and surf
environment in which users search for information and then
"pull" it out. An alternative is for the web to proactively
anticipate information needs of the users and to "push" it
toward them. This is the agent approach, in general. In the
health care field, an important type of proactive agent is
computer generated reminders and alerts. The advent of the
Java programming language and the inclusion of applets in
the hypertext markup language opens up the prospects of
agent push approaches. An open question is how can the
methods of artificial intelligence, software agents, and Java
be scaled to the needs of large communities of health care
users.

3) The web, being a document-centric
environment, is often devoid of active social presence. Yet
both consumers and providers require a high degree of
human contact for health care services, consults, support
groups, and the like. This is beginning to shift, particularly
as web-enabled browsers begin to extend support for
cooperative environments such as email, graphical bulletin
boards, electronic white boards, chat groups, and
interactive video. This is a broad topic, and this paper will
only briefly examine it from the view of how agent push
approaches can be integrated.

4) The web and the Internet grew to prominence
largely on their openness and how they fostered democratic
values, freedom to roam, and barrier elimination. Yet
health care involves sensitive data, private information, and
"firewalls" that assure greater security and confidentiality.

10

From: AAAI Technical Report WS-97-02. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

The latter must be incorporated while sacrificing as little of
the former as possible.

Given the paradigm shifts in health care, progress
is needed to reduce each of these four sets of obstacles. At
present they present a collective challenge to any health-
related project, and this article reviews how one project is
trying to address them with particular emphasis on 1 and 2.
Specifically, this paper describes a reusable intelligent
agent project that seeks to unify the data- and document-
centric views and to provide a push approach in a
collaborative and secure environment. This agent approach
is being built with open standards-oriented technology that
is maturing at present, but is expected to be widely
implemented in the near future.

The system we are developing, called Reminders
of ToDos-II (R2Do2), offers a model for how to meet the
four challenges in the area of health care planning in
general, and for reminders and alerts, in particular. Medical
reminder and alert systems organize and display machine-
triggered ToDo items, reminders, and alerts. Studies show
these machine generated reminders and alerts significantly
increase performance of clinicians as well as
consumers/patients, and if widely deployed they hold the
potential to save the health industry billions of dollars
annually through better disease/error prevention and health
promotion (Shea et al. 1996) (Einarson 1993). In the health
care arena, this approach also holds the ability to empower
consumers to better manage their own wellness efforts, and
to enable clinicians to reduce omissions and unintended
medical errors: Safran & Rind (1996). Further, it should
enhance communications and collaboration between health
care consumers and providers. More generally, this paper
illustrates an approach to adaptive planning for personal
assistant agents.

This article reviews these innovations and
identifies how R2Do2 serves as a model for further
unification efforts. Specifically, Section 2 presents the
architectural view of R2Do2 and shows how the four web-
related challenges are addressed for both institutional and
personal versions of R2Do2. This raises a number of
challenges for scaling the AI algorithms and agents and for
incorporating numerous open software and data standards
as are discussed in the next two sections of the article,
including the adaptive planner (Section 3), and the
temporal reasoning, reminder agents (Section 4). Finally,
Section 5 returns to the topics of the Introduction with
lessons learned and future research needs.

1.1) Healthcare Guideline Agents
The idea is not new of online alerting and

reminding from electronic practice guidelines able to
interact with a medical record and with providers’ orders.
Early examples may be found in McDonald (1976) and
Warner (1972), while more current examples are described
in Musen et al. (1996), Safran & Rind (1996), Shea et

(1996), and many others. However, for a variety of reasons,
very few of these systems have made it out of the academic
center, hospital, or clinic where their developers have
piloted and tested them.

The major obstacles to portability seem to be
severalfold: (1) the reminder methods and engines are not
generic, but are written in a variety of languages and
according to arbitrary, undocumented standards so that the
code is difficult to modify and maintain; (2) the reminder
methods and engines are hard-wired to "legacy" or
institution-specific record systems with local lexicons and
interface code; (3) the user or screen interfaces are
similarly hard-wired and non-standard; (4) the guideline
KBs are specific to the home institution that authored them
and may not be desired by others without modification; and
(5) the programmers who created the code are frequently
unavailable to modify it later.

Some vendors offer new, turnkey patient record
systems that try to overcome such obstacles. For example,
Healthpoint ACS (anon. 1996) is a patient record system
for small private practices that includes an integrated
module that scans all prescription orders against other
drugs on the patient’s medication list as well as against the
patient allergy list. Right out of the box, its conditions
rulebase reminds the user when contra-indications and
adverse interaction effects will arise. One can add to or edit
these rulebases to make them institution-appropriate.
Unfortunately, such vendor-specific systems are a
necessary, but not sufficient, step to overcome the
obstacles. This is because most information systems
already exist, and they won’t easily be converted to a given
vendor’s implementation, nor do their institutions wish to
do so.

Another answer is to connect applications to
middleware so that others may view the application as a
component that they may embed and or plug in by also
connecting to the. middleware. One manual approach to
this is where component or object vendors have taken to
"wrapping" legacy information systems and adding their
applications via integration interfaces. An example is
Multum Inc’s MediSource expert system for drug therapy
and order-entry (Schrier 1994). Originally a stand-alone
expert system, MediSource now offers a consulting service
that manually embeds their software as an agent obtaining
order entries from the legacy system records, and
submitting its alerts to the clinician through the familiar
legacy interface. This is a solution that could be duplicated
with practice guideline knowledge bases (rather than just
drug therapy), however, it fails the test of open standards-
based software, and is once again vendor-dependent. This
solution does not scale well or quickly when trying to
expand to each new site in a given healthcare community,
when adding other potential knowledge bases or agents, or
when extending over the distributed, longitudinal,
heterogeneous "record."

11

The alternative pursued by R2Do2 is to build
towards a middleware architecture, called HOLON
(Silverman et al., 1996), that adopts interoperability and
open-software standards. R2Do2 is a test application of the
HOLON project meaning both R2Do2 and HOLON are
being evolved in parallel. HOLON uses a three tier
middleware architecture. This idea is an "any-any" model
to connect any client to any database system via an open-
standards middleware component. An editable/extendable
reminder/alert agent such as R2Do2 can plug into this
middle tier. Specifically, to integrate guideline agent
capabilities (or other applications) with legacy systems via
a three tier approach, HOLON is using:
¯ a semantically rich, open, object-oriented, standard for

specifying and accessing heterogeneous, longitudinal,
distributed information (It is not intended to provide
new information, nor to replace existing information
standards as far as they go, only to adopt an open,
standards-based meta-model where others can plug in
their datasets and applications. To do this we explore
the HL7 messaging standard as an object oriented
model of the clinical data repository, and extend it at
the information content level via use of ICD 9 and 10
codes, among many other content standards),

¯ the wrapper, lexicon translation, vocabulary server,
and integration engine capabilities to query/manipulate
and plug-together new and legacy systems,

¯ traditional middleware services such as
communications, transport, security, message queuing,
etc., as well as emerging standards for application
mobility and object brokering (ew.g., CORBA, OLE),
and

The "middleware" field partially addresses many
of these items: (Bernstein 1996), (Lewis 1995). Yet sector-
and industry-specific frameworks sitting above traditional
middleware are also being developed to complete this list
and to open up the full agent potential. In the health care
sector, a number of standards bodies and consortia are
working in these directions: (Fitzmaurice 1994), (Halloran
et al. 1996), and (Rischel 1’996). Our research investigates
how a reminder engine can exploit some of these advances.
In this way R2Do2, sitting atop HOLON, is a model of a
middleware framework for the healthcare field (i.e.,
vertical facility in CORBA terms).

This is a point also made by Musen et a1.(1996)
their EON system. EON is an environment for authoring
electronic protocols and connecting them to patient record
systems so as to automate the recommending of therapeutic
interventions. Musen et al. repeat the point that cross-
industry middleware frameworks like CORBA and OLE
are vital advances. Yet "for clinical software to be reusable
and maintainable in a proficient manner, higher level
software abstractions are necessary..." to promote the

clinical-specific middleware field. R2Do2 shares that
objective of a more healthcare oriented middleware
framework with EON, however, there appear to be several
differences between the two systems: (1) EON seems to
oriented toward supporting a user at a clinical workstation,
whereas R2Do2 is concerned with supporting a distributed
group of users; (2) EON seems to focus on clinical
recommendations, whereas R2DO2 covers both the clinical
and consumer perspectives; (3) EON offers fine-grained
recommendations for both the diagnostic and care tasks,
whereas R2Do2 to date provides only coarse-grained
support for prevention and wellness promotion tasks; (4)
there are internal algorithmic differences for accomplishing
roughly equivalent clinical tasks such as the heuristic
propose-revise-plan algorithm of EON as compared to the
nonmonotonic, adaptive argumentation logic of R2Do2;
and (5) EON provides a robust framework that middleware
standards need to be connected to, whereas R2Do2 is
currently attempting to conform with and utilize a number
of middleware standards such as CORBA, HTTP, IIOP,
Arden, HL7, and the like. These differences reflect the fact
that no single framework is sufficient to address the entire
field of middleware for healthcare, and that multiple
frameworks should be encouraged. However, it is
important that all the healthcare middleware frameworks
be integratable if application users are to make use of them
all.

2) The R2Do2 System
The R2Do2 arhitecture makes use of several

principles of modern software engineering such as object-
oriented design (in its modules, communications, and
databases), open software standards, portability of
interfaces, and three tier client-server configuration. In
Figure 1 one can see multiple clients on the left, the servers
on the right (and bottom), and middleware connecting the
two. Before we discuss the details of Figure 1, several
items are worth pointing out. First, this architecture avoids
the "stovepipe effect" or closed, proprietary, non-portable
interfaces and databases found in much legacy software in
the health care field. By contrast, the architecture of Figure
1 permits virtually any vendor’s hardware to be seamiessly
substituted for either the client or server stations. R2Do2 is
platform independent. Likewise, any legacy patient record
system is potentially connectable once the wrapping is
effected. In the same vein, browsers, collaborative
environments, personal information managers, and the like
can be readily substituted just by registering them with the
common object services. Finally, the human notification
process is not limited to computer clients, but is extensible
to pagers, interactive TV, fax, voice synthesis, and other
forms of reminding and alerting.

12

I~mtdl Reader
¯ ToDo ItaTis
¯ ,k~,a matted

Web Browser
¯ ToD~ Browser
oQuastionn~ ras

TSRAIwt~
¯ ~,na~l Parse-
¯ M~ Analyser
,GUI

Fieure 1 - Architecture of R2Do2 Showing Its Use of HOLON’s
Three Tier "Client-Middleware-Content Server" Model

Paging Sorvim Provide"

Paging Propielary Protocol

SMTP

Common Object ~’vloM Ccmmunlcetlon
Coordinator

Secuclty q~l~ll
R2DO2 Sat vet Gateway Service ,LDAP .Pager
¯ Ra~ner ,HTTPD *Server Sockets .VolceMell
¯ Multi Remind Agents olIOP .F~

ORB

LEGEND Data Sir ver
BIDMC - Beth Israel Deaconess M~d, Center °OO L~yerCORBA - Common Object Request Broker
H’rrPD- Hyper Text Transfer Protocol °Logical DBs

Daemon *Active Methods
IDL - Interface Definition Language
IIOP - Internet Inter ORB Protocol
JDBC - Java Data Base Connectivity
OO - Object Oriented
ORB - Object Rczluest Broker
ODBC - Open Data Base Connectivity
RDBS - Relational Database System
SMTP - Simple Transfer Mall Protocol \
SQL - Structured Query Language

°Execute Querlas
¯ Return r~ults

LegacyBIDMC ~DBS

Ēxecute Queries
R̄eturn results

Oracle MS-SQL Xybasc
RDBS

Returning to the details of Figure 1, there are
six major modules that warrant discussion: clients,
groupware, middleware ORBs, middleware services,
reminder server, and data server. Perhaps more
important than any module, though, are the users who
consist of healthcare consumers and providers, each of
whom have differing needs from the modules. We will
mention these range of needs and how they are
supported in the discussion of the modules.

Clients -- The initial client design target is a
desktop PC, although our consortium also requires
interactive TV and beeper service. The client includes
(see Figure 2) a web browser, web-enabled email
viewer, and a terminal stay-resident (TSR) alerter
component that parses email and alerts users when high
priority health items have arrived. The web browser is
the main route through which applets elicit "user
preferences" for health plans, recurring ToDo items,
and reminder schemes, and through which the database
is browsed. The email viewer is the primary place for
receiving and perusing ToDo item reminders and for

altering their settings, forwarding them to others, and so
on. All three elements of the client make use of the Java
virtual machine for executing applet bytecodes, and
thereby maximize platform independence, multi-
threading, and security of local resources.

Groupware -- R2Do2 explicitly incorporates
an email router with a forward and CC list for relevant
consumers, providers, and surrogate caregivers. Also,
R2Do2 can be incorporated into any open standard
groupware environment, such as a web browser that
recognizes CORBA and Java applets. Thus it can be
used alongside whiteboards, chat spaces, and video-
conferencing facilities as in a test-bed currently being
deployed at numerous homes, clinics, Beth Israel-
Deaconess Medical Center in Boston and Norwalk
Hospital, Connecticut (e.g., see Silverman 1996).

Middleware ORBs -- Rather than connecting
to servers, the clients connect instead to open standards
middleware, or more specifically via HTTP and the
Internet to Object Resource Brokers (ORBs). The
ORBs effectively encapsulate the various client and

13

server modules, and turn them into object-like
components that can message each other transparently,
through a common object model. At present, R2Do2
subscribes to the model of the Common Object Request
Broker Architecture (CORBA), an industry sponsored
standard (e.g., see Otte et al., 1996). We use the ORB
from Visigenic, Inc. a subsidiary of Netscape Corp.

Figure 2 - R2Do2 Event Browser Screen

File Edit ~iew Go Bookmarks Options Oirectory Window Help

To Do List

96 Dee
S M T W T F S
1 2 3 4 5 6 7

14
1851961710 1811~ 21

22 23 24 25 26 27 28
29 30 31

Middleware Services -- Along with the
CORBA standard comes a set of run-time library-like
services. New users are registered with these services to
provide Master Patient-Member Indexes; security
authorization, access, and authentication information;
and notification alternatives. In the personal version of
R2Do2, many of these services are omitted, while those
that remain are automated. In the institutional version,
this activity is partially supported by applets collecting
data from users, but is highly dependent on a system
administrator to verify, update, and maintain the
various registrations.

Data Server -- This server contains
computerized patient records, personal health
information not normally in patient records, and PIM
type activity information generated by the consumer
from their screen. The persistent store is, in effect, a
dynamic model of the consumer’s health status and
activities that is jointly maintained by the consumer and
by health care providers. We have deployed an object
layer sitting at the top of the persistent store that
monitors the input streams, detects trigger conditions
(e.g., users whose records have been updated since the
last broadcast), and transmits these items to the
planning component and reactive agents.

In practice, connecting institutions to R2Do2
is a non-trivial task due to cross-institution guideline
differences, lexical and semantic ambiguities in diverse
patient record terminologies, and legacy storage system
wrapping and translating constraints. We are currently
in the second of a three year project in which a non-
profit consortium is piloting more generic ways to
connect and wrap such institutional resources including
use of the ANSI healthcare data model, open database
connect (ODBC) standard, and the UMLS vocabulary
server: Silverman (1996).

Reminder Server -- The classical definition
of a planner is a program that generates a sequence of
actions (the plan) that will move an entity from its
initial to its goal state. A plan is first generated and then
sent to an execution agent to carry out each of the
(ToDo) actions. A number of researchers have
extended this approach so it responds to a dynamic,
uncertain environment where the initial plan may need
to be revised before execution is completed: e.g., see
Haddawy(1996), Lyons & Hendriks (1992), among
others. These approaches differ in terms of, among
other things, varying degrees of world knowledge in
their planner’s model of the environment,
sophistication of adaptive reasoning, and degree of
separation of sensor, planner and effector. The best way
to handle these and other differences are open
questions.

In our case R2Do2 adopts a framework for
organizing the distributed reasoning and processing
elements. The framework settled on here has 5 steps
that R2Do2 continually strives to solve. The steps push
the system to:

1.maximize consumer health by recommending
prevention and care plans for each situation that arises

2.mine the consumer health files with the help of a
Java version of the CLIPS forward chaining engine and
a set of guidelines KBs in order to discover situations
requiring action and to construct the plan of recurring
ToDo items for each consumer

3.map the recurring plan elements (ToDo items) onto
the consumer’s (and provider’s) schedule and launch
agents to help carry out the scheduled .plans, subject to
user wishes.

4.utilize personal assistant agents to isolate and carry
out a user-acceptable scheme to notify and remind the
consumers of the ToDo items likely to maximize their
health

5.alert providers and surrogate caregivers when
consumers seriously deviate from the plan to their self-
detriment.

In R2Do2’s framework (see Figure 1), the
Planner generates a number of ToDo items for each
consumer and provider registered in the environment.
Numerous plan intervals and actions may need to be

14

generated at various times during the year for each
user. Once new or updated plans are completed, the
agents are launched and are given both personal
assistance and limited self-planning capabilities. These
capabilities allow the agents to react directly with users
and with the client servers. Thus agents can conserve
resources by putting themselves to sleep until needed;
alter their reminding schemes in response to user
preference; postpone, cancel, or re-assign ToDo items
and reminders also upon user request; coordinate
alternate modes of communication (e.g., TSR alerter,
email, and beeper); and contact providers and inform
surrogate care givers when critical ToDo items are
neglected.

Via the "user request" mode, the users may
alter their plan directly (e.g., snooze, cancel, or reassign
an item). Also, users can add new ToDo items either
directly through applet screens, or indirectly via their
answers to health profile and preference questionnaires.

In this manner R2Do2 derives an initial health
plan that it continually refines and adapts as the users
age, change their practices, develop new conditions,
and so on. As new, or sometimes unexpected events
occur (e.g., a miscarriage, a diabetic complication,
reaching the next birthday, etc.) the original plans will
need to be revised anew, and the agents carrying them
out, modified yet again.

3) Empirical Findings
Over the past year, we have built several

prototypes and two versions of R2Do2. At present we
have both a personal version available through a web
browser interface, and an institutional version being
piloted at the Beth Israel-Deaconness Medical Center.
We explore the results to date and lessons learned in
the subsections that follow.

4) Lessons Learned
This paper described efforts to develop and

field an adaptive health planner and parallel agents that
securely connect distributed users and data sets in a
collaborative approach able to anticipate health ToDo
items and to remind and alert about these items over the
web. The planner and agents, reasoning temporally and
non-monotonically, are able to handle changing health
conditions, unknown health facts, user wellness and
lifestyle preferences, and updates about each user’s
situations. Usage of and extensions to argumentation,
qualitative decision making, situational calculus, and
temporal algebras are described. Defeasible assertions,
default arguments, support sign dictionaries, closed
world assumptions, and anytime algorithms are used to
derive feasible health plans that are later updated as
more information unfolds. A set of robust, open

standards-based client server approaches (e.g.,
HOLON, CORBA, ODBC, Java, and ANSI I-IL7
Common Object Model) are used to encapsulate and
plug all these components into the web, and to handle
the distributed agent and object communications.
Extensions to these emerging standards are at times
made due to engineering and domain considerations,
however, the goal is to maximize reuse of the
guidelines by any patient record system that adheres to
the standards.

At the start of this paper, four challenges to
web-based applications were introduced that we return
to in the next four subsections.

4.1) Merging Data with Document-Centric
ComDutine

Web pages with their hyper-text markup
language (HTML) are a document-centric mode
computing that has revolutionized usage of computers.
In R2Do2, guideline KBs, questionnaires, preference
elicitation screens, and ToDo item messages and advice
utilize this document modality. In trying to extend this
approach to the data-centric side of health information
management systems, several difficulties arise that are
not easily overcome. These difficulties center around
the collection, storage, retrieval, and maintenance of
each user’s health information and situations, what is
earlier defined as Fi. For a new user, the Fi is a large
set of questions to answer. This is often called the
health profile or patient interview, and it may involve
collecting hundreds of answers. Ideally, one would like
to use a question engine that can branch over interview
rules and collect those answers most relevant to a given
user’s health situation. Unfortunately, the web standard
inhibits reaching such an ideal if one seeks to adhere to
HTML standards such as cgi forms and Java virtual
machines. For example, one cannot download the Java
inference engine and run it within an applet since local
memory resources cannot be written to. Waiting for the
engine to read and write assertions on a remote client is
impractical. Likewise downloading a plugin interview
system can be discouraging to users. The simplest
alternative is to use fixed questionnaires about each
health area and situation, and to stream these to the user
as cgi forms or Java applets. This means that Fi are
collected in a more exhausting, less user-sensitive
manner than one would like. As a result, critical Fi may
remain unanswered longer than would otherwise be
necessary.

At the start of this paper, several paradigm
shifts in the health care field were mentioned, one of
which was the idea of empowering users by connecting
them to access and manage their own health data. Using
the web browser, Internet Inter-ORB Protocol (IIOP),
an ORB bus, and the ODBC standard we have

15

demonstrated that this is feasible, as have others before
us through comparably open standards (e.g., as did
Kohane et al., 1996 with HTTP). However, there are
numerous, serious problems to this approach. Here we
will concentrate on the connectivity problems, while
subsequent paragraphs will address programming and
security aspects. The connectivity problems straddle the
syntactic and semantic levels. At the syntactic level,
there is the basic problem of connecting the "pipes."
The main obstacle to point out here is that the CORBA
standard has not yet matured to the point needed. In
particular, the ORB services include, among others, a
trader, a name server and a database query server. The
name server standard, however, is still underspecified
so that it is not possible to locate a given patient and
their records -- that is being addressed as of this writing
by request for proposals for a master patient index
standard by the CORBAmed committee. The query
server standard within CORBA was adopted in the
summer of 1996, but that standard in turn adheres to
the SQL3 and Object Query Language (OQL) standards
that are not yet widely available in current database
products. For these reasons, we found we had to
implement our own name and query servers. In the
former case we are depending on a HOLON
consortium partner (Concept Five), while in the latter
case we replaced the OMG Query Server with a Java
ODBC-standard based connection outside the ORB.
That is why earlier Figure 1 shows the distributed
databases in our current testbed connecting through the
data server, rather than directly to the ORB.

At the information content level, there are
more obstacles to the connectivity problem. Our goal is
to utilize site-independent software and lexicons via use
of common object standards such as ANSI’s HL7,
among others. With this approach, each institution that
wishes to connect its legacy systems to R2Do2 must go
through a translation and wrapping effort as is currently
ongoing at our Beth Israel-Deaconess and Norwalk
Hospitals testbed sites. Once they conform to the
accepted standards, they can use the reminder engine
since R2Do2 attempts to restrict its guideline lexicon
and patient data references to the same accepted
vocabulary standards. However, the vocabulary sets
that need to be referenced are not under the purview of
any single standard setting body. There are a variety of
authoritative or de facto standards such as, among
others, ICD-9 diagnostic codes, LOINC laboratory
order codes, Observation Ids, and so on that are not
part yet of the HL7 standard. We are trying to stay with
the more well established of these coding schemes as
embellishments where HL7 is underspecified. The
ultimate settling of these vocabularies is a challenge the
standards groups need to settle for this approach to
work. Another challenge for standards setting is that

HL7 tables do not currently exist that support
hierarchical inferencing, such as, for example, "has the
patient taken any type of pertussis vaccine?" At present
one must manage all such processing within R2Do2. It
would be useful if the standards would recognize
decision support needs as well as information retrieval.

A final issue concerns the Arden Syntax
standard for medical logic modules. Our guidelines
KBs conform to this documentation standard in an
effort to promote their reusability and local
modification. A future version of R2Do2 will also be
providing an HTML viewer of the guideline KBs in
Arden form. We also would like it to permit English
level editing of the KBs. One major obstacle to this
idea is the Arden Syntax’s inability to standardize how
a medical logic module gets access to data. It needs
both events and the ability to retrieve from the patient’s
"record" or from the data repository. The Arden
Syntax Standard leaves the precise access syntax un-
standardized, with the idea that it would be written
locally because of the different IS environments. This
inhibits portability and reuse of logic modules since the
local rewriting of that section is time consuming, error
prone, and requires person to person consultation
between someone at the author’s institution and the
person attemptingto reuse it. An alternative we are
trying to provide for this section is to embed a full set
of CORBA interfaces directly connected to HL7 and
other (finer grained) standard code "events" (e.g.,
new DT booster was administered’) pushed to it by the
object layer of the medical record data repository (Fi).
To date, our approach seems feasible and we think it
would prove a viable way to extend the Arden
Standard. It would also allow the creation of structured-
English level editors of the guideline KBs and the
various rule elements (events, actions, etc.) in which
users could avoid the need to code access connections
or to deviate from approved repository vocabulary.

4.2) Inte~ratin~ Personal Assistant Agents
Solving the AI side of a class of applications,

such as R2Do2 does, is no easy task. It involves
working out theories, algorithms, engines, typical
planning problems (qualification, ramification, frame,
closed world, defaults, etc.) and KBs. At the end of
such an effort, the typical AI person expects to be done
with the project. However, as this article amply
illustrates, integrating the AI into the Internet and the
web adds an entire new layer of issues and effort. The
costs of that level included about a person-year-
equivalent of added effort, above and beyond the AI-
and KB-related effort. The advantage of this effort is
that as soon as it is done, the AI environment is
immediately available to the world.

16

A related issue is that no matter how much
effort one puts out, there are some obstacles that can’t
be eliminated. With enough effort, one can overcome
CORBA and IDL learning curves, database
connectivity obstacles and so on, but some aspects of
the agent-web integration are immovable. For example,
in the field of reminding, the PIMs have set a standard
for the metaphors and screen look and feel. Our screen
widgets to date are restricted to those shown in Figures
2 and 6. Without resorting to PIM plugins, the screen
interfaces are relatively plain. While this will change in
the near future, as of this writing, we have few widgets
for calendar presentation, day and weekly planners,
alarm bells, clocks, recurrence sliders, and so on. Using
PIM plugins would solve this dilemma, but would
violate the web ideals of easy portability, rapid
streaming, and local resource security. Also, installing
the plugin on low end machines, those with low baud
rate modems and limited extra memory, might be
unappealing to the users who own them.

Whether embedding the R2Do2 planner and
agents in PIMs or directly in the web, this is a good
place to bring up an important issue we have been
grappling with throughout this article -- that of
reliability of the agent and its advice. There are two
levels of reliability of concern here, logical and
engineering reliability. At the logical level, R2Do2 uses
a mathematical framework for organizing its distributed
processing and temporal reasoning. The discussion at
numerous points has attempted to draw parallels
between this framework and the more traditional
frameworks of the nonmonotonic logic literature. It
would be interesting to explore a more formal
framework of logic for R2Do2, one that addresses
satisfiability and correctness proofs of the HealthPlan.
However, in the interest of practicality, R2Do2 did not
start with such a rigorous goal. There are numerous
concerns that such a framework must overcome, many
of which have been mentioned such as the frame and
qualification problems, the lack of a complete KB of
rules to defeat all defaults, the computational difficulty
of satisfiability tests required in proof procedures, and
others. Nevertheless, a more formal approach or
alternate formalisms may offer numerous benefits
(maximizing health, assuring cost objectives, satisfying
user preferences, etc.) and they warrant further
research.

From the engineering reliability perspective,
no matter how reliable a plan or plan defeater may be,
it has no value if it does not reach its user properly.
This brings up a number of issues we have so far
ignored about Internet communication failures. At
present, we have not ensured recurring reminders cover
all the scenarios for communication failure that may
arise. One of the reasons CORBA works is that it is

essentially stateless. It may be that our planner and
agents are too stateless as well, particularly in terms of
tracking the outcome of their conversations with one
another. What happens if R2Do2 launches an Mk that
is not received by the agent or sends a health alert email
about a consumer that is never received by the
caregiver? These and other engineering reliability
issues have not yet received sufficient attention that we
can adequately answer such questions. If R2Do2 is to
graduate from a web curiosity to a serious tool for
institutions and individual consumers, we will need to
conduct extensive engineering studies and reliability
hardening efforts.

4.3) Web-Interactive Social Presence
One can get numerous reminder and alert

benefits from a persona! version of R2Do2 that doesn’t
need to connect to anyone else. Provided the user
inputs their health profile, Fi, the guideline KBs will
fire and generate ToDo items and plans. Also, R2Do2
offers useful templates and default reminder schemes
for user-specified ToDo items such as pills, recurring
shots, a few areas of chronic care, and the like. All that
is needed to get these features is a Java-enabled web
browser.

Yet the institutional version of R2Do2 seeks
to extend these features. When R2Do2 is connected to
institutional databases and patient record systems, it
can give the caregivers reminding and alerting
messages about patients coming in for an appointment
that day, patients needing appointments, and consumers
who have situations requiring attention. Consumers in
turn get connectivity to their caregivers both via email
reminders, and for chronic care triggers. For this
connectivity to happen, in addition to a Java- and
email-enabled web browser, each user must install a
terminal stay resident alerter and email parser on their
machine. This is a Java application. Since they are
installing these base items, one could bundle this with
other collaboration features useful for a remote care
environment, such as desktop video conferencing,
electronic whiteboards, and support group chat space.
Our current testbed for the HOLON consortium
includes such items. Results to date show they do not
increase the complexity or effort for the R2Do2
developers.

4.4) Security and Privacy on the Web
Although these are critical issues, our

approach to security and privacy thus far has been
purposefully low key. For the personal version of
R2Do2, security and privacy would be preserved by the
consumer if they could install the entire system on their
local machine. Thus one could price a commercial
version that would maintain security and privacy

relatively easily. This would be unaltered if we embed
R2Do2 within a PIM.

If we maintain a central server for supporting
personal usage, however, this perception of security
and privacy is compromised. Most users would
probably be reluctant to place personal data on a quasi-
public server, even if we assured them our current
version has been implemented within the Java virtual
machine to prevent foreign code reading/writing on
their local disk, with secure sockets during ORB
transmissions, with access password-controlled by the
name server, and with authentication and auditing
provided by a HOLON security module: i.e., see Harris
et al. (1997). Still, we have taken no further effort
the belief that the web in conjunction with vendors like
Visigenic (ORB), Concept Five (HOLON Security
Module), and others will ultimately produce a solution
that is widely perceived as allaying security and privacy
concerns. For institutional intranets that adopt firewalls
and pursue vigorous security management procedures
and policies, our current configuration may be close to
what they will find acceptable. This latter issue is being
explored by the Beth Israel-Deaconess Medical Center
in the current HOLON testbed and will be the topic of a
future report.

5) Concluding Comment
R2Do2 is an experiment in extending

middleware in the healthcare field. This framework
makes use of open standards for architecture, software,
guideline KBs, clinical repository models, information
encodings, and intelligent system modules and agents.
By pursuing the use of such standards we hope
eventually to maximize immediate reusability of the
R2Do2 framework by others who also adhere to these
open standards. This research also tries to reflect
lessons learned about the extensions needed in these
standards if healthcare middleware frameworks are to
transparently support users over the web.

ACKNOWLEDGEMENT
The financial support of NIST/ATP, the HOLON
Consortium, KOOP Foundation, and Beth Israel
Hospital are gratefully acknowledged.

REFERENCES
Allen, J.F. 1984. Towards a General Theory of Action
and Time. Artificial Intelligence, 23/123-54.

Anon. 1996. Guide to Clinical Preventive Services (2nd
Ed.), Washington, DC: US Public Health Service.

Anon. 1. 1996. Introducing Health Point A CS._ Durham,
NC: HealthPoint Inc.

Bernstein, P.1996. Middleware: A Model for
Distributed System Services. CACM 39(2):86-98.

Einarson, T. 1993._ Drug Related Hospital Admissions.
The Annals of Pharmacology 27:832-40.

Fitzmaurice, J. 1994. Putting the Information
Infrastructure to Work: Health Care and the Nil.
Washington, DC: DHHS, AHCPR Pub. No. 94-0092.

Haddawy, P. 1996. A Logic of Time, Chance, and
Action for Representing Plans. Artificial Intelligence
80:243-308.

Halloran, M., et al. 1996 White Paper: Accelerating
the Movement Toward Standards-Based
Interoperability in Health Care. New York: IEEE-USA
Medical Technology Policy Committee (Clinical
Information Systems Subcommittee).

Lewis, T.G. 1995, Where is Client/Server Software
Headed? Computer. 4:49-55.

Lyons, D.M., Hendricks, A.J. 1992. A Practical
Approach to Integrating Reaction and Deliberation. in J.
Hendler (ed.), Artificial Intelligence Planning Systems,
San Mateo: Morgan Kaufman. 153-162.

McDermott, D. 1982. A Temporal Logic for Reasoning
about Processes and Plans. Cognitive Science 6:1-55.

McDonald, C. 1976. Protocol-Based Computer
Reminders. New England Journal of Medicine
295:1579-81.

Otte, R., et al. 1996. The Common Object Request
Broker Architecture, Englewood Cliffs: Prentice Hall.

Pollock, J.L. 1992. How to Reason Defeasibly.
Artificial Intelligence 57:1-42.

Rishel, W. 1996. Software Components, the Clinical
Workstation, and Healthcare Networks. in Proceedings
of the Healthcare Information Management Support
Systems (HIMSS) Conference 1-13.

Safran, C., et al. 1996. Effects of a Knowledge Based
Electronic Patient Record on Adherence to Practice
Guidelines. MD Computing 13(1): 55-63.

Schrier, R. 1994. Improving the Quality of Healthcare
Through Better Information: MediSource Progress
Report, Denver: Multum, technical progress report
submitted to Geo. Wash. Univ.

18

Shea, S., et al. 1996. A Meta-Analysis of 16
Randomized Controlled Trials to Evaluate Computer-
Based Clinical Reminder Systems for Preventive Care
in the Ambulatory Setting. JAMIA, 3(6):399-409.

Silverman, B., et a1.1996. Health Object Library Online
(HOLON).
URL=http://www.omg.org/CORBAMED/96-05-14;
Gaithersburg: Koop Foundation Inc..

Silverman, B., et al. 1997. Adaptive Planning in
Personal Assistant Agents: The Case of Reminders of
ToDos-II (R2Do2).URL
http://iai.seas.gwu.edu/HOLON/R2Do2.html;
Washington DC: GWU/IAI Tech Report.

Warner, H.R., Olmstead, C.M., Rutherford, B.D. 1972.
HELP - A Program for Medical Decision-Making.
Computers in Biomedical Research 5:65-74.

19

