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Abstract

Most algorithms for learning and pattern discovery
in data assume that all the needed data is available
on one computer at a single site. This assumption
does not hold in situations where a number of inde-
pendent databases reside on different nodes of a net-
work. These databases cannot be moved to a common
shared site due to size, security, privacy, legal, and
data-ownership concerns but all of them together con-
stitute the dataset in which patterns must be discov-
ered. These databases, however, may be made acces-
sible for certain types of queries and all such commu-
nications for a database may be channeled through an
intelligent agent interface. In this paper we show how
a decision-tree induction algorithm may be adapted
for such situations and implemented in terms of com-
munications among the interface agents.

Introduction

Most learning and pattern discovery algorithms have
been designed for environments in which all relevant
data is available at one computer site. Increasingly,
pattern discovery tasks are encountering situations in
which the relevant data exists in the form of a num-
ber of networked databases that are geographically dis-
tributed. A common constraint in these situations is
that the data in databases cannot be moved to other
sites due to size, security, privacy, legal and data-
ownership concerns. In this paper we present details
of adapting a decision-tree induction algorithm for the
case of such constrained sets of databases.

Summary of Relevant Research

Learning from databases is a widely investigated field
and decision-tree induction is a very well known and
well researched topic (Ming 89a; Ming 89b; Brei 84;
Quin 86). Algorithms that use information as a heuris-
tic for guiding towards smaller decision-trees are dis-
cussed in (Brei 84; Quin 86). A number of heuristics
to guide the search towards smaller decision trees have
been reviewed in (Ming 89a; Bunt 92). However, all
these heuristics and algorithms assumes that the data
from which decision trees are to be induced is available
in the form of a relation on a single computer site.

In the context of database research much work has
been done towards optimization of queries from dis-
tributed databases. It was pointed out in (Yu 84) that
a distributed query is composed of the following three
phases: (i) Local Processing Phase in which selection
and projection etc. operations are performed at in-
dividual sites; (ii) Reduction Phase in which reducers
such as semijoins and joins are used to reduce the size
of relations; and (iii) Final Processing Phase in which
all resulting relations are sent to the querying site
where final query processing is performed. However,
discovery of patterns from geographically distributed
databases does not require that the relevant data and
relations be necessarily gathered at the site initiating
the learning task. The learning site can do with only
need some statistical summaries about data from the
distributed sites. In some situations individual sites
do not allow any data to be sent out of the site but
permit sending statistical summaries to some autho-
rized sites. Phases (ii) and (iii) of distributed query
processing are therefore not needed if our goal is lim-
ited only to discovery of patterns; and databases from
which data transfer is not allowed can not perform dis-
tributed querying but can still learn patterns by seek-
ing only the statistical summaries.

Intelligent Query Answering and Data clustering in
large databases have been addressed in (Han 96; Zhang
96) and their treatment also is limited to databases
residing and available at a single network site.

Example Situation

An example situation in which geographically dis-
tributed databases with constraints on data transfer
are encountered is as follows. Consider the case of
a financial institution that maintains credit card and
various other types of customer accounts. A num-
ber of databases used by this institution, that typi-
cally reside in different cities, are: (i)A database con-
taining fixed data about customers such as employer
and address information; (ii) A database of credit card
charges and payments made by the customer; (iii) A
database containing information about vendors that
accept the card; (iv) A database containing deposit



and withdrawal transactions; and (v) A database con-
taining credit-rating information about customers. A
knowledge discovery task may require discovery of in-
teresting patterns in the dataset that is formed by con-
sidering all these databases together.

A number of other examples from military and civil-
ian domains exist in which data from various sources
must be used without moving it over the networks and
compromising its security.

Cooperation among such independent and geograph-
ically distributed databases is typically governed by a
number of constraints.

Constraints on Knowledge Sources

The most common restrictions in distributed knowl-
edge environments and the reasons for their existence
are as follows:

Immobility of Databases: The actual data from
a database may not be transported to any other site.
This restriction may arise due to any of the follow-
ing: the database size is too large; security reasons
demand that data not be placed on networks, data-
ownership and privacy issues prevent its owners from
sharing the data with others. However, these sites
may be willing to share summaries of data with other
authorized sites.

Update Protection: A database may not permit
an agent outside its own site to update its data due
to security and data-integrity considerations.

One-Agent interface: At each database site only
one software agent may be allowed to coordinate all
flow of information into and out of the database.
This may be required to guarantee the integrity and
security of the database.

Availability: All databases may not be available for
cooperation with other databases at all times. For
example, if one credit rating company’s database
is unavailable at any time, we may use another
database with similar information. At the time a
learning task is to be performed we must check and
determine the availability of other databases for co-
operation.

Abstraction of Knowledge Environment

The situation of n knowledge sources located at n dif-
ferent sites and represented by their respective agents
can be represented as shown in Figure-1 below. A db;
represents a knowledge source present at the ith site.

Associated with each knowledge source is an Inter-
face Agent that acts as the only interface for all com-
munications between the knowledge source and other
agents in the outside world. This agent is shown by
A;s associated with the databases. Any cooperation
among the knowledge sources is initiated, negotiated,
and transacted by the agents communicating over the
network.

In an abstract sense each knowledge source can be
viewed as containing tuples of an m-attribute relation.
The actual underlying data may not be in the form
of a relation but the interface agent can create a sim-
ulated view in which the external world can see each
knowledge source as a database relation. This kind
of interface is possible even for databases containing
maps and images but the relation-like views that may
be simulated may be restricted in terms of the nature
of attributes contained in them.

Site-2 Site-3
x2 x4 x7 ... x3 x7 x9...
db2 db-3 /Knowledge Source
Interface Agent
Site-1 Site-n
x1 x2 x3... x3 X7 x9...

Figure 1. Databases

The set of attributes contained in database db; is
represented by X;. For any pair of databases db; and
db; the corresponding sets X; and X; may have a set of
shared attributes given by S;;. That is, S;; = X;NX;..

For the present discussion we assume that all at-
tributes are nominal-valued. In a later section of this
paper we separately address the handling of continuous
valued attributes.

The dataset D using which a decision tree is to be
constructed is that which is formed by a Join operation
performed on all the relations db; ...db, identified as
relevant for the learning task.

Consequences of Constraints

The tuple space (dataset) from which the decision tree
is to be induced is only implicitly specified in terms
of the JOin or the cross product of the component
databases. That is, this space can be made explicit
by performing a cross-product or a JOIN-operation
on the individual component databases. However, due
to the constraints on the movement of data such an
explicit dataset can not be created.

Therefore, our pattern discovery algorithms must
work with the implicitly specified tuple space. This
restriction may not, at first, appear drastic but after
some analysis turns out to have severe implications.
Any pattern discovery and inference algorithm which
demands that explicit data tuples be presented to it
can not work in the distributed environments. For
example, neural network training requires that each
training tuple be presented to the network. But in



the distributed knowledge sources case each tuple has
its components residing at individual database sites
and the tuple can not be assembled and made explicit.
Therefore, the neural network training algorithms are
not applicable in the distributed environments.

[ CompulaﬂonH Explicit Data |

Computation with explicitly known data

Relation JOIN
'''''''''''' or Cross-Product
Aggregation I
- ~=-----Explicit Databases
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Figure 2: Computations in Explicit vs. Implicit Data
Spaces

Only those computations can be performed in the
implicit data space that can be decomposed into parts;
these parts performed at individual sites; and then the
results transmitted and composed at the initiating site.
The decomposition and aggregation/composition oper-
ations for any particular set of databases are strongly
influenced by the sets of shared attributes S;; be-
cause all dependences among attributes are mediated
through the set shared attributes.

To facilitate handling of the implicitly defined tuples
of D we define a set S that is the union of all such
intersection sets. That 1s,

S=Uj izgi Sij (1)

The set S;; is the same intersection set as defined
above. The set S contains all those attributes that
occur in more than one d;. We also define a new rela-
tion Shareds containing all the attributes in set S. The
tuples in Shareds are made explicit by enumerating all
possible combinations of various values for attributes
in set S.

The roles sought to be performed by the interface
agents associated with database sites are the following;:

1. A knowledge discovery task can be initiated by an
agent that is located at any one of the n database
sites, or possibly any other authorized site.

2. All the X;s (attribute sets) are known to each inter-
face agent and as a consequence, the relation Shareds
is also known to every agent capable of initiating the
decision-tree induction task. With this information,
the agent can decompose the tree induction task into
suitable queries for agents at other database sites.

3. The agent that initiates the discovery task can send
requests to various sites for statistical summaries
about their respective d;s. Actual data tuples are
not allowed to be exchanged among the agents.

4. The initiating agent can compose responses from
other agents and construct the descriptions of de-
cision trees.

We briefly outline here some aspects of the decision
tree induction algorithm even though it is a well known
algorithm. We do so to facilitate easy reference and
comparison with the adapted version of the algorithm.

Decision-Tree Induction Algorithm

Various tree-induction algorithms including ID3 start
by considering the complete dataset D as residing at
the root of the tree and then repeating the following
steps until some specified percentage of tuples at all
leaf nodes belong to some unique class (Value of the
Target-Attribute).

1. Pick one such dataset at a leaf node of the par-
tially constructed tree whose tuples belong to dif-
ferent classes. (By dataset here we are referring to
any set of tuples belonging to a node of the decision
tree.)

2. Select an attribute a; having m distinct values:
51,8052 .. Qjim-

3. Split D into m distinct partitions such that the k*?
partition contains only those tuples for which a; =
@ik

4, The m distinct partitions are added to the tree
as child datasets of the partitioned parent dataset.

These child nodes reside at the end of m branches
emanating from the parent node.

It is desirable to keep the height of the induced de-
cision tree as small as possible. A heuristic that is
used to keep the height on the smaller side selects that
attribute a; in Step-2 which minimizes the average in-
formational entropy of the partitions that are formed
in step-3. The value of this average entropy can be
computed as:

m
Ny Ny Ny
E= bZ(E X (Z - N: logs N:) (2)
=1 4

where Ny is the number of tuples in branch b, N; is the
total number of tuples in all branches, ¢ is the number
of possible classes {the values the target attribute can
possess), and Ny, is the number of tuples in branch b
belonging to class ¢. The attribute that minimizes the
average entropy for the resulting partitions is chosen.

Adaptation for Implicit Tuple Space

The following describes one possible adaptation of
the tree induction algorithm for distributed databases.
The details and complexity analysis have been de-
scribed in (Bhat 97).



The tree induction algorithm outlined in the pre-
ceding section requires an explicit set of tuples at each
node of the tree. This set is used for the following
operations:

1. Computation of entropy after partitioning a dataset.

2. Testing to determine if all tuples in a dataset belong
to the same class.

In case of the constrained distributed databases an ex-
plicitly stated set of tuples is not available. Each step
of the induction algorithm must adapt itself to work
with the implicitly specified set of tuples.

Characterization of a set of tuples:

When a dataset is known explicitly it can be stored
as a table in computer memory. After repeated parti-
tionings, smaller datasets can be represented by stor-
ing their identity numbers along with each tuple as an
additional column of the relation.

When the dataset is only implicitly specified there
does not exist any facility to store identities of parti-
tions to which individual tuples belong. Description of
every partition or cluster must also be implicit. For
the case of decision trees the conjunction of tests per-
formed along a path is the implicit description of the
dataset at the end of that path. Clustering and pattern
discovery algorithms that rely on marking each tuple
with their cluster-id as they progress will not be able
to work in environments of implicitly specified tuples.

Selecting the Test Attribute:

In step 2 of the algorithm we choose an attribute and
use it to partition the selected parent dataset into its
children datasets. The attribute that minimizes the
average informational entropy is considered the most
promising one and is selected. The expression for en-
tropy computation requires the values of the following
counts from the parent dataset:

1. Nt;
2. one N, for each child branch; and
3. one Ny, for each class for each child branch.

When the tuples are explicitly stated and stored in a
table these counts can easily be obtained. For the case
of implicitly stated set of tuples we have decomposed
the counting process in such a way that each decom-
posed part can be shipped to an individual database
site and the responses composed to reconstruct the
counts. The decomposition for obtaining the count N;
is as follows:

n
= Z e Z Z(H(N(di)Sub)) (3)

Juk Joz Jo1 =1
where Sub = [S1 = S1,,,],[52 = 52;,,]...,[Sk =
Sky,.]. In this expression S1,52,...Sk are the k mem-
bers of set S defined by expression 1; Jsi,Js2,...Jsk
are the numbers of possible discrete values that can

be assigned to attributes S1,52,...Sk respectively;
and Si1, Sta, ... 5%y, are all the values that can be as-
signed to attribute Si. The value n is the number of
database sites (d;s) to be considered, and (N(d;)sus)
is the count in relation d; of those tuples that satisfy
the conditions Sub.

It can be seen that the expression for N; is in the
sum-of-products form. Each product term takes in the
counts of tuples satisfying condition Sub in each d; and
produces the number of distinct tuples that would be
contributed to the implicit Join of all d;s. Also, each
condition Sub for the entire summation in the above
expression corresponds to a tuple of relation Shareds
described earlier. The summation in the expression is
over all the tuples of relation Shareds.

This expression, therefore, simulates the effect of a
Join operation on all the n sites to compute the count
of tuples satisfying Sub that would exist in D.

A very desirable aspect of the particular decompo-
sition of N; given above is that each product term
(N(Tt)sus) can also be easily translated into an SQL
query of the form:

Select count (*) where sub AND path to dataset

The learning agent can ship the queries to the agents at
other relevant sites and compose the responses accord-
ing to the expression for N;. For each tuple in relation
Shareds the agent will have to send the queries to each
of the other n database sites. The responses can then
be multiplied to obtain a product-value for a tuple, and
the product-values for all the tuples of Shareds can be
summed to obtain the value N;.

The decompositions for the counts Ny and N, are
similar to that for N;. The expressions are stated as
follows:

Ny = Z > Z(H(N(Cl})sus)) 4

Js2 Je1 t=1

where SUB = [S’l = S51,,,],[52 = 52,,,]..
SkJak]) [B = BJB]

The expression for N, differs from that for N; by
containing an additional summation over the partition-
ing attribute B and the corresponding addition to the

condition part of the product term.

Sk =

Ny, = ZZ .. .ZZ(H(N(Y})SUB)) where

JB sk Joz Js1 t=1
()
"SUB = [S1 = S1;,.],[52 = S2;,,]...,[Sk =
Sky i), [B = Bygl,[C = Cy,]

The expression for Ny, differs from that for Ny by
containing an additional summation over the target at-
tribute C' and the corresponding addition to the con-
dition part of the product term.

The counts Ny, Ny, and Ny, can be composed by
obtaining responses from individual databases in the



manner described above and the the entropy value for
each proposed partitioning can be determined.

Splitting A Dataset:

After deciding to partition a dataset into its children
datasets (Step-3) the learning agent needs only main-
tain the decision tree constructed so far. At the learn-
ing site a marking can be maintained for each leaf node
indicating whether all its tuples belong to only one or
more classes. This can be determined by examining
various Np. counts at the time of creating the children
datasets.

Continuous-Valued Attributes

For the nominal-valued attributes we know the set of
possible values an attribute can take and therefore also
know the potential set of tests that may be performed
at each node of the decision tree by an attribute. The
situation for continuous-valued attributes is somewhat
more difficult. In most tree induction algorithms a
threshold value is chosen as the test and tuples lying
on the two sides of this threshold belong to two differ-
ent partitions at the child nodes of the tree. The set of
candidates for the threshold values for a continuous-
valued attribute may be large. An efficient system
for determining the candidates has been described in
(Fayy 92). According to this system the continuous-
valued variable is partitioned into sectors such that
each sector corresponds to only one class (value of the
target attribute). Figure-3 given below shows the var-
ious ranges for a continuous valued attribute A, the
unique classes belonging to the tuples falling in each
range, and the resulting set of candidate threshold val-
ues.

T1 T2 T  T5..... Incresing value of A
i | S |
U1 LIDIUPRL 1

crcc c2

>
-+

Cl c2 C1 Cc3

C1, C2.. are different classes
Figure 3: Determining Candidate Threshold Values

testing only for these candidate values is much more
efficient than testing for all possible threshold values
in the range of the attribute’s values.

When all the tuples are stored in one table the above
set of candidate threshold values may be obtained by
sorting all the tuples according to the continuous val-
ued attribute and then sequentially scanning all the
tuples to determine the break points at which class
of the tuple changes from one to the other. For de-
termining these break points for a continuous-valued
attribute A in the implicit data space we perform the
following steps:

1. Find the minimum and the maximum values taken
by the the attribute A. This range, if not known

5

to the learning agent, may be determined by enquir-
ing the minimum and maximum values in all those
databases in which A exists.

2. Quantize the range for A into an arbitrary number
of bins of equal width.

3. Add attribute A and the target attribute to the set
S of shared attributes.

4. Construct the tuples in the relation Shareds by tak-
ing each bin as one possible value for attribute A.

5. Determine the count of all tuples in the implicit
dataset corresponding to each tuple of the relation
Shareds.

6. From the counts obtained construct a histogram by
accumulating counts for each range bin of the at-
tribute A. Also keep an account of the classes for
tuples belonging to each range bin. This can be done
because the target attribute was included in the set
S of shared attributes.

7. If all tuples in a range bin belong to the same class
we call it a pure bin. Adjust the boundaries of the
range bins as stated below until all bins are pure or
pure to an extent, say, 98

(a) If two adjoining bins are pure and have the same
class then merge these bins into one.

(b) A range bin that is not pure is split into two and
the frequencies determined as described above for
the smaller bins.

8. The range bins’ boundaries are the candidate thresh-
old values.

The above method determines the candidate thresh-
old values without transferring the tuples of data from
one site to the other. It seeks from the other sites the
count of tuples satisfying certain conditions. Having
determined these thresholds the tree induction algo-
rithm can continue in a way similar to that for nominal-
valued attributes.

Efficient Agent Implementations:

The decomposition described above can be efficiently
implemented and the number of messages that need
to be exchanged among agents can be greatly reduced.
The counts that need to be obtained from each site for
each dataset partitioning are the Ny, values for all pos-
sible combinations. At the host site these can be ap-
propriately summed up to generate the needed Ny and
N; values. An alternate implementation strategy is to
have an application program that travels to each site
and accumulates all the needed summaries and then
moves to the next database site.

Continuing Research

The research summarized above is currently being ex-
tended by us along a number of different directions.
The main directions and the preliminary results are as
follows:



Complexity Analysis: A number of cost mod-
els have been applied to compare the computa-
tional cost of decomposed and single-site versions
of tree induction algorithm. It turns out that the
number of messages that needs to be exchanged
among agents increases exponentially with the num-
ber of attributes that are shared among the various
databases. We are examining the complexity issues
for continuous variables.

Other Learning Algorithms: We are examining
the decomposed versions for inducing Bayesian clas-
sifiers. These results should be available by June
1997. All algorithms that must either present ex-
plicit tuples or put markings on individual tuples
can not be adapted for above mentioned environ-
ments. This includes most neural-net training algo-
rithms and incremental learning algorithms. We are
examining other learning algorithms and classifiers
for their decomposability.

Conclusion

In this paper we have considered the case of induc-
ing decision trees by a set of cooperating agents. The
agents transmit only statistical summaries to other au-
thorized agents and know which summaries should be
sought at each level of decision tree induction. We have
demonstrated the adaptability of an informational en-
tropy driven decision tree induction algorithm for im-
plementation by such agents. A heuristic for handling
continuous-valued attributes has also been shown to be
adaptable for such situations.
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