
An Accumulative Exploration Method for Reinforcement Learning

Edwin de Jong
Artificial Intelligence Laboratory

Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussels

edwin@arti.vub.ac.be

Abstract

Agents in Multi Agent Systems can coordinate
their actions by communicating. We investigate
a minimal form of communication, where the sig-
nals that agents send represent evaluations of
the behavior of the receiving agent. Learning
to act according to these signals is a typical Re-
inforcement Learning problem. The backprop-
agation neural network has been used to pre-
dict rewards that will follow an action. The
first results made clear that a mechanism for bal-
macing between exploitation and exploration was
needed. We introduce the Exploration Buckets al-
gorithm, a method that favors both actions with
high prediction errors and actions that have been
ignored for some time. The algorithm’s scope
is not restricted to a single learning algorithm,
mad its main characterics are its insensibility to
large (or even continuous) state spaces and its
appropriateness for online learning; the Explo-
ration/Exploitation balance does not depend on
properties external to the system, such as time.

Introduction

When designing Multi Agent Systems (MAS), dimin-
ishing complex communication increases generality.
Agents that use complex communication inherently
depend on mutual knowledge. In previous work (De
Jong, 1997), a framework for MAS design has been
described in which a minimal form of communication
is used; the only messages that agents send are num-
bers between 0 and 1 that represent evaluations of the
recipient’s behavior. These signals are meant to pro-
vide a means for agents to learn to act in unknown
environments. To this end, an agent will have to learn
to choose the actions which, depending on the current
state, will cause other agents to send it high evalu-
ations. Coordination signals are sent by agents that
know their environment. These agents can be seen as
teachers of a learning agent.

The two main tasks that have to be performed to
create a MAS according to these ideas are defining co-

19

ordination signals and implementing a learning agent.
The first task cannot be seen separate from the task
the MAS will be used for. In contrast, the second task
should ideally depend as little as possible on the appli-
cation domain. The task a learning agent is presented
with is a typical example of a Reinforcement Learning
(RL) problem, where the rewards correspond to the
evaluation signals that will be received.

In RL, the learner chooses actions which affect the
environment and yield rewards, which are high if the
action is considered appropriate. Since these rewards
do not contain information about the direction of the
error in the action vector, RL refers to a class of semi-
supervised learning problems. See (Kaelbling et al.,
1996) for a review.

The scope of this design method is limited by the
power of existing learning algorithms. As a testcase,
it has been applied to the Pursuit Problem, first de-
scribed by (Benda et al., 1988). The first task, defin-
ing appropriate coordination signals, has been accom-
plished satisfactorily, see (De Jong, 1997) for an ac-
count. Here, we describe the problem that had to be
faced for solving the second task, i.e. implementing a
reinforcement learning agent. The main contribution
of this paper is a solution to the non-trivial problem
of finding an adequate trade-off between exploring the
environment to and exploiting the knowledge gained
so far by selecting actions that yield high rewards.
In a single-state environment, this problem reduces to
the k-armed bandit problem, for which formally justi-
fied solutions exist; in the general multi-state, delayed-
reinforcement case that we are concerned with here,
no theoretically guaranteed methods can be applied
(Kaelbling et al., 1996).

The Pursuit Problem

In our version of the pursuit problem, based on
(Stephens and Merx, 1990) one prey and several preda-
tors are placed in a 30 x 30 grid. The prey is cap-
tured when the four orthogonal positions around it are

From: AAAI Technical Report WS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

occupied by predators. We use Stephens and Merx’s
efficiency measures. The prey selects its actions by
randomly choosing between moving left, right, up or
down, and staying at the current position, but does not
consider any occupied positions. In the experiments
described here, the minimum number of 4 predators
is used. Three of these predators send coordination
signals to their two neighbours, which represent eval-
uations of their coordination with these neighbours.
The fourth predator is a learning agent. Since neigh-
bours are determined by comparing angles with the
prey, the learning agent will normally receive two co-
ordination signals; one from both neighbours. In ex-
ceptional cases, when several predators have the same
angle (but different distances) to the prey, the learn-
ing agent may receive a different number of signals.
A learning agent interprets the average of the incom-
ing signals as its reward. This setup contrast with the
more commonly used environmental rewards, and pro-
vides a way for agents to put learning agents to their
use. The coordination signals are computed as follows:

signal

¢opt

Eval(Ap, Aq)

0.04. (1

ETr¢ aX

= Eval(A2, A1) + Eval(A3,
2re

#predators

= 0.96. (1 Ap.d+ Aq.d) +
_ I¢opt - ((Ap.phi - Aq.phi) mod2~r)l)

Ema~

where d is the distance to the prey, ¢ the angle be-
tween two predators and Emax the maximal error in
this angle.

Finding a Suitable Reinforcement
Learning Algorithm

A common algorithm for reinforcement learning prob-
lems is Q-learning (Watkins, 1989). This technique
found its way into the domain of multi agent systems,
see e.g. (Sen and Sekaran, 1995), (Sandholm
Crites, 1995). Q-learning involves storing valuations
for each possible action in every state. This is only fea-
sible in problems with a small number of possible states
and actions. For the problem at hand, the inputs con-
sist of the polar coordinates of all predators relative to
the prey, and the cartesian coordinates of the prey. Al-
though the number of possible actions is only 5 (mov-
ing in the compass directions and staying), the number
of combinations of state and action already amounts to

900! 1015 15 ~ / = 2.9. To avoid this combinatorial
explosion, several methods for generalization exist. In
(Sutton, 1996), a function approximator is applied
discretize a continuous state space, so that algorithms
based on storing information about combinations of
actions and states can be used all the same. Another
approach to generalization is to use neural networks
that interpolate between states situations (and possi-
bly, but not in our case, actions). Of the many neural
network architectures that are described in the liter-
ature, quite a lot use binary-valued rewards. Since
the succes of a predator that bases its actions on the
coordination signals depends quite critically on small
differences in these values, binary rewards are not suf-
ficient here. A possible solution to this would be to
train the network on differences between subsequent
rewards; increases can then be used as good rewards
(1), and decreases as bad ones (0). This scheme is
investigated here, since its assumptions (i.e. a good
action will always result in an increase of the reward)
make it less generally applicable.

As a learning algorithm, we use the common back-
propagation network, see (Rumelhart et al., 1987).
The inputs are the polar positions of all predators (in-
cluding the learning agent) and the cartesian position
of the prey, and a bias input neuron. The network
has one hidden layer of 20 neurons. The output layer
contains 5 neurons, each representing an action. Each
output neuron should learn to predict the reward its
corresponding action would return on execution. Only
the neuron corresponding to the action that was ex-
ecuted changes its weights to learn the received re-
ward. The learning agent was designed to be used
in the abovementioned framework for coordination in
multi agent systems. The goals of this framework in-
clude that the learning agent should in principle be
independent from the application domain. As a con-
sequence, the intervals within wich the values of the
inputs may vary are unknown during the construction
of the network. The problem of scaling the input val-
ues is handled by computing the mean and variance of
each input as if its values were normally distributed.
Inputs within [/~ - 2 ¯ ~r..# + 2 ¯ or] are linearly scaled
and translated to fit within [0..1]; inputs outside this
interval are replaced by the scaled and translated value
of their nearest bound.

1This is the number of actions (4 directions + resting)
multiplied by the number of ways in which the 5 recogniz-
ably different agents (the agent, the prey and the 3 other
predators) can be placed on the 30 x 30 grid.

2O

The Exploration Buckets Algorithm

One thing all RL algorithms have in common is the
need for a strategy that defines when to explore and
when to exploit. The motivation for an agent to learn
is to be able to exploit the knowledge it gradually
builds up to choose actions that yield high rewards.
But when no attention is paid to exploring actions
with lower expectated rewards, underrated actions will
never be recognized as such. The task of an Explo-
ration / Exploition algorithm is to find a good balance
between these. According to (Thrun, 1992), explo-
ration mechanisms can be divided into undirected and
directed strategies. Within the class of directed strate-
gies, which are generally more successful than undi-
rected ones such as random or stochastic exploration,
three types are encountered: stategies based on coun-
ters, on recency and on errors. We are interested in
finding an exploration mechanism that possesses the
following properties:

¯ It can be used for online learning
(Thrun, 1992) describes several algorithms that dis-
tinguish between the learning phase and the per-
forming phase. As (Sutton, 1993) notes, in order
to obtain learning systems instead of merely learned
ones, online learning is required. This refers to learn-
ing that is done during the operational phase of a
system. Online learning agents that have to oper-
ate in a changing environment should never stop
learning, and should therefore avoid to distinguish
between learning and operating phases. (Wilson,
1996) gives a systematic account of the variables on
which the balance between exploration and exploita-
tion may depend. Similarly, dependency of this bal-
ance on the running time is to be avoided when
designing an online learning agent. This excludes
the popular exploration mechanisms that depend on
the slowly decaying influence of randomness , such
as Gullapalli’s SRV unit (Gullapalli, 1990), which
implements exploration by adding random numbers
from a zero-mean Gaussian distribution to a neu-
ron’s output and gradually decreasing the variance
of this distribution over time. A further requirement
for an online learning agent is limited computational
complexity.

¯ It is not restricted to small problems
As we saw before, even an apparently simple domain
such as the pursuit problem may lead to forbiddingly
large search memory requirements when all combina-
tions of states and actions are seen as separate. Ex-
ploration mechanisms that depend on storing values
for each such combination therefore cannot be used
without substantial changes.

Actions

G
G
©

Exploration buckets Eligibilities

+ ~/ XA

+
~

XB

+ ~7/ = XC

+ ~/ = XD

+
~

= XE

Figure 1: Exploration buckets

Many approaches to exploration feature some of
these requirements, but none was encountered that
satisfies all. (Sutton, 1990)~ introduces exploration
bonuses that keep a memory for each state x and each
action a of" the number of time steps that have elapsed
since a was tried in x in a real experience". This inter-
esting recency-based strategy is restricted to problems
with small numbers of states and actions. In (Cohn,
1994), an algorithm based on Federov’s Theory of Op-
timal Experiment Design, see (Federov, 1972), is de-
scribed. This algorithm can be very useful for choos-
ing expensive experiments, such as drilling oil wells,
but will generally be too slow for online learning. In
(Dayan and Sejnowski, 1996), an estimation of the
Bayesian balance between exploration and exploitation
is computed. This method is limited to systems that
keep a model of state transitions. We introduce the
Exploration Buckets algorithm, which meets all of the
above requirements. The exploration bucket of action
k is updated as follows, assuming action i was chosen:

fork = i:

B~+ I = 0

Ekt+l = Ipredicted reward - actual rewardI

fork 7£ i:
~ Ei

B~+I = B~ + a. <O’~’Ek + 0.1. ,%1)
=

where Bk is the content of the exploration bucket of
action k, and Ek the error between real and predicted
reward when action k was last executed. The explo-
ration bucket of the chosen action is emptied. Its con-

21

tent is not transferred to other buckets. The buckets of
the other actions are increased by a value proportional
to the error in the prediction of the reward when that
action was last selected. The average previous error
of all actions, multiplied by a small factor, is added
to this to ensure exploration of all actions when the
general performance is decreasing due to a changed
environment. In all experiments reported on here the
influence of the exploration bonuses, ~, was 1. The
eligibility of an action is the sum of its predicted re-
ward and its exploration bucket. The action with the
highest eligibility is selected for execution. The result-
ing behaviour is that exploration is stimulated by these
two aspects:

¯ the last time the action was taken, the prediction
of the corresponding reward was not very precise
(error-based)

¯ the action has not been tried for a long time
(recency-based)

The effect of accumulating exploration bonuses is that
even an action with small bonuses will eventually be
selected. In environments where the rewards are highly
stochastic, it can be foreseen the algorithm will keep
exploring when no more benefit is to be gained. Since
the exploration mechanism avoids storing information
(such as the unpredictability of rewards) about par-
ticular states, a solution to this is not obvious. An
important property of this exploration policy is that it
does not depend on quantities external to the system,
such as time.

Results
Qualitatively, the results of the learning algorithm can
be described as follows. At the beginning, all weights
of the network are random; some actions are conse-
quently estimated to yield high returns, and others
low returns. Since these predictions are initially ran-
dom, the high errors result in high exploration bonuses
and hence much exploration. As a result of this ex-
ploration, the predictions soon converge to a situation
where all actions yield predictions approaching the av-
erage reward. Then the agent learns to distinguish
more subtle differences in the environment, resulting
in more accurate predictions. Finally, enough detail
is reached to distinguish between the rewards of the
different actions in a situation. This is particular to
the definition of the rewards. Since the evaluation
of the learning agent’s behavior is done by continu-
ally judging the current state, not its action, the re-
wards are strongly correlated to the previous reward,
and only implicitly depend on the chosen action. The
very small differences in returns that are the effect of

t

o.0

0,6

0.4

0,2

0

-0.2

-0.n f

-O.6

-0.0

-1
30000 30050 30100 30150 302OO 30250 30300 30350 30400 30450 30500

Figure 2: Upper two lines: network’s prediction and
real reward as a function of, the number of moves.
Lower line: error. The network has learned to predict
the rewards it will receive quite accurately.

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5 ~

0 5O

LmFt --
Right

Up--
Down
Sta~

100 150 200 250 300 350 400 450 500

Figure 3: Exploration bonuses of the 5 actions peak
when the network makes large errors in its predictions
(see figure 4). The oscillating exploration value be-
tween 150 and 300 solves the low initial predictions of
’moving left’. The high prediction errors quickly fill
this action’s exploration bucket, thus causing the sys-
tem to select the action frequently and learn its real
value. Later on (not shown), the influence of explo-
ration drops.

22

O.B

0.6

0.4

0.2

LeFt --
Right -

UpD
Down --

r "~/v,/:I

50 100 150 200 250 300 350 400 450 500

ExplorationBuckets--
Raul6tre

ExpiorstzonBuckets--
Roulette

/:.).
.

.)~ :-~:7. :.~."~::
~? ¯ :..,’:~..~

._........

.,_f -

1oo 200 300 400 5oo 6oo zoo

Figure 4: Exploration sees to it that the initial low
predictions of action ’move left’ are quickly increased.

this make this learning problem a rather difficult one.
These first experiences with the Exploration Buckets
algorithm show that it performed better than Roulette
exploration, see (Goldberg, 1989), which was used as
comparison. With Roulette exploration, the outputs of
the network are used as relative probabilities to choose
the corresponding action. Using a delayed rewards al-
gorithm, see (Sutton, 1988), could improve this. The
network using the Exploration Buckets algorithm that
has been presented can thus successfully be used for
finding a balance between exploration and exploita-
tion for reinforcement learning problems with direct
rewards.

Conclusions
We investigated the possibilities for exploration in a
particular a reinforcement learning problem. The Ex-
ploration Buckets algorithm was introduced. The al-
gorithm was tested by applying it in a network for an
agent that has to learn to become a predator in the
Pursuit Problem. The results were positive, and have
been compared to the ’Roulette’ strategy. A limitation
is its inappropriateness for highly stochastic environ-
ments. Attractive properties of the method are:

¯ The balance between exploration and exploitation
does not change as a function of properties external
to the system, such as time. This is essential when
designing agents that have to operate in changing
environments.

¯ The time complexity is low. The space complexity
is linear in the number of actions, and independent
of the number of possible states, also resulting in a
low complexity for the problem at hand.

Figure 5: Resulting efficiencies of the pursuit problems.
The topmost and the lower middle line are the effi-
ciencies of the Exploration Buckets network, the other
two lines are the same 2 efficiencies for Roulette explo-
ration.

¯ It assures that actions with bad reward predictions
are selected frequently so they can as to improve
their predictions; meanwhile it has a minor influence
on exploitation once the agent has learned its envi-
ronment; these are results of the error-dependence of
the method. The use of buckets that retain explo-
ration bonuses when actions are not selected yields
the recency-based character of the algorithm. In fu-
ture work, we plan to combine the exploration buck-
ets algorithm with other learning methods and com-
pare the resulting system to other explore/exploit
strategies.

Acknowledgments

The author wants to thank Walter van de Velde for
valuable suggestions and Bart de Boer for reading and
commenting on an earlier version. This research was
partially funded by EU Telematics Information Engi-
neering projects MAGICA and GEOMED. GEOMED
(IE 2037) stands for ’Geographical mediation systems’.
MAGICA (IE 2069) stands for ’Multi-Media Agent-
based Interactive Catalogs’. Additional funding has
been provided by the OZR contract for research on
models for coordination and competition in multi agent
systems.

References
Benda, M., Jagannathan, V., and Dodhiawalla, R. (1988).
On optimal cooperation of knowledge sources. Technical
Report BCS-G2010-28, Boeing AI Center.

23

Cohn, D. A. (1994). Neural network exploration using op-
timal experiment design. Technical Report AI Memo 1491
and CBCL Paper 99, MIT A[Lab and Center for Biologi-
cal and Computational Learning Department of Brain and
Cognitive Sciences.

Dayan, P. and Sejnowski, T. J. (1996). Exploration
bonuses and dual control. Machine Learning, 25.

De Jong, E. D. (1997). Multi-agent coordination by com-
munication of evaluations. In Proceedings of Modeling Au-
tonomous Agents in a Multi Agent World MAAMAW ’97.

Federov, V. (1972). Theory of Optimal Experiments. Aca-
demic Press, New York.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley.

Gullapalli, V. (1990). A stochastic reinforcement algo-
rithm for learning real-valued functions. Neural Netw.,
3:671-692.

Kaelbling, L. P., Littman, M. L., and Moore, A. W.
(1996). Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4.

Rumelhart, D., McClelland, J., and et. al. (1987). Parallel
distributed processing; explorations in the microstructure
of cognition, volume 1-2. MIT Press.

Sandholm, T. W. and Crites, R. H. (1995). On multia-
gent q-learning in a semi-competitive domain. In G. Weiss,
S. S., editor, Adaption and Learning in multi-agent sys-
tems, pages 191-205, Berlin, Heidelberg. Springer Verlag.

Sen, S. and Sekaran, M. (1995). Multiagent coordination
with learning classifier systems. In G. Weiss, S. S., editor,
Adaption and Learning in multi-agent systems, pages 218-
233, Berlin, Heidelberg. Springer Verlag.

Stephens, L. M. and Merx, M. B. (1990). The effect
agent control strategy on the performance of a dai pur-
suit problem. In Proceedings of the 1990 Distributed AI
Workshop.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Technical Report TR87-509.1,
GTE Laboratories.

Sutton, R. S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Proceedings of the Seventh lnt. Conf. on
Machince Learning, pp. 314-321, pages 216-224. Morgan
Kaufmann.

Sutton, R. S. (1993). Online learning with random rep-
resentations. In Proceedings of the Tenth Int. Conf. on
Machince Learning, pp. 314-321, pages 314-321. Morgan
Kaufmann.

Sutton, R. S. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse cod-
ing. Advances in Neural Information Processing Systems,
8:1038-1044.

Thrun, S. (1992). The role of exploration in learning con-
trol. Van Nostrand Reinhold.

Watkins, C. (1989). Learning from delayed rewards. Ph.D.
Thesis.

24

Wilson, S. W. (1996). Explore / exploit strategies in au-
tonomy. In et.al., P. M., editor, Proceedings of the fourth
international conference on simulation of adaptive behav-
ior. From animals to animats 4. The MIT Press.

