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Abstract

We investigate how agents can learn to become ex-
perts, and eventually organize themselves appropri-
ately for a range of tasks. Our aim is to look at evolu-
tionary processes that lead to organizations of experts.

The distributed artificial intelligence (DAI) commu-
nity has dealt with multiagent systems that organize
themselves in order to achieve a specific shared goal.
Various organizations can arise that will effectively
balance the load on the agents and improve their per-
formance. We here look at the process of emergence of
an organization as a step that takes place prior to the
execution of a task, and as a general process related
to a range of problems in a domain.

To explore the ideas set forward, we designed and im-
plemented a testbed based on the idea of the game of
Life. We present experimental results that show dif-
ferent patterns of organizations that might evolve in
a multiagent system.

Keywords: organization of agents, evolution-
ary model, software agents

Introduction

The topic of organization and self-organization of
agents has been dealt with in the Distributed Artificial
Intelligence (DAI) community with regard to the divi-
sion of labor among agents who are trying to achieve
some shared goal. We are interested in how agents can
learn to organize themselves and in particular, how the
agents in a multiagent environment can learn to be-
come experts. We suggest an algorithm that influences
the agent population in the system, and the system
evolves expert agents in a domain. The proposed algo-
rithm is performed as a step prior to problem solving
in the domain. After the agents have become experts,
other applications or the agents themselves can address
these experts to get assistance or tasks resolved.

We have designed and implemented a testbed to ex-
periment with evolving organizations of agents. The
implementation of this testbed is along the lines of the
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Game of Life (Gardner 1983). This game was invented
by John Horton Conway in 1970. It takes place in a
two dimensional grid (assumed to be an infinite plane).
Each cell in this board has eight neighboring cells. The
game was designed as a one person game, where an ini-
tial configuration of the grid is submitted (i.e., specify-
ing which cells are empty and which cells are occupied
by a counter). From then on, the rules of the game will
control and change the configurations of the grid, lead-
ing to interesting patterns of organization. There are
three rules that define when an occupied cell remains
occupied (i.e., it survives), when an occupied cell be-
comes empty (i.e., it dies), and when an empty cell be-
comes occupied (i.e., a birth occurs). Every organism
with two or three neighboring organisms survives for
the next generation. Each organism with four or more
neighbors dies (i.e., it is removed) due to overpopula-
tion. Every organism with one neighbor or none dies
from isolation. Each empty cell adjacent to exactly
three neighbors is a birth cell. An organism is placed
on it at the next move. There were three known behav-
iors that could emerge in different configurations with
these rules. There were stable populations, that did
not change their structure once they got to it. There
were configurations that faded away, i.e., the grid re-
mained totally empty after a number of iterations of
the game. And, a configuration could be periodic or os-
cillating (i.e., it is composed of subconfigurations that
change among them in a definite cycle [larger or equal
to one]). These examples stress the unpredictability of
the results in Life even though the rules of the game
are very simple, and seem predictable.

In this paper, we present experimental results, that
show interesting patterns of organization of agents that
might evolve, with similar characteristics to patterns
evolved in the game of Life.

The Organization of Agents

The organization and self-organization of agents oper-
ating in multiagent systems has been studied in the



DAI community, in relation to the agents’ tasks. A
good organization will balance the load on the agents,
and will cause the agents to improve their performance.
Most work published on this topic considers the organi-
zation of the agents as a means that enables the agents
to better adapt to their environment.

Ishida (Ishida 1992) proposes a model in which
agents organize themselves by decomposing the prob-
lem they have to solve to achieve a shared goal. He
calls this approach organization centered problem solv-
ing. Each agent always evaluates its actions based on
how each action contributes to the agent’s goal, and
on how each action contributes to the other agent’s
goal. The process by which agents reorganize them-
selves is by changing their current goals, i.e., refining
their knowledge, or partitioning a goal into subgoals.

Another model for self organization was presented
by Guichard et al. (Guichard & Ayel 1994). They in-
troduced two primitives of reorganization: the compo-
sition (i.e., regrouping several agents into one), and
the decomposition (i.e., the creation of several new
agents). An agent decomposes itself when it reasons
by applying its mechanism of introspection and it con-
cludes that it is unable to perform its tasks adequately.
They didn’t explain formally any specific mechanism,
but they mention several examples of it based on the
number of tasks, the importance of tasks, or the re-
quired time for resolving the problem.

Huberman and Hogg (Huberman & Hogg 1995) look
into communities of practice, i.e., informal networks
that generate their own norms and interaction pat-
terns. They consider a group of individuals that are
trying to solve a problem. Individuals can interact
with one another, and they might do so with an in-
teraction strength proportional to the frequency with
which they exchange information with each other. At
each step individuals can choose to work on their own
or use information or other help from others in the
community. They suggest characterizing the structure
of a community by counting the number of neighbors
an individual has, weighted by how frequently they in-
teract. They then study the general evolution of such
networks and find the conditions that allow the com-
munity to achieve the optimal structure purely through
adjustments. This requires each agent to learn about
the hints it might get from other agents and to learn
to use them effectively.

Nagendra Prasad et al. (Nagendra Prasad, Lesser, &
Lander 1996) investigated the usefulness of having het-
erogeneous agents learning their organizational role in
a multiagent parametric design system. The problem
the agents are faced with is to find a design, i.e., to find
a set of values for the set of parameters of the prob-
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lem. The agents can initiate designs, extend or critique
them until they get to a final design that is mutually
accepted by all of them. In the learning study they
considered only the first two roles. Each of these roles
is defined as a set of tasks that the agent has to per-
form in a composite solution that solves a given prob-
lem. In (Nagendra Prasad, Lesser, & Lander 1996), it
is noted that the designer of the system cannot know
beforehand the best assignments of roles to the agents
because he lacks knowledge about the solution distri-
bution in the space.

The agents went through a training period in which
they evaluate their possible roles at each state while
searching for a solution to specific problems. Then, the
agents would select the role that maximized their eval-
uation. This involves communicating with the other
agents in the system to obtain information required to
calculate the values of the evaluation function. In ad-
dition the actual performance measure of each agent’s
choice is only known when the search for the solution
is completed. Then, the agents backtrace their evalu-
ations and assigned them to the roles. The agents are
trained for all possible states of a search.

In all the cases reviewed in this section, the reor-
ganization of a group of agents is strictly related to a
specific problem the agents are trying to solve. The
study presented in (Nagendra Prasad, Lesser, & Lan-
der 1996) is more general, in the sense that a still pre-
defined number of agents is trained for all the possible
states that could occur while searching for a solution
for a multiparametric design.

The changes produced in these organizational struc-
tures are induced by a decrease in performance (i.e.,
they will reorganize because their performance has de-
creased, in order to improve it). In summary, the
agents search for an internal organization while achiev-
ing a shared goal, balancing the load imposed on them
as a group, and improving their performance.

The Multiagent Testbed

We have designed and implemented a testbed to exper-
iment with evolving organizations of agents. The rules
of our testbed were designed along the lines of the game
of Life. The main addition to the game is the consid-
eration of the environment in which the agents grow,
die, or live. In our current implementation we choose
the information domain, consisting of documents from
a given source (e.g., a site on the Internet, files from a
directory, from an archive, etc.). Therefore, the rules
of death, birth, and survival were defined based on the
resources (i.e., the information in the documents) that
the agents hold. In this testbed, we deal with homo-
geneous agents coming from a general class of agents.



There are two main concepts that need to be defined
in the game of Life: the neighborhood relation and
the rules of the game. In our case, we compute the
nearness among the documents in the set on which
the simulation is run. Each agent can access a matrix
consisting of the proximity values calculated for any
pair of documents found in the collection.

For our implementation, we download all the doc-
uments at the corresponding site. We then build an
inverted index of all the words that appear in these
documents. We store, for each word, the total num-
ber of times the word appeared in all the documents
together, the total number of documents in which the
word appeared, and for each document that the word
appeared in, the total number of appearances in that
document. Afterwards, we compute the proximity val-
ues among all the documents collected, and build the
neighborhood matrix out of these values. Currently, we
have implemented two relations that decide when two
documents are considered neighbors. In both cases,
the neighborhood relation implies a gradual relation
(in contrast to a binary relation, in which we could
only say whether two documents are neighbors or not).

One neighborhood relation considers the words that
appear in the documents, that is, two documents are
neighbors when they are semantically similar. The
other relation considers the links each document points
to. That means that two documents will be considered
neighbors if both of them point to mutual links. The
matrix is a square matrix with rows and columns equiv-
alent to the number of documents collected. Each cell
is initialized with zero. For each word that appears in
the inverted index, and documents Doc;, and Doc; in
which the word appears, the value of the cell [Z, j] is in-
cremented by an amount Incr{word, Doc;, Doc;] based
on the Inverse Document Frequency (IDF) weight for-
mula (Salton & McGill 1983). The IDF formula as-
sumes that the word’s importance is proportional to
the occurrence frequency of each word in each docu-
ment and inversely proportional to the total number
of documents in which the same word appears.

The evolutionary engine program simulates a sys-
tem populated with agents that gather resources (e.g.,
documents). The main algorithm for evolving an or-
ganization of experts is presented in Fig. 1. C[i] de-
notes the current set of documents owned by agent 1.
AgentsOnDocs is the number of agents already holding
documents that are neighbors of the documents that
agent i is holding. Free is the set of documents that are
not owned yet by any agent in the current population.

Any simulation starts with an initial number of
agents set by the user. The user also assigns an initial
document to each agent. Then, the agents collect more

For each agent A; in the agents list:
Find NumDocs documents that are the closest
neighbors to the documents already in C[3]
Find out the size of AgentsOnDocs
Compute PopulationDensity = ﬁ%s—oﬁ
If (MyDocs; < MinDocs) and
(PopulationDensity > HighPopDensity)
A; returns its documents in C[i] to Free
A; dies
If (MyDocs; > MaxDocs) and
(PopulationDensity < LowPopDensity)
A; spawns a new agent A';
A; divides C[i] into C[#'] and C[:"]
If (MyDocs; < MaxDocs) and
(PopulationDensity < HighPopDensity)
A; adds to its current Ci],
the NumAdded closest documents from NumDocs
that are not owned by any other agent.
Free is updated accordingly
else do nothing
Output A;’s current documents in C[7]
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Figure 1: The main loop of the evolutionary engine

documents that are close enough to their seed docu-
ment, based on the neighborhood matrix. The num-
ber of additional documents is set by the user. From
then on, the agents will be involved in a loop in which
they might be able to collect more documents from the
given collection, they might die when they have very
few documents in relation to the other agents, they
might split into two agents if they have too many doc-
uments in relation to the other agents, and they might
do nothing. This main loop ends after an iteration in
which all the agents do nothing, i.e., no changes were
made to the sets of documents the agents hold so far.
During the simulation, each agent is described by a
personal window in which the current addresses of the
documents it was assigned are presented. At the end of
the simulation, all the sets of documents held by each
agent, together with the words that characterize them,
are copied to HTML files. A set of parameters can be
set by the user to test different scenarios, initial condi-
tions of the system, and different thresholds needed by
the rules that will influence the behavior of the agents.

Experimental Results

In the game of Life four main behaviors were reported
and described (Gardner 1983): stable, periodic or os-
cillating, fading, and ever growing patterns of organi-
zation. We will show similar results in our testbed,
considering also the domain we choose. We built a
matrix of the neighborhood relation among 166 doc-




uments taken from the Computer Science site at the
Hebrew University (the URL of the root of the site is
http://www.cs.huji.ac.il).

The parameters that can be set by the user include
NumDocs (i.e., the number of neighbor documents
the agent will collect at most at each iteration), Nu-
mAdded (i.e., the number of the nearest documents
the agent might add to its current cluster [chosen from
NumDocs]), HighPopDensity (it determines when the
population is overcrowded), MaxDocs (i.e., the maxi-
mum number of documents that each agent might hold
in its cluster), MinDocs (i.e., the minimum number of
documents that an agent can have).

Stable Patterns The stop condition of our algo-
rithm is a state in which every agent has nothing to
do. At this point, the agents got to a stable state, i.e.,
we found a stable pattern of organization. Each agent
holds a defined cluster of documents.

The system stabilized in a pattern of two agents
for the following parameters: the number of docu-
ments added at each iteration was three, there were
two agents in the initial population, the threshold for
high population was 0.2, the maximal number of docu-
ments was 16 and the minimum number of documents
was set as 10. The same result was gotten for a differ-
ent initial number of documents that each agent held
(i.e., for 2, 5, and 8 initial documents).

When the minimal number of documents was
changed to b, a stable pattern of 3 agents was got-
ten for an initial number of documents ranging from 1
to 8. These three agents in the system were responsible
for three topics respectively: material about writing in
HTML, pages about a specific project developed in the
Distributed Systems Laboratory, and pages about the
learning group at the Hebrew University.

When the threshold for the high population was in-
creased to 0.6, we got two different sets of stable pat-
terns. One was reached with 8 agents when the initial
number of documents was 1, 2, 4, 5, 7. A pattern of ten
agents was reached for 3 or 6 initial documents. The
eight agents were responsible for pages on HTML, the
programming laboratory, the Data Base group and in-
formation for students, the Distributed Systems group,
three agents for three different exercises material in
a course about learning, material about the learning
group and additional material about the Distributed
Systems group, respectively.

When the threshold for high population density re-
mained at 0.6 and the minimal number of documents
was raised to 10, we got three different sets of stable
patterns: seven agents composed the final structure
starting from 1, 4, or 7 initial number of documents,
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five agents were the result starting from 2 or 5 initial
documents, and six agents resulted when the initial two
agents started with 3 or 6 initial number of documents.

In Figures 2,3,4,5, the number of agents in the orga-
nization is presented as a function of the initial number
of seed documents given to each of the two agents in
the initial population. We denote a loop between x
agents by a value of -x. For example, in Fig. 2, when
there were three documents given to each agent, the
organization arrived at a group of one agent and a
loop between two other agents. In Figures 6, 7, we
present the number of agents in the organization that
evolved from an initial population of two agents that
were given five initial documents.
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Figure 2: HighPopDensity=0.2, MaxDocs=16, Min-
Docs=10, 2 agents in the initial population
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Figure 3: HighPopDensity=0.2, MaxDocs=16, Min-
Docs=5, 2 agents in the initial population

Ever Growing Patterns To achieve a population
of agents with an unlimited size, we would need an
infinite source of information. For example, for the
domain we have chosen, we would need a site or a
group of sites that grow all the time.
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Figure 4: HighPopDensity=0.6, MaxDocs=16, Min-
Docs=10, 2 agents in the initial population
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Figure 5: HighPopDensity=0.6, MaxDocs=16, Min-
Docs=5, 2 agents in the initial population
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Figure 6: HighPopDensity=0.6, MaxDocs=16, Min-
Docs=10, 2 agents in the initial population, five initial
documents for each agent
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In our current simulation, the site of documents is
finite. There is a possibility in which, for example, one
agent splits into two agents, one of them dies, and the
remaining agent repeats this process of splitting into
one agent that dies, and the other agent splits again
and so forth, without stopping. We will present this
example as a blinker pattern. In the specific example,
the agent that splits itself (i.e., the father) and the
agent that remains alive and will reproduce exchange
the clusters of documents they hold. In our implemen-
tation, each time an agent reproduces, its two sons get
two new names, but we can think of an agent spawning
itself into another agent, and the same agent remains
alive with part of its original documents. Therefore
in our current implementation and given the domain
as a finite site of documents, we cannot reach an ever
growing pattern of organization.

Fading Away Patterns We will consider two cases.
In one, we will check whether the whole population of
agents can vanish and we will also show cases where
agents can die in a system that survives.

For the following parameters: threshold for the high
population set as 0.2, maximal number of documents
as 16, minimal number of documents as 10, three docu-
ments added at each iteration, two agents in the initial
population with 39 or 40 initial documents, the agents
vanished. The same result was achieved for high pop-
ulation threshold set to 0.6 and minimal number of
documents set to five, and also for five as the minimal
number of documents and the threshold set to 0.2.

We also got results that show that agents can die,
when the appropriate condition is fulfilled.

Oscillating Patterns (Blinkers) Oscillating pat-
terns in multiagent systems are those patterns consist-



ing of agents that pass their documents from one agent
to another continuously.

For example, when the number of documents added
per iteration was three, the threshold for high pop-
ulation was 0.2, the maximal number of documents
was 16 and the minimal number of documents was
10, there were two agents in the initial population, we
got a blinker pattern for different initial numbers of
documents (1,3,4,6,7). The system entered a loop of
one agent holding documents related to the learning
group and another agent holding documents related
to a project in the Distributed Systems group. Every
three iterations of the simulation, the agent that sur-
vived held one of these two clusters, and after three
more iterations, the agent that remained alive held the
other cluster.

Another case was when the threshold for the high
population was 0.6, the minimal number of documents
was 10, and the initial number of documents was eight.
The system evolved into five agents (responsible for the
Data Base group and information for the students, an
exercise in a course about learning, the programming
laboratory course, the learning group, the Distributed
Systems group), and a loop between two other agents
(one cluster included material about a specific exercise
in the learning course, and the other about tools for
the learning course).

Other behaviors analyzed in Life (Gardner 1983)
concern distinct kinds of collisions among different pat-
terns. This is also relevant in our scenario. There oc-
curs a collision between clusters of documents (i.e., be-
tween the agents responsible for them) when one agent
(or several agents) dies, and its documents are redis-
tributed between the other agents (i.e., other agents
take control over these documents like a Life pattern
that eats another pattern, or when we get to oscillat-
ing behavior (i.e., agents pass their documents between
themselves in a cycle).

Conclusions

We propose an algorithm that evolves different pat-
terns of organization in a multiagent system consider-
ing the environment of the agents. The algorithm af-
fects the population of agents, i.e., their growth, death
and survival. Each agent collects information from the
domain, that eventually will become its domain of ex-
pertise.

We show different interesting patterns of organiza-
tion that agents can evolve (i.e., stable, periodic and
vanishing behaviors). In our model, the agents get
their expertise before they deal with any goal or task.
We are solely interested in agents that learn to become
experts, and not with the load balancing or solving of
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a specific problem.

These patterns of organization that evolve in a prior
step, are useful as a source of information. Specific
agents can be addressed to answer queries on the
knowledge they have. For example, the organization
can be approached by a user or another agent appli-
cation to retrieve information related to a given query.
Another example is to regard this organization as a li-
brary of reusable plans (Decker & Lesser 1994). More-
over, these organizations serve as a preparing stage
before the agents divide the tasks among themselves.
Each agent can achieve goals that are more related to
its expertise in a more efficient way.
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